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Abstract 
The flow past a rotating sphere is investigated numerically using 
a three-dimensional spectral element/spectral direct numerical 
simulation. The effect of sphere rotation on transition regimes is 
analysed for Reynolds numbers of 10 < Re < 500, where Re is the 
Reynolds number based on freestream velocity U, sphere 
diameter d and kinematic viscosity ν. The results show that the 
Reynolds numbers for the first transition to three-dimensionality, 
Re1, and the second transition to time-dependence, Re2, are 
functions of the angular velocity of the sphere Ω (normalised by 
the sphere radius and freestream velocity). The effect of non-
streamwise sphere rotation is to reduce the critical Reynolds 
numbers at which transition first occur. However, rotation about 
the streamwise axis results in a delayed transition, due to the 
suppression of the out-of-plane velocity component which is 
thought to trigger the flow transition. 
Introduction 
Rotating spheres are important in many industries, such as 
mineral processing, environmental protection and sports. For 
example, particle-laden and suspension flows are widely 
encountered in production, and therefore it is of great practical 
interest to investigate particle motion in designing manufacturing 
equipment. The present study aims to explore the impact of 
rotation on the transition Reynolds numbers for a sphere rotating 
about the streamwise and non-streamwise axes respectively. 
Previous investigations of the motion of a spinning sphere have 
mainly dealt with small particle Reynolds numbers, namely Rep 
much less than unity. However, in recent years experiments have 
been performed on the lift of spinning spheres at intermediate Re. 
Oesterle and Bui Dinh [5] looked at Reynolds numbers less than 
140, and proposed an empirical expression to estimate the lift 
coefficient within this range and for dimensionless angular 
velocities varying from 1 to 6. In spite of this, they could not 
explain the behaviour of the lift coefficient in terms of Re and Ω 
and acknowledge that further information is required concerning 
the flow structure around the sphere. 
A three-dimensional finite difference scheme based on the 
marker-and-cell technique was used by Kurose and Komori [4] to 
perform computations of the flow around a rotating sphere in a 
linear shear flow. The rotation rates investigated were in the 
range 0 < Ω < 0.25, whereas the Reynolds number ranged from 1 
to 500. In this study, it was found that the drag increases with 
increasing rotation. Also, the sign of the lift coefficient remains 
unchanged with increasing Re in contrast to a fixed sphere in a 
linear shear flow, and approached a constant value for Re > 200 
for a given rotational speed. This asymptotic value of the lift 
coefficient increased with increasing rotation rate, as did the 
Strouhal number St. Expressions for lift and drag were proposed 
for the parameter range investigated. 
Johnson and Patel [2] analysed in detail the transition processes 
between flow regimes in the wake of a fixed sphere. They 
postulate that the first transition is associated with an azimuthal 
instability of the low-pressure core of the toroidal vortex. The 
previously closed separation bubble opens up due to the 
azimuthal pressure gradient and entrains fluid through two tails. 
This mechanism is extended to describe the transition to 
unsteadiness. 

The nature of the transitions in the wake of a stationary sphere 
has been studied extensively in the literature. Thompson et al. [6] 
constructed Landau models for both Re1 and Re2 and suggest that 
the first transition is due to the tilting of fluid rings as they pass 
close to the surface of the sphere, thus converting azimuthal 
vorticity into streamwise vorticity. A precursor for the second 
transition is kinking of the counter-rotating vortices at 
approximately one diameter downstream of the sphere. However, 
further information is required concerning the characteristics of 
this transition. 
 
Numerical Procedure 
A spectral element/spectral numerical method developed for 
axisymmetric geometries was used for flow computations. The 
(dimensionless) Navier-Stokes and continuity equations are 
written with respect to polar coordinates and are solved using a 
high-order, three-step time-splitting scheme proposed by 
Karniadakis et al [3]. Singularities caused by the polar 
transformation are removed before application of the variational 
projection, as described in Tomboulides et al [9]. Because of the 
inherent periodicity of 2π in the azimuthal direction, a 
conventional Fourier interpolation is used to analyse the flow in 
its m Fourier modes in three dimensions. This technique has been 
applied successfully in studying the flow regimes of a cylinder 
wake. Further details of the method may be found in Thompson 
et al [7]. 
Results 
Grid Resolution Study 
 
An extensive study was performed to investigate the change in 
solution caused by varying the grid parameters. The mesh used 
for the calculations had 107 conforming quadrilateral elements 
with 24 Fourier planes and is shown in figure 1. The dimensions 
of the mesh in terms of the sphere diameter are as follows: outlet 
(LO), 12.5; inlet (LI), 15; radial (LR), 15. Results computed on this 
mesh have been examined for convergence by changing the order 
of the tensor-product Lagrange polynomial interpolants used for 
the primitive variable expansions.  
 

 
Figure 1. 2-D spectral element mesh used for all simulations. 

 
 
 



N 6 7 8 9 10 
St 0.1348 0.1346 0.1341 0.1338 0.1340 
CD 0.6435 0.6476 0.6492 0.6510 0.6512 
CL 0.0602 0.0610 0.0618 0.0622 0.0622 
u(2,0.5) 0.9715 0.9786 0.9824 0.9876 0.9869 

Table 1. Convergence results for a fixed sphere, where N is the order of 
the Lagrange polynomial interpolant used in each element. 

Table 1 shows the global Strouhal number, drag and lift 
coefficients, as well as velocity fluctuations measured in the 
wake at a point 2 diameters downstream of the fixed sphere and 
located close to the separated shear layer. The difference in 
solution between N = 8 and N = 10 is less than 1%, and all 
subsequent calculations use N = 8 as the basis for the 
interpolating polynomials. 
For a finite domain mesh, blockage effects become important and 
were analysed using a further two meshes, one with twice the 
radial extent as the primary mesh and the other with half the 
radial extent. Although not presented here, it was found that the 
change in solution between the primary and the large mesh was 
negligible, whereas the difference between the primary and the 
small mesh was in the order of 5%. The outcome of increasing LO 
to 25 and 50 diameters also resulted in little difference, and the 
vortical structures emanating from the rear of the sphere at higher 
Re did not seem to be affected by the shorter outlet length used in 
the primary mesh. 
 
Rotating Sphere Computations 
Simulations were performed for the rotating sphere for Reynolds 
numbers in the range 10 < Re < 500 and sphere angular velocities 
varying from 0.05 < Ω < 0.25. Although rotations about all three 
primary axes were performed, the results presented herein 
concern only x- and z-axis rotations, since rotations about the y-
axis yielded essentially identical outcomes as the z-axis rotations 
due to the nominal two degree-of-freedom representation of the 
boundary conditions on the surface of the sphere. 
 

Figure 2. Drag coefficient for Ω = 0.10. 
 

Figure 3. Lift coefficient for Ω = 0.10. 

Although plots of velocity vectors, streamlines and vorticity 
contours do much to understand the dynamics of the wake, they 
do not clearly elucidate the wake structures as observed in 
experiments. Hence, vortex structures were computed in the post-
processing phase of the calculations by determining and plotting 
isosurfaces of -λ2, which is the second eigenvalue of the S2 + Ω2 
tensor, where S and Ω are the symmetric and antisymmetric 
components of the velocity gradient tensor. This method has been 
widely used in visualising vortex structures in a variety of flows, 
as reported by Jeong and Hussain [1]. 
For all rotation rates investigated, it was found that both the drag 
and lift forces increased with increasing Ω at any given Reynolds 
number. Furthermore, the drag coefficient at a given rotation rate 
exhibited similar behaviour to that of a stationary sphere: CD 
rapidly decreases with increasing Re, as shown in figure 2. The 
lift coefficient, on the other hand, initially decreased with Re and 
then roughly increased linearly to a maximum value at a 
Reynolds number which is relatively independent of the rotation 
rate. This maximum value of lift remains virtually unchanged for 
the higher Re investigated in this study and is depicted in figure 
3. A similar trend was observed by Kurose and Komori [4]. For 
Re ≥ 240, the flow was found to be unsteady and hence the 
values for lift and drag depict time-averaged quantities. However, 
it should be noted that for rotation about the streamwise axis, 
both lift and side (lateral) forces were zero up to Reynolds 
numbers of ≈ 280, due to the axisymmetric nature of the flow at 
these conditions. 
An analysis of the vortical structures in the wake reveals that the 
levelling out of the lift coefficient at Re > 240 corresponds to the 
onset of periodic vortex shedding in the form of vortex loops or 
“hairpin” vortices. For the case of a stationary sphere, this regime 
is encountered only for Re > 275, according to the present results. 
For a stationary (nonrotating) sphere, the flow remains steady 
and axisymmetric up to a Reynolds number of approximately 
212. However, for a non-streamwise-rotating sphere, the 
axisymmetry is broken by the component of velocity in the plane 
orthogonal to the axis of rotation, even at the relatively low 
Reynolds numbers investigated in this study. For example, an 
examination at Re = 10 found the flow to be very slightly 
nonaxisymmetric, but not unstable enough to induce transition to 
the double-thread wake. 
Not only does the out-of-symmetry-plane velocity component 
break the axisymmetry, it is also responsible for the orientation 
of the plane of symmetry (see figure 4). For a fixed sphere, the 
plane of symmetry in the steady, nonaxisymmetric wake is 
known to be arbitrary, whereas for a rotating sphere it is found to 
be dependent upon the direction of rotation. Furthermore, the 
evolution of the dual counter-rotating vortices as shown in figure 
4 seems to be related to this same velocity component as the fluid 
develops more inertia at higher Reynolds numbers, and lends 
weight to the conjecture proposed by Johnson and Patel [2] and 
advanced by Thompson et al [6]. Indeed, at Re1 ≈ 100 and an 
angular rotation of 0.05, the flow was unstable enough to 
promote the development of the well-known double-thread wake. 
However, this transition process requires more information 
regarding the time evolution of the wake as it changes to a 
different flow state. 
The second transition to unsteadiness occurs at Re2 ≈ 240, for a 
non-streamwise rotation of Ω = 0.05. The vortex structures at this 
Reynolds number are shown in figure 4, and depict the well-
known hairpin vortex configuration (see, for example, [2]), 
although somewhat demarcated due to the rotational nature of the 
flow. 
For the streamwise-rotating sphere, the breakdown of 
axisymmetry was observed at 240 < Re1 < 260, with an angular 
rotation of Ω = 0.10. A plot of the vortex structures in this regime 
is shown in figure 5. Clearly evident is the difference in strength 
of the two counter-rotating vortices, more noticeable in the 
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bottom view of figure 5. This is because the (streamwise) angular 
velocity in the wake induced by the rotating sphere is in the same 
direction as one of the counter-rotating vortices, and in the 
opposite direction of the other. Hence, one of the vortices 
increases in strength whereas the other diminishes due to the 
termination of streamwise vorticity.  The rotation also causes the 
two tails to be slightly skewed about the streamwise axis. The 
delayed transition in the case of the streamwise-rotating sphere is 
once more related to the out-of-symmetry-plane velocity, as this 
is the component of velocity that is subdued rather than 
promoted, as is the case with non-streamwise rotations. 
The difference in strength between the counter-rotating vortices 
results in a flow field that is quite unstable. Whereas Re2 ≈ 240 
for non-streamwise rotation, for a streamwise rotating sphere the 
transition Reynolds number lies in the range 280 < Re2 < 300 for 
Ω = 0.10. 
 

 

 

 
Figure 4. Rotating sphere about the y (top) and x (middle) axes 

respectively, Re = 200. Bottom view: Re = 260, ΩY = 0.05. 
 

The relatively short Reynolds number range in which the double-
thread wake is observed for a streamwise rotating sphere appears 
to be related to the large increase in entrained streamwise 
vorticity. For example, the difference in strength of the counter-
rotating vortices between 260 < Re < 280 was visually evident, 
while the same difference in Re for a non-streamwise rotating 
sphere generated vortices whose relative strength was barely 
discernible. 
For a stationary sphere, the transition to non-axisymmetry is 
evidenced by the occurrence of two counter-rotating vortices. 
Although the wake is asymmetric, there still exists a plane of 
symmetry, and the two-tailed wake structure often observed in 
experiments is a result of the conversion of azimuthal vorticity 
into streamwise vorticity. Because the azimuthal velocity in the 
wake is zero prior to transition, it provides a useful means of 
calculating the Reynolds number at which transition occurs. 
 

 

 

 
 

Figure 5. Rotating sphere about the x-axis, Re = 260. 
 
 
 



 
Figure 6. Azimuthal velocity at a location (x,y,z) = (4.5,0,0). 

 
However, for a rotating sphere, the azimuthal velocity at an 
arbitrary point in the wake is not zero, and hence makes it 
difficult to identify transition. Furthermore, in contrast to the 
flow past a stationary sphere, the azimuthal velocity cannot be 
used to identify the initial occurrence of the two-tailed wake 
structure. Figure 6 depicts the azimuthal velocity for a (non-
streamwise) rotating sphere as a function of Re, obtained at a 
position two diameters immediately downstream of the sphere. 
Quite apparent is the linear nature of the non-zero velocity 
fluctuations, even in the neighbourhood of the occurrence of the 
two-tailed vortex structure, whose values are shown in Table 2. 
The numerical simulations demonstrate that even at the low 
Reynolds numbers investigated in this study, considerable 
streamwise vorticity was observed in the wake, although the flow 
was non-axisymmetric and a two-tailed structure was not evident. 
Moreover, it appears that as the streamwise vortices grow in 
strength (to a magnitude comparable to that of a stationary sphere 
immediately after transition), the mutual force exerted by the 
counter-rotating vortices is considerable enough to disperse the 
vortices away from the wake centre plane, and yields the two-
tailed structure observed in the numerical simulations and well 
documented in experiments. 
 

Angular rotation (Ω) Observed two-tailed wake Re 
0.05 95 ± 5 
0.10 55 ± 5 
0.15 45 ± 5 
0.20 35 ± 5 
0.25 25 ± 5 

 
Table 2. Reynolds numbers at which two-tailed wake structure is 

observed. 
 
Simulations were performed at Reynolds numbers of 350, 400, 
450 and 500 for ΩX = 0.10 and ΩY = 0.05. At all of these Re, 
although not presented here, time histories of velocity 
fluctuations measured 2 diameters downstream revealed a 
somewhat random character, comparable to the wake pattern 
observed by Tomboulides and Orszag [8] in their figures 18 and 
19. Although the wake is to some extent chaotic, there is to be 
expected a pronounced peak in the Strouhal number at the vortex 
shedding frequency, as well as smaller peaks corresponding to 
the loss of planar symmetry, etc. However, some descriptive 
quantities used to characterise the wake properties (such as 
Strouhal numbers) are dependent upon the position in the wake 
where they are measured, and averaging is required in order to 
make comparisons with complementary results. Further work 
will investigate the spectral characteristics of the flow at these 
higher Reynolds numbers. 
 
 

Conclusions 
The flow about a rotating sphere was analysed numerically using 
a three-dimensional spectral element/spectral method for 
axisymmetric geometries. It was found that a non-streamwise 
sphere rotation caused an earlier transition to non-axisymmetry, 
whereas a streamwise rotation resulted in a greatly delayed 
transition in relation to the Reynolds number. The orientation of 
the plane of symmetry as well as the transition to non-
axisymmetry are related to the out-of-symmetry-plane velocity 
component. An increase in sphere rotation resulted in an increase 
in both drag and lift for any given Re, however, further 
information is required regarding the nature of the transitions. 
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