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INSTABILITY OF STEADY AND PULSATILE FLOWS IN STENOTIC GEOMETRIES
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Summary A numerical and experimental investigation of steady and pulsatile flows through a tube partially obstructed by an ax-
isymmetric blockage is presented. The geometry serves as an idealised model of an arterial stenosis. The pulsatile flow consists of a
steady downstream flow with a single-harmonic sinusoidally varying oscillation. Comparisons are made between the numerical and
experimental results. Linear absolute instabilities are found numerically, although convective instability is found to be important for
the experimental flows.

The cardiovascular arterial system can present a range of biological responses to fluid mechanical properties. Arterial
thickening is often the precursor to the most common form of arterial disease, atherosclerosis, which involves the long-
term deposition of cholesterol-related particles in the arterial wall [1]. Such deposits eventually form a blockage, or
stenosis, which can have several effects, ranging from reduced blood flow to the development of thrombi, or blood
clots. Fluid mechanics researchers have sought to characterise the fundamental flow behaviour of stenotic flows, by
investigating idealised models of stenosis using numerical fluid flow solvers [2, 3]. This study follows in a similar vein,
also investigating an idealised geometry experimentally.

METHOD

The geometry under investigation consists of a long, straight tube with an axisymmetric stenosis, semi-circular in cross-
section. The stenosis degree, defined by S = 1 − (d/D)2, where d is the diameter at the centre of the blockage and D
is the diameter of the tube, is varied from 0.20 to 0.90, along with the Reynolds number, defined by Re = UD/ν, where
U is the temporal and cross-sectional average of the fluid velocity and ν is the kinematic viscosity. For pulsatile flow,
the sectionally-averaged velocity oscillates sinusoidally around the temporally-averaged flow velocity U , at a period T
(non-dimensionalised by D/U) and an amplitude A.
Numerical two-dimensional axisymmetric flow field simulations were obtained using a spectral-element method. Experi-
mental results were obtained from a rig consisting of a transparent perspex tube of 20 mm diameter, with inlet and outlet
lengths of 2000 mm, or 100D. Vibrations to the system were isolated and the alignment of the tube verified. A piston
located at the inlet allowed the creation of pulsatile flows and steady flows subjected to a high-frequency low-amplitude
forcing.

RESULTS

Steady Flow
Figure 1(a) depicts the generic flow structure under investigation, for b = 0.75 and Re = 194. For this Reynolds number,
the flow is laminar and steady. Experimentally, dye becomes trapped in the axisymmetric recirculation zone which
forms downstream of the stenosis. The recirculation zone extends further downstream with stenosis degree and Reynolds
number. Numerically, critical Reynolds numbers for linear absolute instability, (i.e., instability modes which break the
axisymmetry of the flow) are predicted. However, experimentally, the flow becomes unstable at much lower Reynolds
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Figure 1. (a) Dye visualisation and numerical streamlines and vorticity for S = 0.75 and Re = 194. A reflection of the laser in the
middle of the image on the bottom portion of the tube is present, evident in the figure as a thin, blue shade. Flow is from left to right.
(b) At top, the unsteady flow for S = 0.90, Re = 194. For the spatio-temporal diagram, at bottom, the waves seen in the shear layer
are evident as straight lines to the left of the lower diagram.



numbers. Figure 1(b) presents a still of a film of a dye-visualisation of the flow for S = 0.90 and Re = 194. The flow is
unstable to convective shear layer instability. Small waves in the shear-layer can be seen immediately downstream of the
stenosis, growing as they propagate and meeting an area of unsteadiness at z ≈ 5D. The second part of figure 1(b) shows
a spatio-temporal diagram, constructed from the line of pixels along the grey line of the first image. In this diagram,
the waves in the separating shear layer are visible as straight lines to the left of the spatio-temporal diagram. From
such diagrams we can calculate the period of the waves in the shear layer that the instability creates. The period (non-
dimensionalised) of the shear layer waves in these self-sustaining unstable cases is found to vary with stenosis degree, but
is roughly constant with Reynolds number.
By using the piston on the experimental rig, flows of Reynolds number less than critical were subjected to a high-
frequency, low-amplitude forcing, allowing a peak forcing period to be determined; that is, the forcing period which
induced the greatest response in the shear layers downstream of the stenosis. These peak forcing periods were found to
be significantly higher than the instability periods of the self-sustaining unstable flows at higher Reynolds number. A
possible explanation for this lies in the turbulence and unsteadiness generated downstream in the higher Reynolds number
flows, which may alter the noise profile in the rig, amplifying some particular frequencies ahead of others.

Pulsatile Flow
Figure 2(a) presents dye visualisations over one pulse period of the experimental flow for stenosis degree S = 0.75,
Reynolds number Re = 206, pulse amplitude A = 0.75 and pulse period T = 2.43. The flow consists of a vortex
ring which forms each pulse period downstream of the stenosis, then detaches and propagates downstream. In the first
image, we see the flow at the end of the vortex formation phase, with a large body of clear fluid from upstream rolling
up into the main vortex ring, which subsequently travels downstream. Figure 2(b) presents critical Reynolds numbers for
stability as determined from Floquet stability analysis. A period-doubling instability of wavenumber m = 1 dominates
for most of the pulse period range, however, higher wavenumber modes dominate for lower pulse periods. The Floquet
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Figure 2. (a) Coloured-dye visualisations of the flow over one pulse period, for S = 0.75, Re = 206, A = 0.75 and T = 2.43, (a)

critical Reynolds number for linear absolute instability as a function of pulse period, for stenosis degree S = 0.75.

stability analysis of figure 2(b) predicts a critical Reynolds number Rec ≈ 260 for a period-doubling (m = 1) linear
absolute instability. However, the experimental flow shown in figure 2(a) is unstable, breaking down at approximately
4 to 5 diameters downstream of the stenosis. The waves, or roll-ups, in the separating shear layer seem relatively gentle
in comparison with the breakdown which occurs further downstream; shear layer roll-up in the wake of the main vortex
ring does not appear to be the main flow instability mechanism. It is possible an interaction exists, whereby the noise
dependent convective instability induces the absolute linear instability at a lower Reynolds number, as suggested in [2].

CONCLUSIONS

Steady flow in the stenotic geometry consists of an axisymmetric jet and recirculation zone downstream of the stenosis.
Experimentally, the flow becomes unstable to a Kelvin-Helmholtz shear-layer convective instability, the period of which
is roughly constant with Reynolds number. For pulsatile flow, convective instability appears to play a role, although there
is some indication of linear absolute instability at play. The results show that even under carefully-controlled experiments
of flows in stenotic geometries, convective instability plays an important role, appearing at Reynolds numbers much lower
than predicted by linear absolute stability analysis.
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