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Acoustic Sources in a Tripped Flow past a Resonator Tube

M. C. Thompson,* K. Hourigan,f and M. C. Welsht
Commonwealth Scientific and Industrial Research Organisation, Highett, Victoria 3190, Australia

and

E. Brocher§
Université d’Aix-Marseille, 13003 Marseille, France

A numerical model employing the vortex method is used to investigate the separated flow around a trip rod
placed upstream of a resonator tube. The acoustic power generated by the flow is calculated using Howe’s theory
of aerodynamic sound. When the trip rod is placed far enough upstream, natural vortex shedding from the rod
proceeds and no net acoustic energy of the tube resonant mode is generated. However, when the rod is placed
close to the tube, the vortex shedding becomes locked to the acoustic field, changes to a symmetric mode, and
the flow generates net resonant acoustic energy per acoustic cycle. These results are consistent with previous
experimental observations and provide insight into the flow structures responsible for the transfer of energy

from the flowfield to the resonant acoustic field.

Nomenclature

= stagnation enthalpy

= dimension of leading edge of trip rod

= speed of sound

= spacing between trip rod and resonator tube on axis
of symmetry

Fr = Froude number, = v/ \/Ez

= sound frequency

= function transforming from z to { plane

= standard gravity

= water height in hydraulic analogy

= mean water height in hydraulic analogy

=v-1

= coupling coefficient

= unit vector

= coupling coefficient

= Mach number

= acoustic power

= reference rate of energy flow into tube

= acoustic pressure

= acoustic Strouhal number, = fb/ve

= surface coordinate

= acoustic period

= acoustic particle velocity

= spatial average acoustic particle velocity amplitude
at the mouth of the tube

V = complex velocity

Viee = complex irrotational velocity

Vwedge = COITECtion to the complex velocity due to the

presence of the wedge

v = flow velocity

Virr = irrotational component of flow velocity

V() = tangential surface velocity at complex position s

Vweage = velocity correction due to the wedge
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Voo = flow velocity at upstream infinity

= width of resonator tube opening

= physical Cartesian coordinates

= complex velocity

complex coordinate in physical plane,=x + iy -

level of resonant acoustic amplitude

circulation

ratio of specific heats

— theoretical maximum water height oscillation,
2Fr h

= wavelength of resonant sound

= transformed coordinates in complex plane

= mean fluid density

= vorticity density

= time

acoustic pressure amplitude

vorticity
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Introduction

THE interaction of acoustic fields with flowfields has re-
cently been the subject of numerous investigations.!= It
has been found that certain flow configurations lead to strong
coupling of the two fields. In typical situations, vortex shed-
ding from one or more bodies may be locked in frequency to
the resonant acoustic field and in turn this periodic vortex
shedding may feed energy into the acoustic field, resulting in
positive feedback and resonance.

An understanding of the generation of acoustic power by
vortices traveling through acoustic fields has come through the
application of Howe’s*S theory of aerodynamic sound and
discrete vortex models of the flow. Welsh et al.? examined the
fluid mechanics of the resonant process in a duct containing a
plate with semicircular leading edges. The resonant process is
described in terms of an interchange of energy between the
flow and acoustic fields and has three basic components: 1)a
sound source (the vortex street), 2) a feedback effect of the
sound on the vortex shedding, and 3) a damping process
whereby acoustic energy is transferred out of the duct system.
Similarly, a study of the acoustic resonant process and the
mechanism coupling the vortex shedding and the acoustic field
was investigated for tandem plates in a duct flow by Stoneman
et al.®

Vrebalovich? has shown experimentally that it is possible to
generate strong oscillations within a tube placed in a super-
sonic flow by locating triggering devices upstream of the tube
mouth. Brocher® and Brocher and Duport® extended Vreba-
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Sprenger tube.'' This maximum amplitude is obtained from
the relation given in Brocher and Duport,” which can be
linearized to Apmax = 2YMp,, where vy represents the ratio of
specific heats and p, is the ambient pressure. This relation can
be derived from linear acoustic theory by imposing a velocity
amplitude at the tube mouth equal to the freestream velocity
V. This means that, when the limit cycle is achieved, the flow
is largely absorbed by the tube during the inflow phase.

The role of the vortex shedding from the triangular cross-
sectioned trip rod in exciting the tube acoustic resonance was
elucidated through flow visualization by Kawahashi et al.!?
using a free surface hydraulic analogy. It was found that when
strong oscillations within the tube were excited, the vortex
shedding from the trip rod changed from being asymmetrical
(natural) to symmetrical. The vortex shedding was locked to
the oscillation within the tube, indicating that the vortex shed-
ding plays an important role in stimulating growth and sus-
taining resonant oscillations within the tube. For some config-
urations, Kawahashi et al.!? found water level fluctuations Ah
that approached the value given for the limit cycle of Hart-
mann-Sprenger tubes, which in the case of the hydraulic anal-
0gy is Ahma = 2Frh, where Fr is the Froude number and his
the mean water height.

The present paper investigates the vortex shedding from a
wedge-shaped trip rod in a flow past a resonator tube in terms
of Howe’s theory of aerodynamic sound. In particular, an
understanding of the phase relationship between the vortex
shedding and the resonant acoustic field, and spatial and
temporal details of the acoustic source regions, are sought for
low Mach number flows. A vortex model simulates the shed-
ding of vortex clouds from the trip rod and their passage past
the resonator tube, showing how the large-scale vortex shed-
ding rate can become locked to the sound frequency and
predicting the generation of acoustic power. It should be
noted that this study concentrates on the sound sources and
flow description when the acoustic resonance in the tube has
attained the equilibrium state. The equilibrium state is a limit
cycle that appears experimentally to be insensitive to the initial
conditions. No attempt is made to analyze the complex transi-
ent excitation of the acoustic resonance and the initial appear-
ance and Gerrard-Bloor amplification of linear disturbances
in the flow. In the equilibrium state, the forcing of the flow
around a bluff body by the feedback of loud resonant sound
results in the growth of disturbances in the separating shear
layers at the forcing frequency to nonlinear levels without
requiring Gerrard-Bloor amplification. This is termed a high-
intensity bypass by Morkovin,'* whereby the system can no
longer be considered linear for large excursions from the un-
perturbed state and the periodic forcing can dominate over
transient responses growing exponentially in time. This type of
response to forcing has been observed recently by Tokumaru
and Dimotakis!4 for a circular cylinder.

Mathematical Modeling of the Feedback Process

The current investigation of the resonant feedback process
does not involve a direct simulation of the development and
interaction of the resonant acoustic field and the flowfield.
With currently available resources, such a simulation would be
computationally very expensive due to at least two factors.
First, the acoustic time scale is much smaller than the dynamic
(flow) time scale at low Mach numbers. Thus, a very small
time step (relative to the dynamic time scale) is required to
accurately model acoustic wave motions. Second, resonances
can build up very slowly over many acoustic cycles, hence,
very long integration times (i.e., many time steps) and an
accurate treatment of wave reflection and transmission at
boundaries are required. Consequently, a simpler model,
which does not attempt to model the transient stage over
which the resonance builds up, has been used to provide some
insight into the physics underpinning the resonance process.

For this model, it is assumed that the (resonant) acoustic
field exists and is in equilibrium, as observed in practice by

Kawahashi et al.'2 after the initial excitation stage. The flow-
field is modeled using the discrete vortex method, which has
been found to accurately model the large-scale vortex struc-
tures especially when strong forcing locks the shedding. The
energy transfer from the flow to the acoustic field is then
investigated using a theory due to Howe*?® which relates the
rate of change of acoustic energy to the existing flow (vortical
plus potential) and sound field. The amplitude of the resonant
acoustic field is taken to be constant over the acoustic cycle
when the system has reached equilibrium. This assumption is
justified on the basis that only a small amount of energy,
relative to the energy residing in the high-amplitude resonant
acoustic field, is transferred each acoustic cycle between the
flow and acoustic field due to the vortex shedding from the
wedge. At equilibrium, an equal amount of energy is removed
from the resonant acoustic field by radiation and other damp-
ing losses.

If the acoustic power density integrated over time and space
(i.e., the energy transferred from the flow to the acoustic field)
is significantly positive (that is, sufficient to balance acoustic
energy losses due to radiation and damping), then it can be

assumed that the resonance can be maintained. On the other

hand, if the energy transferred is negative or not sufficient to
overcome losses due to other mechanisms, then the assumed
acoustic resonance would be deemed to be not sustainable.
Furthermore, the time-integrated and instantaneous spatial
distributions of acoustic power density show the positions of
source or sink regions, and the instantaneous spatially inte-
grated acoustic power density reveals the instantaneous direc-
tion of energy transfer.

For the numerical experiments, the tube and rod geometries
are based on the experiments of Kawahashi et al.!2 Figure 1
shows a schematic of the geometry of the resonator tube with
the trip rod placed upstream symmetrically about the center-
line of the tube.

Resonant Acoustic Field and Irrotational Flow

The acoustic mode to be modeled is a standing wave corre-
sponding to an organ pipe mode of the tube. In the flows of
interest, the Mach number is small and the acoustic pressure p
satisfies the wave equation:

*p
— =c?v? 1
Pl 1)

where ¢ denotes the velocity of sound and 7 is time.

The time-independent amplitude function ‘¢ can be ex-
tracted from a standing wave solution p = ¢e2/7, where fis
the frequency. Then ¢ satisfies the Helmholtz equation:

v2p + @uf/c)’p =0 ®)
For the low-frequency modes, which are symmetrical about
the longitudinal midplane, the following boundary condition
applies on the rigid surfaces:

k-ve=0 3)

where k is the unit vector normal to the surface.
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Fig. 1 Schematic of resonator tube and trip rod (not to scale).
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Attention is focused on the region close to the trip rod and
the tube opening where the shed vortices can do work on the
sound field. The resonant mode of the tube of interest has a
wavelength approximately four times the length of the tube,
which in turn is much greater than the size of the vortex
shedding region. Therefore, the spatial dependence of the
sound field is approximated well in this vicinity by the solution
of the Laplace equation. This can be seen ‘from a simple scale
analysis. The ratio of the second term to the first term of Eq.
(2) is (2rW/N)?, where \ is the wavelength of the tube reso-
nant mode, and the tube half width W/2 is the characteristic
length of spatial variation near the tube mouth. In the case
being modeled, this ratio is of order 10~ . That is, Eq. (2) can
be reasonably approximated near the tube mouth by v?¢ =0,
and the velocity oscillations near the tube mouth due to the
sound field are obtained by assuming the tube to be semi-in-
finite with a sinusoidally oscillating potential flow source at
downstream infinity.

The potential flow solution for the oscillating flow is ob-
tained using a Schwarz-Christoffel transformation to project
the real plane containing a semi-infinite tube into the upper
half-plane with the boundary of the tube along the real axis
(Fig. 2). The transformation from the physical (z) plane to the
transformed (¢) plane that maps the leading tip corners of the
tube z = +iW/2 into the points { = =1 is given by

HG-ow)(-2)
z=—\=—logf |+ (W/2)\i—-= “4)
T\2 T

where i =~ — 1. The irrotational flow velocity representing
flow into and out of the tube, and therefore approximating the
sound field, is then given by

Virr = [virr,xa Virr,y] = [real(l/irr)a lmag( Virr)] (5)
where

Viee 1 .
Vm=1+@———_l);(l+a81n27rfﬂ (6)

Here, * denotes complex conjugate. The first term on the
right-hand side of Eq. (6) represents the longitudinal irrota-
tional flow from upstream infinity. The first part of the sec-
ond term in parentheses represents the blockage effect of the

y
vortex z plane
(2 2 I -
__/g ~~ tube walls C~ T
// 4_>X w
o- |
E
X F-»
{ plane
f‘n
vortex
-1.0 1.0
T =
-F E OC B A»é
J
image vortex

Fig.2 Schwarz-Christoffel mapping from physical z plane to the
transformed { plane.
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tube, resulting in zero time-mean flow into the tube. The -
second part of the term in parentheses models the velocity near
the tube opening due to the acoustic oscillations in the res-
onator tube. The parameter « lies in the range [0,1] and is a |
measure of the amplitude of the acoustic resonance. For ex- |
ample, when o = 1, the amplitude of the oscillating potential |

flow source is equal to the freestream velocity V.

The modification to the potential flowfield (6) due to the

presence of the triprod can be taken account of approximately

by applying the surface vorticity method described below. :
Point vortices can be placed around the surface of the wedge |
in the ¢ plane, together with their images (in order to satisfy
the zero normal flow at the tube walls), and the velocity field
can then be calculated by transforming back to the real plane.

The corrected velocity field is then given by
V= (Virr + Vwedge)

where

3
Vwedge

Flow Modeling

The flow is modeled by a two-dimensional inviscid incom- |
pressible flow, irrotational everywhere except at the centers of |
elemental vortices. The shedding of vorticity is currently only -

allowed from the wedge and is modeled by the creation of the
elemental vortices at the surface, to enforce the no-slip condi-

tion there. These elemental vortices are convected under the |

influence of other elemental vortices and the irrotational flow.
The irrotational flow, which is the solution of the Laplace

equation, is calculated using the Schwarz-Christoffel transfor- |

mation (4). For the tube, the condition of zero normal flux is

satisfied by positioning, for each elemental vortex in the flow,
an image vortex of opposite signed circulation at the complex |

conjugate position in the transformed ({) plane.
The effect of the trip rod on the flow is modeled using the

surface vorticity method (see, e.g., Refs. 6 and 15), which |

imposes a no-slip condition at the surface. In brief, this
method requires that the contour along the body surface is a
streamline and that the tangential velocity on the inside of the
vortex sheet is zero. Denoting the distance along the body
surface in the ¢ plane by s, discretization of a vortex sheet into

M segments, with the nth segment having length As, and

linear vorticity density o(s,), produces a set of linear equa-
tions:

M

E 0(5n)K (Sn» Sm)AS, — % o(Sm) = — Vi(Sm)
A=

Nv
- Y NL(nsn), (m=1,M) ®
n=1 !

where the last term gives the contribution to the velocity field
at the surface due to N, free vortices and their images of
circulation T in the flow. The coupling coefficient K (S, sSm)
has the value of the surface tangential velocity at s, induced
by a vortex of unit-circulation at s, and an image vortex at Sk
of opposite circulation. The coupling coefficient L (7,5m) has
the value of the surface tangential velocity at s,, due to 2
vortex of unit circulation at the position of the nth free vortex
and an image vortex of negative unit circulation at the conju-
gate position. The velocity v,(s,,) is the tangential velocity at
surface position s,, due to the background irrotational flow;
that is, the tangential velocity component from Eq. (5). The
solution of Eq. (8) gives the surface vorticity density at the
pivotal points on the surface of the body, which are taken t0
be the center of each discrete element.

Nyedge (T 1 1 d¢
TEE R o
i 2r G-t G- iml)dz ]
where the number of surface vortices Nyedge and the strengths |
T', are determined by the method described in the following. |
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At each time step, the elemental vortices are created possess-
ing the circulation of each vortex segment on the surface of the
trip rod; vortices on the surface of the trip rod are released
into the flow normal to the surface at half the corresponding
yortex segment length to simulate the formation of the
poundary layers. The zero normal flow condition on the sur-
face of the resonator tube is effected through the intreduction
of image vortices at the corresponding conjugate positions in
the ¢ plane. The velocity at the center of vortex j in the z plane
is given by

Vi = Virr + Vwedge + [real(Yj),lmag(Y,)] (9)
where
N
Y5 i ik iLy [ 1 B
V—o-j—_ g z)] {71%} 21 [ (G= &) (= E5)*
iTyg” (zj)}*
" 4r[g "(z)) (10

Here, ¢ = g(z) and ' = d/dz. The last term on the right-hand
side is the Routh correction due to the transformation between
planes. '

The elemental vortices are potential vortices with smoothed
cores (Rankine profile) of radius 0.03b, where b is the dimen-
sion of the leading edge of the triangular trip rod. Test cases
with larger and smaller smoothing cores showed that the for-
mation of the large-scale vortex structures and the acoustic
power predictions were insensitive to the exact smoothing
value used. The vortices are convected using a second-order
Adams-Bashford scheme with a typical time step of 0.03(W/
V.), where v, is the upstrem flow velocity. For input to the
numerical model, the value for the amplitude of the acoustic
particle velocity averaged across the mouth of the resonator
tube Umoun for two different acoustic Strouhal numbers was
set to match the analogous water height fluctuation A/ at the
base of the tube measured by Kawhashi et al.!2 for the same
geometry in each case. The relation between these quantities is
Q= Unouth/ Voo = AN/ ARpay.

Interaction of Flow and Sound

The low Mach number form of the wave eqution for acous-
tic oscillations occuring in an inviscid, isentropic fluid with
regions of rotational flow (vortices) is given by*

1,
S5 V) B=V @x) an

where c is the speed of sound, B the stagnation enthalpy, v the
fluid velocity, and w = ¥ X v the vorticity. The source term in
the wave equation is the Powell dipole ¥ - (w X v). For a given
flowfield, Eq. (11) can be solved for the complete acoustic
spectrum or for particular Fourier components.

In the present study, the acoustic mode of interest is the
resonant field of the resonator tube, which is a solution of
Eq. (2) or approximated locally in the neighborhood of the
tube mouth by the potential flow solution [see the last term in
Eq. (6)]. The energy transferred between the resonant acoustic
field and the flowfield can be predicted according to the
theory of Howe,® who showed that an acoustic power P is
generated in a volume V given by

P= —pog(wxv)-udV= —pogw-(v xu)dV  (12)

where u is the acoustic particle velocity and pg is the mean
density of the fluid. Although vortices will generate sound
waves with some spectral components other than the tube
resonance, here only the transfer of energy between this dom-
inant resonant mode and the flow is considered. Other nonres-
onant spectral components will not lead to reflected waves

of sufficient amplitude to significantly modify the flow. Once
the particular spectral component of interest (in this case
the tube resonance) is specified in Eq. (12), then by definition
the power P generated by a vortex pertains exclusively to that
component. '

" For a two-dimensional flow, when the vorticity is compact,
that is, when the vorticity extends over a region that is small
relative to the acoustic wavelength, the acoustic power/unit
length of vortex tube generated by a vortex reduces to

P = — poTk - (v X u,) sin 2nf7) (13)

where T is the circulation of the vortex, k the unit vector
normal to the plane of the flow, and u, the amplitude vector
of the resonant acoustic particle velocity at the vortex center.

According to Eq. (11), energy transfer between the flowfield
and the acoustic field can only take place in those regions
where the Coriolis acceleration (w X v) is nonzero. No ex-
change of energy between the flow and the acoustic field
occurs when the vortex moves parallel to the local acoustic
particle velocity, i.e., when v X u, = 0. Equation (12) also
indicates that a nonzero component of the acoustic particle
velocity orthogonal to the vortex velocity is required for a
nonzero instantaneous acoustic power. Furthermore, for ag-
gregate nonzero acoustic energy to be generated over a sound
cycle, variation in at least one of the components of the scalar
triple product Tk - (v X u,) must occur during this period. For
example, near a bluff body, the sound field that a vortex
passes through can be modified locally by the presence of the
body, leading to a change in u, and potentially the acoustic
power P. In the present study, such variation occurs near the
trip rod and the walls of the resonator tube.

The concept of acoustic sources and sinks in the present
setting needs to be elucidated. First it is noted that the study is
focused on the energy transfer between the tube resonant
mode and the flowfield. The resonant mode is assumed to
have attained its observed equilibrium amplitude. Vortices
shed from the trip rod can contribute to the existing resonant
acoustic field through wave generation. Whether this contri-
bution is positive or negative depends on the relative phase of
the new contribution. If the relative phase is such that the
superposition of the newly generated wave adds positively to
the existing mode, then the vortex at that stage is classified as
a source. That is, the vortex, via the Coriolis acceleration or
lifting force (w X v), does work on the resonant acoustic field
according to Eq. (12) and energy is transferred from the
flowfield. If, however, the new wave is interfering destruc-
tively with the existing resonant mode due to its generation
being out of phase, then the vortex is deemed to be acting as
an acoustic sink. In this case, the resonant acoustic field does
work on the flowfield via the lifting force and energy is trans-
ferred from the acoustic field to the flowfield. As a vortex
translates in space through the time-oscillating and spatially
varying resonant sound field, it may alternately act as a source
or sink. There will, of course, be other acoustic sinks in the
system that are not explicitly determined here, namely, damp-
ing mechanisms and transmission losses, which balance the net
positive acoustic power generation of the vortices and lead to
an equilibrium resonant field.

Results and Discussion

Predicted Resonant Acoustic Field

The predicted acoustic field in the region of the trip rod and
the mouth of the resonator tube is shown in Fig. 3. Depicted
are the local acoustic particle velocities, which decay rapidly
with distance away from the tube opening, at two different
phases, representing inflow (penetration) and outflow (evacu-
ation), of the resonant acoustic cycle.

Predicted Vortex Shedding

A sequence of snapshots during a vortex shedding cycle is
shown in Fig. 4 of the predicted flow when the trip rod is
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Fig. 3 Local acoustic particle velocity amplitudes of longitudinal
mode of the resonator tube at a) maximum inflow (penetration) and b)
maximum outflow (evacuation).

Fig. 4 Instantaneous plots of elgmenta] vortex positions for the rod
placed at d/W =5 at four consecutive phases of acoustic cycle spaced
90-deg apart. The amplitude of the acoustic field was set at « = 1.

placed relatively distant upstréam of the tube opening at d/_

W = 5. The vortices are shed from the rod in an asymmetrical
manner as for natural Strouhal shedding as observed by
Kawahashi et al.,!? irrespective of the amplitude a of the
assumed resonant sound field. In Fig. 4, the extreme case
where the sound field is assumed to be at the theoretical
maximum value (that is, « is unity) is presented.

The instantaneous acoustic power, normalized by Pres, gen-
erated in the flow for the rod/tube spacing d/W =5, is shown
over a number of consecutive cycles in Fig. 5. The vortex
shedding is not correlated by the sound in this case because the
amplitude of the acoustic resonant mode decays rapidly away
from the opening. At the position of the rod, the amplitude is
not large enough to control the vortex shedding. Significant
interaction between the vortices and the acoustic field occurs
only near the tube opening where the acoustic particle velocity
amplitudes can be relatively large. However, because the vor-
tex shedding is not correlated to the assumed resonant acoustic
frequency, there is no significant net acoustic energy generated
on average. Accordingly, the model predicts that it is not
possible for this flow to sustain a loud resonance, which is
consistent with the result of Kawahashi et al.!2 who found no
tube resonance for this rod/tube spacing.

When the trip rod is placed closer to the resonator tube & |
opening, viz., d/W = 0.34, Kawahashi et al.!? found that the ® |
vortex shedding could be modified by the excited acoustic & |
resonance in the tube. For this value of d/W, two cases for
different acoustic Strouhal number are considered here: 1)‘?"
St, = 0.13 corresponding to region 2, and 2) St, = 0.09 corre- .
sponding to region 3 in Kawahashi et al.'? (Fig. 6).

Case 1: S, = 0.13 f f

Figure 6 shows a sequence of snapshots for the predicted
flow when the acoustic Strouhal number is St; = 0.13, using *
the acoustic amplitude o = 0.9 observed in this case by Kawa-
hashi et al.!2 The vortex shedding is quite different for this
closer trip rod/tube spacing, being locked to the acoustic:
resonant frequency and almost symmetrical. During the half-
cycle of the acoustic period when the acoustic particle veloci--
ties are directed into the tube (Fig. 6a), two new vortices form |
downstream of the rod. In the next half-cycle when the acous- &
tic particle velocities are directed out of the tube (Fig. 6c¢), the
vortices are shed from the rod and traverse the gap between
the rod and the tips of the resonator tube mouth. During this®
half-cycle, there is also some shedding of vorticity of opposite
sign as the flow velocity reverses direction across the leading-
edge tips of the wedge. This vorticity collects into secondary &
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Fig.5 Predicted acoustic power output P/unit span (scaled to %
Pret = povg, W/2) vs time 7 (scaled to acoustic period T) for trip rod at 4
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Fig. 6 Instantaneous plots of elemental vortex positions for the rod’
placed at d/W =0.34 at four different phases of acoustic cycle |
St, = 0.13, « = 0.9. The arrow at the left shows the phase of the]
acoustic cycle. ;
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Fig. 7 Predicted acoustic power output P/unit span (scaled to

Pret = pov3, W/2) vs time 7 (scaled to acoustic period T) for trip rod at
d/W=0.34, «=0.9.

Fig. 8 Gray scale contours of instantaneous acoustic power genera-
tion for trip rod at d/W = 0.34 for St, =0.13 and «=0.9 at a)
maximum penetration and b) maximum evacuation. White indicates
transfer of energy to the acoustic field and black removal from the
acoustic field.

vortex structures which traverse the gap between the wedge
and tube tips during the next inflow phase (Fig. 6a).

The instantaneous acoustic power plot corresponding to the
vortex shedding shown in Fig. 6 is shown in Fig. 7. The
generation of acoustic power is now quasiperiodic with acous-
tic energy transferred from the flow to the acoustic field due to
the vortices shed from the trip rod during both the inflow and
outflow phases. Referring to Fig. 7, the larger peak occurs
during the outflow phase and the smaller peak during the
inflow phase. The prediction that net acoustic energy per cycle
is transferred to the acoustic resonance field is consistent with
the measurements of Kawahashi et al.!?

Gray scale contours of the instantaneous acoustic power
given by the Howe formula (12) are shown in Fig. 8 for the
same phases of the acoustic cycle as in Figs. 6a and 6c. The
individual large-scale vortices shed from the rod can transfer
positive (shown as white) or negative (black) acoustic power to
the sound field, according to the Howe integral, the sign
depending on the phase of the acoustic cycle.

During the formation stage, when the separating shear lay-
ers are rolling up and forming large-scale vortex structures
near the trailing edge of the trip red (corresponding to Fig.
6a), Fig. 8a shows that an acoustic source/sink pair is found
associated with each structure. Here, the terms source and
sink refer to regions where, respectively, positive and negative
acoustic power is being generated. Evidently, the sink is con-
siderably more powerful than the source, leading to a transfer
of energy from the acoustic field to the flowfield due to these
primary vortex structures. This diagram also reveals strong
acoustic sources near the tube tips due to secondary vortex
structures of-opposite circulation that formed during the pre-
vious half-cycle when the flow direction across the wedge tips
was reversed. The overall result due to both the primary and
secondary vortex structures during this (inflow) half-cycle is a
net transfer of energy to the acoustic field, as is revealed in
Fig. 7.

During the next half-cycle of evacuation from the tube, the
primary vortex pair is shed from the trip rod and traverses the
mouth of the tube toward the outer tips. At the time of
maximum evacuation velocity (corresponding to Fig. 6c), Fig.
8b shows that the large-scale vortices represent a relatively
strong acoustic source. The shedding of a pair of secondary
vortex structures of opposite circulation is also clearly visible
from Fig. 6¢. This pair is associated with acoustic sinks during
this half-cycle, as depicted in Fig. 8b. The net energy transfer
to the acoustic field during the outflow phase is significantly
positive. '

Contours of the time-average acoustic sources in the flow
for St, = 0.13 are shown in Fig. 9. The regions in the vicinity
of the tips of the trip rod are time-mean acoustic sinks, and the
regions between the rod and the tube tips are distributed
time-mean acoustic sources.

Case 2: St; = 0.09

In this case, the acoustic Strouhal number and the acoustic
amplitude (a = 0.4) correspond to the region 3 in Kawahashi
et al.!? The trip rod/tube spacing is the same as in case 1. The
general flow patterns and the phenomenon of symmetrical
shedding (Fig. 10), the predicted acoustic power (Fig. 11), the
instantaneous acoustic sources (Fig. 12), and the time-mean
acoustic sources (Fig. 13) are similar to those predicted in case

Fig. 9 Contours of time mean acoustic power generation for trip rod
at d/W = 0.34 for St; =0.13, « = 0.9. :
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1. Positive net energy is predicted per acoustic cycle, which is
consistent with the observation of Kawahashi et al.'? who
found the analogy of the acoustic resonance was sustained in
this case.

There are, however, some differences between this case and
the previous one. With the reduced acoustic field strength, the"
flow reversal across the leading-edge tips of the trip rod during
the outflow phase is not as strong. This means that the second-
ary vortex structures (clearly visible in Fig. 10d) are very weak
and do not contribute significantly to the energy transfer
process. Thus, instead of the two peaks per cycle displayed in
Fig. 7, there is only one in Fig. 11. This inflow phase results in
a net transfer of energy from the acoustic field to the flowfield
for this Strouhal number. Because of this, the energy transfer
to the acoustic field per cycle is significantly less at this
Strouhal number. This is consistent with the observed lower
value of the acoustic amplitude in this case.

Flow in Absence of Acoustic Resonance

In the study by Kawahashi et al.,'? the vortex shedding
pattern was found to change from asymmetric to symmetric as
the trip rod was placed progressively closer to the resonator
tube. The change in the mode of vortex shedding corre-
sponded to the excitation of the resonant oscillations in the
resonator tube. Therefore, it was not clear in their study what
the mode of shedding would have been in the absence of
resonarnce excitation.
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" Fig. 10 Instantaneous plots of elemental vortex positions for the rod

placed at d/W = 0.34 at four consecutive phases of acoustic cycle,
St, =0.09, o =0.4. The arrow at the left shows the phase of the
acoustic field.
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Fig. 11 Predicted acoustic power output P (scaled to Prer = pov3, w/
2) vs time 7 (scaled to acoustic period 7') for trip rod at d/W = 0.34
for St, = 0.09, a = 0.4.
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Fig. 12 Contours of instantaneous acoustic power generation for
trip rod at d/W = 0.34 for St, = 0.09, & = 0.4 at a) maximum pene-
tration and b) maximum evacuation.

Fig. 13 Contours of time-mean acoustic power generation for trip
rod at d/W = 0.34 for St, = 0.09, a = 0.4.

A calculation was performed for the same geometry as in
the two previous cases but with the acoustic forcing of the =
flow suppressed. Snapshots of the flow at different times are -
shown in Fig. 14. Clearly, when the trip rod is placed suffi-
ciently close to the tube opening, the absolute instability lead-
ing to asymmetric Strouhal shedding is suppressed; the two &
separating shear layers convect to the respective tips of the
tube opening with Kelvin-Helmholtz-type instabilities forming
in the layers. The effect of exciting the acoustic resonant mode &
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Fig. 14 Instantaneous plots of elemental vortex positions for rod

placed at d/W = 0.34 in the absence of a resonant sound field at four
consecutive times.

of the tube is, therefore, the correlating of the convective
instabilities in these shear layers with the sound field.

Prediction of the Acoustic Sources

According to the theory of Howe’ and embodied in Eq.
(13), a necessary condition for the generation of acoustic
power by the flowfield is that vortices must cut across acoustic
particle velocity field lines. In the present flow, this can occur
to the greatest extent between the trip rod and the opening tips
of the resonator tube. This is clear from Fig. 3, which shows
the direction of the local acoustic particle velocities, and Figs.
6 and 10, which indicate the movements of the large-scale
vortex structures shed from the trip rod for two different
acoustic Strouhal numbers. The acoustic particle velocities
between the trip rod and the tube mouth possess significant
components orthogonal to the paths of the vortices shed from
the trip rod, thus allowing a relatively substantial transfer of
energy between the flowfield and the resonant acoustic field.

In the case of symmetric shedding, the large-scale vortex
structures form along the downstream faces of the trip rod;
initially the centroids of the vortices move principally in the
longitudinal direction. However, the acoustic particle veloci-
ties are modified by the presence of the trip rod and significant
vertical components are induced near the rod. During the half
sound cycle that the vortices are being formed, the upstream
parts of the vortices cut across the acoustic field lines in a
manner such that acoustic energy is absorbed from the reso-

nant acoustic field; the downstream portions of the vortices .

cut across the acoustic field lines with an angle of opposite
sign, leading to acoustic source regions. There is, therefore,
some cancellation occurring between the sources and sinks,
leading to relatively small negative peaks in the instantaneous
acoustic power shown in Figs. 7 and 11. In the next half of the
sound cycle, the vortices are at full strength, have accelerated,
and represent relatively strong acoustic sources with no associ-
ated sinks at the time of maximum evacuation from the res-
onator tube. According to Eq. (13), the positive acoustic
power generated during this second half-cycle exceeds the
acoustic power absorbed during the first half-cycle. There-
fore, the acoustic resonance can be sustained by the net trans-
fer of positive acoustic energy each sound cycle by the vortices
moving from the trip rod to the tips of the tube.
Downstream of the tube opening, outside of the tube, the
acoustic particle velocities are smaller and are directed almost

parallel to the mean flow and the paths of the vortex struc-
tures. That is, v Xu, is relatively small, resulting in little
acoustic power generation in this region according to Eq. (13).

The vortices shed from the trip rod represent sources and
sinks of sound that can augment a resonant acoustic mode of
the tube if the phasing is correct and the vortex shedding is
locked to the sound. This locking is effected by acoustic
feedback. The feedback is via a resonance, which means that
most of the sound energy that influences vortex shedding at
any one time was generated in previous cycles, and has been
reflected, usually many times, from the resonator tube termi-
nation.

Concluding Remarks

A numerical model has been developed that successfully
predicts the experimentally observed flow and acoustic behav-
ior of a hydraulic analogy of the tripped flow past a resonator
tube.'? Emerging from the study is the identification of the
convecting acoustic sources with the large-scale vortices shed
from the trip rod and the locking of the vortex shedding with
the acoustic field.

This study has concentrated on the flow structures responsi-
ble for the generation of acoustic power. Further investiga-
tions are underway to examine other factors responsible for
acoustic damping, such as radiation losses and absorption due
to vortex shedding from the tube tips. It is intended that these
studies will explain the differences in the observed acoustic
amplitude flow velocity is varied. Furthermore, the influence
of trip rod size and shape will be investigated.
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