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The generation and diffusion of vorticity in
three-dimensional flows: Lyman’s flux
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We examine Lyman’s (Appl. Mech. Rev., vol. 43, issue 8, 1990, pp. 157–158) proposed
definition of the boundary vorticity flux, as an alternative to the traditional definition
provided by Lighthill (Introduction: boundary layer theory. In Laminar Boundary Layers
(ed. L. Rosenhead), chap. 2, 1963, pp. 46–109. Oxford University Press). While either
definition may be used to describe the generation and diffusion of vorticity, Lyman’s
definition offers several conceptual benefits. First, Lyman’s definition can be interpreted as
the transfer of circulation across a boundary, due to the acceleration of that boundary, and
is therefore closely tied to the dynamics of linear momentum. Second, Lyman’s definition
allows the vorticity creation process on a solid boundary to be considered essentially
inviscid, effectively extending Morton’s (Geophys. Astrophys. Fluid Dyn., vol. 28, 1984,
pp. 277–308) two-dimensional description to three-dimensional flows. Third, Lyman’s
definition describes the fluxes of circulation acting in any two-dimensional reference
surface, enabling a control-surface analysis of three-dimensional vortical flows. Finally,
Lyman’s definition more clearly illustrates how the kinematic condition that vortex lines
do not end in the fluid is maintained, providing an elegant description of viscous processes
such as vortex reconnection. The flow over a sphere, in either translational or rotational
motion, is examined using Lyman’s definition of the vorticity flux, demonstrating the
benefits of the proposed framework in understanding the dynamics of vortical flows.

Key words: vortex dynamics

1. Introduction

Vorticity has long been recognised as one of the most important quantities in fluid
mechanics. Defined mathematically as the curl of the velocity field,

ω = ∇ × u, (1.1)

† Email address for correspondence: stephen.terrington@monash.edu
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vorticity has a clear physical interpretation as twice the mean rotation rate of material
lines within a fluid element, or equivalently as twice the local angular velocity of a fluid
element (Truesdell 1954). A wide range of important flow phenomena, including boundary
layers, wakes and turbulence, can be identified as coherent structures in the vorticity field.
Indeed, vortical structures are of such significance that they are considered the ‘sinews
and muscles of fluid motions’ (Küchemann 1965). In light of this, the study of fluid
flows in terms of vorticity often provides a deeper understanding of flow behaviour than
momentum considerations alone (Lighthill 1963).

A transport equation for vorticity – the Helmholtz vorticity equation – is obtained by
taking the curl of the Navier–Stokes equations. For an incompressible, Newtonian fluid,
this equation may be expressed as

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω. (1.2)

The left-hand side of this equation is the material derivative of vorticity, while the first
term on the right-hand side represents the effects of vortex stretching and tilting. The final
term is related to the viscous diffusion of linear momentum (Lighthill 1963; Morton 1984),
and is usually interpreted as representing the viscous diffusion of vorticity.

Despite being a well-defined mathematical quantity with clear physical significance,
and which obeys a known differential equation, the behaviour of vorticity near boundaries
has been controversial. This is of particular concern since boundaries are the source of all
vorticity in incompressible flows (Morton 1984).

For solid boundaries, Lighthill (1963) defined the boundary vorticity flux,

σ ′ = −νn̂ · ∇ω, (1.3)

as the rate at which vorticity is created on a section of solid boundary (Lighthill’s original
definition was for a plane surface; the specific form in (1.3) was first given by Panton
1984). Note that in (1.3), n̂ is the unit normal directed into the fluid (i.e. out of the solid
boundary). Lyman (1990), however, has proposed an alternative definition of the boundary
vorticity flux,

σ = νn̂ × (∇ × ω), (1.4)

which provides a different measure of the local vorticity creation rate. Importantly, both
definitions return the viscous term in (1.2), ν∇2ω, when integrated across a closed surface
(see § 1.1), and therefore both describe the correct kinematic evolution of the vorticity
field. Perhaps unexpectedly, the dynamical interpretation of the motion provided by each
definition differs, and it is currently unclear which definition should be used.

One of the main advantages of Lyman’s definition is that it allows Morton’s (1984)
inviscid description of vorticity creation to be directly applied to three-dimensional flows
(Lyman 1990). Lyman’s flux is equal to the tangential viscous acceleration of boundary
fluid elements and may be substituted for the viscous term in the momentum equation.
This yields the following expression for the vorticity creation rate on a no-slip boundary
(Lyman 1990; Eyink 2008):

σ = −n̂ ×
[

du
dt

+ ∇
(

p
ρ

)]
. (1.5)

Morton (1984) provides the following interpretation: terms on the right-hand side
represent the generation of circulation on the boundary due to the relative acceleration
between fluid elements and the boundary, driven by either tangential acceleration of the
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boundary or tangential pressure gradients along the boundary. Under this interpretation,
viscous forces are not directly responsible for the generation of vorticity, but drive the
diffusion of vorticity away from the wall once it has been generated. This inviscid
mechanism is considered in more detail in § 3.

Under Lighthill’s definition, the boundary flux is not equal to the tangential viscous
acceleration, except in two-dimensions, and an additional viscous term must be included
in the momentum equation (Wu & Wu 1993):

σ ′ = −n̂ ×
[

du
dt

+ ∇
(

p
ρ

)]
− ν∇ω · n̂. (1.6)

Morton’s interpretation does not apply when using Lighthill’s definition of the vorticity
flux, and it is not easy to attach a distinct physical meaning to the viscous term.

There has been some disagreement as to whether Lyman’s proposal is appropriate. In
particular, Wu & Wu (1993, 1996, 1998) assert that Lyman’s proposal is not correct and
that Lighthill’s original definition must be used. On the other hand, Kolár (2003) appears
to accept that either definition may be used, while Eyink (2008) and Eyink, Gupta & Zaki
(2020) prefer Lyman’s definition. It remains unclear, then, whether it is appropriate to use
Lyman’s definition of the boundary vorticity flux.

Our interest in Lyman’s flux is motivated by a conservation-law formulation of vorticity
generation in two-dimensional flows (Terrington, Hourigan & Thompson 2020). We have
shown that Morton’s inviscid description can be applied not only to solid boundaries,
but also to free-surfaces and generalised interfaces, and that this approach leads to an
expression of the conservation of global circulation. Lyman’s definition of the vorticity
flux more readily affords an extension of this formulation to three-dimensional flows,
and hence we are compelled to revisit Lyman’s proposition, to determine whether it is
appropriate and what extra value it provides.

While Wu & Wu (1993, 1996, 1998) insist that only one definition of the vorticity flux
can give the ‘actual’ rate of vorticity creation, Lyman (1990) is comfortable with the notion
that there can be more than one way to define the vorticity flux. This ambiguity is discussed
in § 1.1, where, in agreement with Lyman, we argue that either definition may be used. The
main focus of the present article is not to determine which of two competing definitions is
correct, but to illustrate how Lyman’s flux enables a clearer and more insightful description
of vorticity dynamics.

In addition to extending Morton’s (1984) description of vorticity creation to
three-dimensional flows, we find the following advantages to using Lyman’s definition
of the vorticity flux. First, Lyman’s definition relates the transfer of circulation between
adjacent fluid volumes to the tangential acceleration of fluid on the boundary between
these volumes, clearly illustrating the kinematic relationship between vorticity and velocity
(§ 1.2). Second, Lyman’s flux describes the transfer of circulation (normal vorticity) along
any two-dimensional reference surface, so that many aspects of three-dimensional flows
can be understood by considering the fluxes of vorticity in a suitable reference surface.
Finally, Lyman’s flux clearly illustrates how the kinematic property that vortex lines do
not end inside a fluid domain (except at null points) is maintained. In viscous vortex
connection (§ 2.3), for example, the same terms in Lyman’s flux govern the rate of both
cutting and reconnection of vortex lines, thereby ensuring that vortex lines do not end
inside the fluid.

The structure of this article is as follows. A review of some theoretical aspects in regards
to Lighthill’s and Lyman’s flux definitions is provided in §§ 1.1 and 1.2. In § 2, we present
an interpretation of the diffusion of vorticity in the interior of a fluid domain, under
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Lyman’s flux. In § 3, we discuss the generation of vorticity on solid boundaries under
Lyman’s definition, based on Morton’s (1984) inviscid theory. Finally, in § 4, various
aspects of the formulation are highlighted by the analysis of flow over spheres, in either
translational or rotational motion.

1.1. The uniqueness of the vorticity flux
In this section, we consider the ambiguity in the definition of the vorticity flux introduced
by Lyman (1990), and suggest that either definition may be used. Lighthill’s original
definition of the boundary vorticity flux ((1.3)) was defined by an analogy with the heat
flux in Fourier’s law, and may be justified by integration of the viscous term in Helmholtz’
equation ((1.2)), across a control volume, V ,∫

V
ν∇2ω dV =

∮
∂V

νn̂ · ∇ω dS, (1.7)

where n̂ is now the outward-oriented unit normal vector. The integral of σ ′ across a closed
boundary, ∂V , is equal to the rate of change of total vorticity in V , so that σ ′ can be
considered the local rate of transport of vorticity per unit area across ∂V . Lighthill’s
definition is not unique, however, and Lyman’s (1990) definition ((1.4)) is obtained by
using the following equivalent form of the viscous diffusion term:∫

V
ν∇2ω dV =

∫
V

−ν∇ × (∇ × ω) dV = −
∮

∂V
νn̂ × (∇ × ω) dS. (1.8)

While both σ and σ ′ may be interpreted as the local flux of vorticity across ∂V , each
definition gives different local contributions in three-dimensional flows. In particular, each
definition provides a different measure of the local vorticity creation rate on a section of
solid boundary. However, both definitions yield the same change in vorticity within any
closed fluid volume, and both give the correct evolution of the vorticity field – only the
dynamical interpretation of the motion differs between the definitions.

It should be stressed that while both Lighthill (1963) and Lyman (1990) only define the
boundary vorticity flux at a solid boundary, the surface ∂V in (1.7) and (1.8) may refer to
either the boundary of a fluid domain or of an arbitrary control volume in the fluid interior.
In this sense, both Lyman’s and Lighthill’s definitions may be extended to the transport of
vorticity in the fluid interior. In this article, vorticity fluxes are applied to the diffusion of
vorticity in the fluid interior, in addition to the creation of vorticity on solid boundaries.

It may be possible to justify a particular definition of the vorticity flux by invoking
physical arguments. In the momentum equation, for example, the stress tensor, T =
μ[∇u + (∇u)T], plays a similar role to the vorticity flux tensor ((1.13)). While an
alternative stress tensor, T ′ = μ∇u, would produce the same viscous term in the
momentum equation, T ′ may be rejected on physical grounds, as only T corresponds to
the physical force acting on the boundary (Gresho 1991). It is unclear, however, what
physical principle could differentiate between σ and σ ′. The boundary vorticity flux
is deduced from the mathematical structure of the Helmholtz equation, rather than by
physical considerations, leaving no obvious reason to prefer either definition.

If momentum and pressure are taken to be the primary variables of fluid mechanics,
the diffusion of vorticity occurs as a consequence of the diffusion of linear momentum
(Lighthill 1963; Morton 1984), owing to the kinematic relationship between velocity
and vorticity. It is often convenient, however, to treat vorticity as the primary variable,
and viscous diffusion as a process which distributes vorticity throughout the fluid.
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Both definitions of the vorticity flux provide alternative interpretations of this process;
however, there is no obvious physical justification to prefer either definition. Wu & Wu
(1993, 1996) argue that Lyman’s proposed definition is not appropriate, and σ ′ is the only
correct measure of the vorticity creation rate. The right-hand side of (1.4) is the tangential
viscous acceleration of a boundary fluid element, which includes contributions to the net
viscous force applied to a fluid element by both the boundary, and the fluid interior. Since
Lyman’s definition does not represent a process occurring solely on the solid boundary,
Wu & Wu argue that it cannot describe a vorticity creation process occurring on that
boundary. However, both σ and σ ′ are related to gradients in the shear-stress, so neither
can represent the sole action of the boundary on boundary fluid elements. If Lyman’s
definition is to be rejected on this basis, Lighthill’s definition must also be rejected.

1.2. Kinematics of vorticity transport
In this section, the vorticity flux is discussed in regard to the kinematic relationship
between velocity and vorticity. By using the following vector identity, the volume integral
of vorticity can be expressed in terms of the tangential velocity on the boundary:

Γ =
∫

V
ω dV =

∮
∂V

n̂ × u dS, (1.9)

where Γ shall be named the ‘vector circulation’. For a stationary control volume, the rate
of change of vector circulation depends on the tangential acceleration on the boundary,∫

V

∂ω

∂t
dV =

∮
∂V

n̂ × ∂u
∂t

dS =
∮

∂V
n̂ ×

[
u × ω − ν∇ × ω − ∇

(
p
ρ

+ 1
2

u · u
)]

dS,

(1.10)

which is expressed as advection, pressure and viscous terms through the momentum
equation. The viscous term, −νn̂ × (∇ × ω), is Lyman’s flux, providing the following
physical interpretation: Lyman’s flux represents a transfer of circulation between adjacent
fluid volumes by the tangential viscous acceleration of fluid on the boundary between the
two volumes.

A similar argument, based on Kelvin’s circulation theorem, has been presented by Kolár
(2003) and Eyink (2008). The rate of change of circulation contained in a closed material
curve, C, is given by

d
dt

∫
S
ω · dS = d

dt

∮
C

u · ds = −
∮

C

(
νn̂ × (∇ × ω)

) · ŝ ds, (1.11)

where ŝ is the unit normal to S, and n̂ is normal to C, but tangent to S, as illustrated in
figure 1 (see Kolár (2003) for details). The integrand in (1.11) is the component of Lyman’s
flux which describes the flux of ŝ-oriented vorticity in the n̂ direction, and represents the
rate of change of circulation in C due to the tangential viscous acceleration of a section of
boundary.

Wu & Wu (1998) present a variant of (1.11) that supports Lighthill’s original definition,
rather than Lyman’s. However, in their derivation, they neglect a term related to the
curvature of vortex lines, on the basis that C may be made arbitrarily small, so that
the curvature of C is always much greater than the curvature of vortex lines. However, the
curvature of C does not appear in their expression, so the vortex-line curvature term cannot
be neglected on this basis. If the curvature term is not neglected, Lyman’s definition, rather
than Lighthill’s, is obtained.
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C

S

ŝ

ŝ
t̂

n̂

Figure 1. Material surface, S, with boundary curve, C. ŝ is the unit normal to S, n̂ is a unit normal to C,
which lies in the tangent plane of S, and t̂ is the unit tangent vector to C.

While the boundary vorticity flux is defined only at the boundary of a fluid domain,
it is possible to define a ‘vorticity flux tensor’, applicable to the diffusion of vorticity
in the fluid interior. The differential form of (1.10) is obtained by taking the curl of the
Navier–Stokes equations, giving

∂ω

∂t
= −∇ × [−u × ω + ν∇ × ω] = −∇ × j. (1.12)

This can also be expressed as the divergence of a vorticity flux tensor (Huggins 1971, 1994;
Huggins & Bacon 1980; Kolár 2003),

∂ω

∂t
= −∇ · [

uω − ωu − ν
(∇ω − (∇ω)T)] = −∇ · J. (1.13)

The vorticity flux tensor, J, is an antisymmetric tensor, with a corresponding axial vector, ĵ,
defined in (1.12). The flux tensor is interpreted as follows: n̂ · J · b̂ = (n̂ × j) · b̂ represents
the rate at which the component of vorticity aligned with b̂ is transported in the n̂ direction,
by advection, tilting and viscous diffusion.

Both J and j are closely related to Lyman’s definition of the boundary vorticity flux.
The flux of vorticity in the n̂ direction is given by

n̂ · J = n̂ × j = −n̂ × (u × ω) + νn̂ × (∇ × ω), (1.14)

and includes a term closely related to Lyman’s definition. In particular, if n̂ is the unit
normal to a solid boundary, then the viscous term in (1.14) is precisely Lyman’s definition
of the boundary vorticity flux, σ . Therefore, J, and its dual-vector representation, ĵ, can
be understood as a generalisation of Lyman’s definition of the boundary vorticity flux to
the transport of vorticity in the fluid interior. The antisymmetric tensor, J, was first used
by Huggins (1971, 1994) to describe vorticity transport in the fluid interior, so shall be
referred to in this article as the Lyman–Huggins flux tensor. Similarly, ĵ shall be termed
the Lyman–Huggins axial flux vector.

The term (∇ω)T in (1.13) is divergence-free and therefore has no effect on ∂ω/∂t. The
‘effective’ flux tensor (Kolár 2003),

J ′ = uω − ωu − ν∇ω, (1.15)

considers only the terms which produce a change in the local vorticity. J ′ generalises
Lighthill’s definition of the boundary vorticity flux,

n̂ · J ′ = −n̂ × (u × ω) − νn̂ · ∇ω, (1.16)

so shall be referred to as the Lighthill–Panton flux tensor. J ′ is not antisymmetric, so does
not have an axial vector representation.
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S
S1

S2C1

Γi

Γ1

ΓS = ∫S ω · dS = Γ1 – Γ2

Γ2

C2 ŝ

Vortex lines

Vortex filament

(b)(a)

= ∫S2
 ω · dS = ∫C2

 u · dS

∫S1
 ω · dS = ∫C1

 u · dS

Figure 2. (a) The circulation, and flux of vortex lines, is constant along the length of a vortex tube. We consider
this tube to comprise a bundle of ‘vortex filaments’ – thin vortex tubes of infinitesimal circulation, with Γi
representing the circulation contained in the ‘i’-th filament. (b) The total circulation in S is equal to the sum
of circulations of all vortex tubes passing through S. If each vortex tube is interpreted as a bundle of vortex
filaments, then ΓS is a measure of the net strength of all filaments passing through S.

In this section, we have shown that Lyman’s definition describes the transfer of
circulation due to the tangential viscous acceleration of the fluid, while Lighthill’s
definition considers only the terms that can lead to a local change in vorticity. While
both definitions provide the correct kinematic evolution of the vorticity field, Lyman’s
definition directly relates the diffusion of vorticity to changes in the velocity field, and
therefore directly captures the kinematic relationship between velocity and vorticity.

2. Diffusion of vorticity

An interpretation of the diffusion of vorticity, under Lyman’s definition of the vorticity
flux, is outlined in this section. This description is motivated by (1.11), where Lyman’s
flux represents the transfer of normal vorticity across the boundary of a reference surface.
This describes how the vortex lines and tubes intersecting the reference surface evolve in
time, and can be related to the kinematic condition that vortex lines do not end in the fluid.

The quantity
∫

S ω · dS in (1.11) is commonly referred to as the ‘flux’ of vorticity through
S, and, by Stokes’ theorem, is a measure of the circulation in C,

ΓS =
∫

S
ω · dS =

∮
C

u · ds. (2.1)

In order to distinguish this quantity from the boundary vorticity flux, it shall be referred to
as the ‘flux of vortex lines’ through S. ΓS is a measure of the amount of vorticity passing
through S, and is equal to the net circulation of all vortex tubes passing through S. It is
well known that vortex lines do not end within the fluid, except at null points where the
vorticity is zero (Fuentes 2007). Furthermore, the strength (circulation) of a vortex tube is
constant along its length, and ΓS is the same for any cross-section or boundary contour
of the tube. Now, we might imagine each vortex tube to be divided into infinitesimal
vortex filaments, each being a thin vortex tube of infinitesimal circulation, as illustrated
in figure 2(a). ΓS then provides the total strength of all vortex filaments passing through
S (figure 2b), and Lyman’s flux in (1.11) provides the rate of transport of vortex filaments
across ∂S by viscous diffusion.

The structure of this section is as follows: in § 2.1, a general form of (1.11) is presented
and discussed. The role of Lyman’s flux in this equation, describing the transfer of
vortex filaments along a reference surface, is discussed in § 2.2. This interpretation of
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S.J. Terrington, K. Hourigan and M.C. Thompson

Lyman’s flux is applied to viscous vortex connection in § 2.3, where it is demonstrated
that Lyman’s flux provides a clear mechanism for enforcing the kinematic condition that
vortex lines do not end in a fluid. Finally, in § 2.4, the axial flux vector is expressed in
‘vortex-line coordinates’, illustrating various aspects of vortex line geometry that influence
the diffusion of vorticity.

2.1. An evolution equation for the flux of vortex lines through S
An expression for the balance of circulation in a two-dimensional control surface
is outlined in this section. This control surface formulation is a powerful tool for
analysing fully three-dimensional vorticity fields, as demonstrated in § 4.2. The following
generalisation of (1.11) is derived in Appendix A:

dΓs

dt
= d

dt

∫
S
ω · dS =

∮
C

[
n̂ ×

[
(u − vb) × ω − ν(∇ × ω)

]]
· ŝ ds, (2.2)

where vb is the boundary velocity. The integrand is similar to the vorticity flux in (1.14),
and we introduce the modified axial flux vector,

j∗ = −(u − vb) × ω + ν∇ × ω, (2.3)

which includes motion of the control surface. As in (1.14), the viscous part of n̂ × j∗
is Lyman’s flux, νn̂ × (∇ × ω). Also, n̂ × j∗ indicates the transfer of vorticity in the
n̂-direction, by both viscous forces, and advection relative to the moving surface.

Equation (2.2) can also be expressed in terms of the surface divergence of the ‘surface
flux vector’, ŝ × j∗. First, since (n̂ × j∗) · ŝ = −(ŝ × j∗) · n̂, the following expressions are
obtained:

dΓs

dt
= −

∮
C
(n̂ × j∗) · ŝ ds =

∮
C
(ŝ × j∗) · n̂ ds = −

∮
C

j∗ · ds = −
∫

S
(∇ × j∗) · dS.

(2.4)

Using a surface-moving frame (Wu 1995), the final term is cast into surface divergence
form,

ŝ · (∇ × j∗) = ŝ · (rα × j∗,α) = rα · (j∗,α × ŝ) = rα · (j × ŝ),α = −∇S · (ŝ × j∗), (2.5)

where ∇S is the surface-tangent component of the gradient operator (Wu 1995), and the
following surface-divergence conservation law is obtained:

dΓs

dt
=

∫
S
∇S · (ŝ × j∗) dS =

∮
C

n̂ · (ŝ × j∗) ds. (2.6)

According to (2.6), the surface flux vector, ŝ × j∗, describes the local flux of ω̂ · ŝ along
S, and n̂ · (ŝ × j∗) provides the rate of transport across the boundary curve, C. Given the
interpretation of ΓS as the flux of vortex filaments through S, (2.2), (2.4) and (2.6) are
equivalent forms of a transport equation for the flux of vortex filaments through any
arbitrary reference surface S – they describe how the distribution of vortex filaments
passing through S evolves in time. Huggins & Bacon (1980) and Huggins (1994) provide
a similar interpretation of the Lyman–Huggins tensor (J). They express the vorticity flux
as a conservation law for the vorticity intersecting a two-dimensional plane, and relate this
conservation law to the intersection of vortex cores with the plane. Our interpretation of
(2.4) extends this result to curved and deforming reference surfaces.
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Vorticity generation in 3D: Lyman’s flux

ω · ŝ

u · ŝ
u · n̂ u

ω · n̂
S S S

ω

(c)(b)(a)

Figure 3. Advection of vortex filaments across the boundary of a stationary reference surface. (a) Advection
of normal vorticity in the tangential direction, (ω · ŝ)(u · n̂). (b) Advection of tangential vorticity in the normal
direction, (ω · n̂)(u · ŝ). (c) Advection of an oblique vortex filament across the boundary.

Some care must be taken with this interpretation. Vortex filaments do not generally
evolve in a topologically well-defined manner, and ΓS describes only the local intersection
of vortex filaments with S. Furthermore, Fuentes (2007) has pointed out that vortex
tubes (and hence, filaments) may be self-intersecting, and may split apart at null points
in the vorticity field. It must be stressed that vortex filaments are invoked only to
aid interpretation. Lyman’s flux describes the diffusion of vorticity, and not of vortex
filaments, and is not affected by these concerns.

2.2. Advection and diffusion of vortex lines
We now proceed to provide a physical interpretation of the vorticity flux in (2.4).
Introducing the relative velocity, u∗ = (u − vb), the axial flux vector ((2.3)) includes the
following terms:

ŝ · (n̂ × j∗) = −n̂ · (ŝ × j∗)

= (ω · ŝ)(u∗ · n̂) − (ω · n̂)(u∗ · ŝ) − ν
[
n̂ · ∇ω · ŝ − ŝ · ∇ω · n̂

]
. (2.7)

The advection terms are considered first, as these have a well-accepted interpretation:
in inviscid flows, vortex tubes remain material tubes, and are advected with the flow. For
inviscid flow (ν = 0) and a stationary surface (u∗ = u), (2.2) reduces to

dΓs

dt
=

∮
C

[
(ω · n̂)(u · ŝ) − (ω · ŝ)(u · n̂)

]
ds. (2.8)

The second term in the integral, (ω · ŝ)(u · n̂), represents the advection of vortex lines
normal to S in a direction tangent to S, as illustrated in figure 3(a). The first term in
the integral, (ω · n̂)(u · ŝ), represents the advection of tangent vorticity across S in the
normal direction. As demonstrated in figure 3(b), this process also results in a change
in the density of vortex filaments passing through S, unless the entire vortex filament is
advected across the surface. A similar observation on this longitudinal advection term was
made by Huggins & Bacon (1980). In general, of course, vortex lines intersect S at an
oblique angle, and both terms occur simultaneously (figure 3c).

The Lyman–Huggins tensor, J, is antisymmetric, and each term in the axial vector, j,
occurs twice in the full tensor – once representing the transfer of normal vorticity in a
direction tangent to S, and second as the transfer of tangential vorticity in a direction
normal to S. If we consider a second surface, N, which intersects S orthogonally, as
illustrated in figure 4, each term in (2.7) describes vorticity transport in both surfaces.
The term (ω · ŝ)(u · n̂) appears in the transport equation for ω · ŝ in S, where it represents
the advection of vorticity along S (the primary effect). The same term also appears
in the transport equation for ω · n̂ in N, where it describes the advection of tangential
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N

N

S S

Primary effect

Secondary effect

ŝ
ŝ

n̂ n̂
u · n̂

Figure 4. Transport of a vortex filament through two orthogonally intersecting surfaces. The term (ω · ŝ)(u ·
n̂) occurs twice in the flux tensor, once representing the transport of (ω · ŝ) in the n̂-direction (the primary
effect), and a second time as the transport of (ω · n̂) in the ŝ-direction (the secondary effect). Viscous terms in
the Lyman–Huggins tensor are interpreted in an analogous manner.

vorticity across N (the secondary effect). The primary effect corresponds to the standard
interpretation of (ω · ŝ)(u · n̂) as an advective flux, while the secondary effect represents
the consequences of this advection on the ω · n̂ field.

The primary and secondary effects of the viscous fluxes in (2.7) are defined in an
analogous manner. The primary effect of the term −νn̂ · ∇ω · ŝ is the diffusion of ω · ŝ in
the n̂-direction, and is equivalent to the diffusion of vorticity under Lighthill’s definition.
However, this term also produces a secondary diffusion of ω · n̂ in the ŝ-direction,
which does not appear in Lighthill’s definition. In the next section, we illustrate that the
secondary viscous effect can be interpreted as due to the kinematic condition that vortex
filaments do not end inside the fluid.

2.3. Vortex reconnection
Vortex reconnection across an ‘X’-point/line is examined in this section, where we
demonstrate that Lyman’s flux provides a measure of the rate at which vorticity is
reconnected across the ‘X’-line. Moreover, Lyman’s definition clearly illustrates how the
kinematic condition that vortex lines and filaments do not end inside the fluid (except
at null points) is maintained during the reconnection process. Nether of these benefits is
afforded by Lighthill’s definition. A two-dimensional model problem, Kida & Takaoka’s
(1991) straight jet flow (their example (d)), is considered first. Then, the three-dimensional
interaction of antiparallel vortex pairs is briefly discussed.

The straight jet flow is an analytic solution to the Navier–Stokes equations, featuring
vortex reconnection in two-dimensions. Expressions for the velocity and vorticity fields
are provided by Kida & Takaoka (1991), and are of the following form,

u(x, y, t) = (−Ax, 0, Az + ūz(x, y, t)) , (2.9a)

ω(x, y, t) =
(

∂ ūz

∂y
, −∂ ūz

∂x
, 0

)
. (2.9b)

Vorticity vectors, as well as closed vortex lines (contours of ūz), are provided in figure 5,
for a selection of time instants, and a transient animation is also provided in supplementary
movie 1 available at https://doi.org/10.1017/jfm.2021.179. The initial vorticity field features
two nodes (‘O’-points), labelled C and C′, and a saddle (‘X’-point) at A. Closed vortex
lines either orbit a single node (island) or the entire set of both nodes and the saddle point.
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Figure 5. The two-dimensional vorticity field of Takaoka’s straight jet flow, at (a) t = 0, (b) t = 0.3 and (c)
t = 0.6. Light-grey vectors represent the vorticity field, while solid lines are closed vortex lines. Colour shading
indicates the viscous part of the axial flux vector, jz.

During transient evolution, vorticity flux (meaning the flux of vortex lines) is annihilated at
the centre of each island, while vortex reconnection occurs at the saddle point, transferring
vorticity flux from each island (C and C′) to the outer orbit (C′AC). At the critical time,
t ≈ 0.506, the two nodes and the saddle point merge into a single node.

Topological changes to the vorticity field, including vortex reconnection and the
annihilation of flux, are driven by viscous diffusion. These particular topological processes
have previously been described by Melander & Hussain (1990) and Greene (1993). Here,
the role of Lyman’s flux in interpreting these processes is clarified.

Since the vorticity field is two-dimensional, the axial flux vector, j, has only a single
non-zero component. As advection is not responsible for topological changes to the
vorticity field, the following discussion is largely concerned with the viscous part of the
flux vector,

jz = ν

[
∂ωy

∂x
− ∂ωx

∂y

]
, (2.10)

which is indicated by colour shading in figure 5. Note that jz simultaneously describes
the rate of transport of ωx in the y-direction and of ωy in the x-direction. Specifically,
jz > 0 indicates the transport of positive ωx in the positive y-direction (or negative ωx
in the negative y-direction) and the transfer of positive ωy in the negative x-direction
(or negative ωy in the positive x-direction). For jz < 0, vorticity transport occurs in the
opposite direction.

Consider the section of the x-axis between A and C, as illustrated in figure 6(a). The
arrows on this figure indicate the direction of vorticity transport, determined by the sign
of jz. Between A and B, jz < 0, and negative ωy is diffused in the negative x-direction,
towards A. Simultaneously, opposite-signed ωx is diffused away from the x-axis in the
vertical direction, with negative ωx above the x-axis and positive ωx below the x-axis.
Between B and C, jz > 0, and negative ωy is diffused in the positive x-direction, towards C.
Simultaneously, opposite-signed ωx is diffused towards the x-axis from above and below.
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(a)

(b) (c)

Diffusion of negative

ωy in the negative

x-direction 

Diffusion of negative

ωy in the positive

x-direction 

Diffusion of ωx 
towards the x-axis

Diffusion of ωx 
away from the 

x-axis

Diffusion of opposite-

signed ωx away from

the null-point

Diffusion of opposite-

signed ωy towards the 

null-point Diffusion of opposite-

signed ωx towards the 

null-point

Diffusion of opposite-

signed ωy towards the 

null-point

B C

C

A

A

jz < 0: jz > 0:i′ ii′

i ii

Figure 6. Schematic illustration of the diffusion of vorticity in the straight jet flow: (a) Along the section
of the x-axis between A and C, jz < 0 results in the diffusion of negative ωy to the left, accompanied by the
diffusion of opposite-signed ωx away from the x-axis. When jz > 0, negative ωy is diffused to the right, with
corresponding diffusion of opposite-signed ωx towards the x-axis. (b) Opposite-signed ωy is diffused towards
the ‘X’-point (A), where cross-diffusive annihilation occurs. Vortex lines are reconnected across the y-axis, as
opposite-signed ωx diffuses away from the null-point. (c) Annihilation of flux loops about an ‘O’-point (C), as
opposite-signed ωy cross-annihilates along the x-axis, and opposite-signed ωx cross-annihilates on the y-axis.

The coupling between the fluxes of ωx and ωy can be understood as due to the kinematic
condition that vortex filaments do not end inside the fluid, except at vorticity nulls. The
diffusion of negative ωy across the line i − i′ in figure 6(a) effectively results in the
transport of a vortex filament across this line. In order for this filament to remain connected
to itself, new ωx must appear in i − i′, both above and below the x-axis, and this is
guaranteed by Lyman’s flux. Under Lighthill’s flux, however, the transport equations for
ωx and ωy are effectively independent, and the appearance of new ωx in i − i′ is unrelated
to the diffusion of ωy.

The annihilation of vorticity at the node, C, is illustrated in figure 6(c). Here jz > 0,
driving the diffusion of negative ωy towards C from the left and positive ωy towards C from
the right. Cross-annihilation of opposite-signed ωy is therefore occurring at C. Similarly,
opposite-signed ωx is cross-annihilated on C, with negative ωx diffused towards C from
above and positive ωx diffused towards C from below. The total flux of vortex lines orbiting
C therefore decreases, owing to the annihilation of closed flux loops as they diffuse into
the centre of the node. Lyman’s flux not only describes the qualitative physical features of
this process but also provides a direct measure of the rate of annihilation.

Finally, the reconnection of vortex lines at the saddle point, A, is illustrated in figure 6(b).
Here, jz < 0, driving the diffusion of opposite-signed ωy towards A, where viscous
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Vorticity generation in 3D: Lyman’s flux

(a) (b)

C′ CA C′ CA

Figure 7. The reconnection of vortex lines across the ‘X’-point. The cross-diffusive annihilation of
opposite-sign ωy on the x-axis reduces the ‘flux of vortex lines’ passing through the x-axis, and this is
balanced by the cross-diffusion of opposite-signed ωx away from A, along the y-axis. Antiparallel vortex lines
passing through the x-axis are ‘cut’ by the cross-annihilation of ωy, and reconnected across the y-axis by the
cross-diffusion of opposite-signed ωx away from A.

cross-annihilation occurs. However, because ωx is positive below the x-axis and negative
above it, jz < 0 indicates the diffusion of opposite-signed ωx away from A along the
y-axis, effectively creating new vorticity in the y-axis. As illustrated in figure 7, the flux
of vortex lines passing through the x-axis is reduced by the cross-diffusive annihilation
of ωy, and this is balanced by an increase in the flux of vortex lines passing through the
y-axis. Vortex lines passing through the x-axis are ‘cut’ by the cross-annihilation of ωy, and
reconnected across the y-axis by the cross-diffusion of ωx away from A. Saffman (1990)
has stressed that the cutting and reconnection of vortex lines should not be seen as separate
processes; instead, reconnection must occur as a ‘consequence of the kinematic theorem
that vortex lines cannot end inside a fluid’. Lyman’s flux allows the cross-annihilation
and reconnection of vortex lines to be described by the same component of the axial flux
vector, and it therefore directly captures this important property of the vorticity field.

The interaction of antiparallel vortex pairs, illustrated in figure 8, features a
three-dimensional ‘X’-line reconnection. Detailed analysis and numerical simulation
of this flow is provided by, for example, Melander & Hussain (1989, 1990) and
McGavin & Pontin (2018), and only a brief description is presented here. The main
feature of the connection process is the transfer of circulation from the symmetry
plane (Cs) to the dividing plane (Cd). At the contact zone, vortex filaments are cut
by viscous cross-annihilation and are reconnected across the dividing plane, forming
the bridge structures in figure 8(c). While most of the circulation is transferred by this
‘cut-and-connect’ process, a small amount of circulation remains in the threads (figure 8d),
which persist long after the main reconnection process has ended.

The reconnection process is governed by the value of Lyman’s flux along the connection
line (the intersection between the symmetry and dividing planes, Cs ∩ Cd),

d̂ · J · ŝ = −ŝ · J · d̂ = −ν
[
d̂ · ∇ω · ŝ − ŝ · ∇ω · d̂

]
. (2.11)

This term simultaneously describes the rate at which ω · ŝ is cross-annihilated on the
symmetry plane (the cutting of vortex filaments), and at which opposite-signed ω · d̂ is
diffused away from the connection line (vortex reconnection). The loss of circulation from
Cs is directly balanced by the appearance of new circulation in Cd, and Lyman’s flux
provides a direct measure of this process. In fact, expressions equivalent to Lyman’s flux
have previously been used to measure the rate of circulation, in both vortex ring (Stanaway,
Shariff & Hussain 1988), and vortex pair (McGavin & Pontin 2018) interactions.

It should be stressed that for vortex reconnections without symmetry, such as
high-Reynolds number and off-axis reconnections (Beardsell, Dufresne & Dumas 2016),
the extent of reconnection is not accurately represented by the circulation transfer.
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(a) (b)

(c) (d)

Dividing plane Symmetry plane Contact zone

Bridge

Tail

Threads

Cd

Cs

d̂

ŝ

Figure 8. Illustration of the ‘bridging’ mechanism for the reconnection of an antiparallel vortex pair, based
on the description provided by Melander & Hussain (1989, 1990). (a–d) Three-dimensional isometric view
showing the main features of vortex tubes at several instances during the connection process. These images are
merely representative of flow behaviour; for accurate numerical data, see Melander & Hussain (1989, 1990) or
McGavin & Pontin (2018).

Lyman’s flux still governs the transfer of circulation between the symmetry and dividing
planes; however, this does not necessarily correspond to the rate of reconnection in
asymetric cases.

In this section, we have illustrated that Lyman’s flux can provide a measure of the
rate of reconnection at ‘X’-points, and of the annihilation of vortex loops at ‘O’ points.
Moreover, the coupling between the fluxes of each component of vorticity, which occurs
under Lyman’s definition, can be interpreted as a consequence of the solenoidal property
of the vorticity field, which requires that vortex lines and filaments do not end in the fluid,
apart form at null points. The solenoidal property is a consequence of the definition of
vorticity as the curl of velocity, and Lyman’s flux clearly illustrates how this condition is
enforced – a benefit which is not afforded by Lighthill’s definition.

2.4. Vortex line coordinates
In this section, the viscous part of the axial flux vector is decomposed into components
normal and tangent to vortex lines, to provide some insight into how the geometry of
vortex lines impacts the diffusion of vorticity. In a fluid region where ω /= 0, let ω be the
vorticity magnitude, and b̂ be a unit vector tangent to the vorticity field (ω = ωb̂). Then,
the components of the axial flux vector either tangent or normal to b̂ are

−νb̂ × (∇ × ω) = −ν

[
∇⊥ω − ω

∂ b̂
∂b

]
, (2.12a)

−νb̂ · (∇ × ω) = −νωb̂ · (∇ × b̂), (2.12b)
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Vorticity generation in 3D: Lyman’s flux

(a) (b)

(c)

S S

S

S

S

N2

N

N1

Cross

annihilation

Secondary

effect

∇⊥ω

ω · n̂

ω · n̂1

∂ω · n̂1

∂ω · n̂
∂s

∂n2

Figure 9. The three terms in the axial flux vector when expressed in local vorticity coordinates: (a) Diffusion
of vortex-tangential vorticity in the vortex-normal direction due to gradients in vorticity magnitude. (b)
Diffusion of vortex-tangential vorticity due to vortex line curvature. This can be interpreted as a consequence
of the cross-diffusion of vortex normal vorticity in the vortex-tangent direction. (c) Cross-diffusion of
vortex-normal vorticity, due to the torsion of vortex lines. This term is also related to the generation or
dissipation of helicity.

where ∇⊥ is the projection of the gradient operator on the plane with unit normal b̂,
∇⊥ω = ∇ω − b̂(·∇ω)b̂. Equation (2.12a) gives the components of the axial flux vector
which are orthogonal to the vorticity vector, and therefore simultaneously describes the
diffusion of vortex-tangent vorticity (the component of vorticity parallel to the local
vorticity vector) in directions orthogonal to the local vorticity, as well as the diffusion
of vortex-normal vorticity (the components of vorticity orthogonal to the local vorticity
vector) in the direction parallel to the vorticity vector. Equation (2.12b) provides the
component of the axial flux vector tangent to the local vorticity vector, which describes
the diffusion of vortex-normal vorticity in directions orthogonal to the local vorticity
vector. Obviously, the vortex-normal vorticity is zero at any given point. However, as
neighbouring vortex lines are not necessarily parallel, spatial gradients in the component
of vorticity orthogonal to the local vorticity vector may occur, producing a diffusive flux
of vortex-normal vorticity.

This decomposition reveals three aspects of vortex line geometry which contribute to the
diffusion of vorticity. The first is the diffusion of vortex-tangential vorticity, in directions
orthogonal to the vorticity vector, due to gradients in the vorticity magnitude. This effect
is illustrated in figure 9(a), and is the only mechanism which operates in two-dimensional
flows.

The second effect is due to the curvature of vortex lines (∂ b̂/∂b), which also drives
the diffusion of vortex-tangent vorticity in directions orthogonal to the vortex line, as
illustrated in figure 9(b). This can be interpreted as a secondary effect, driven by the
cross-diffusion of opposite-signed vortex-normal vorticity. In figure 9(b), positive ω · n̂
diffuses along N, towards S from above, while negative ω · n̂ diffuses from below. The
cancellation of opposite-signed vorticity in N is also associated with the secondary
diffusion of vortex-line tangent vorticity along S.
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S.J. Terrington, K. Hourigan and M.C. Thompson

The final effect is related to the torsion of vortex lines, where b̂ · (∇ × b̂) is non-zero,
as illustrated in figure 9(c). This term acts to diffuse vortex-normal vorticity in directions
orthogonal to the local vorticity vector, as illustrated in figure 9(c). Here, S is the plane
formed with a normal vector, b̂0, at a particular reference point. At this reference point,
νωb̂0 · (∇ × b̂) describes the diffusion of vorticity in the planes N1 and N2, which are
orthogonal to S. Analogous to the annihilation of flux at a two-dimensional ‘O’-point,
opposite-signed ω · n̂1 in the N1 plane is cross-annihilated at the origin, and ω · n̂2 in the
N2 plane is also cross-annihilated. Of course, the tangential vorticity field may resemble
a two-dimensional ‘X’-point, rather than the ‘O’-point shown in figure 9(c). Furthermore,
b̂0 was arbitrarily selected, and similar cross-diffusion of normal vorticity occurs about all
vortex lines where b̂ · (∇ × b̂) /= 0.

This term is also related to the viscous generation and dissipation of helicity. The helicity
source term, νω · (∇ × ω) (Kida & Takaoka 1994; Takaoka 1996), is proportional to
the component of the axial flux vector aligned with the local vorticity vector. Clearly,
the cross-diffusion of vortex-line normal vorticity, driven by the vortex-line tangent
component of the axial flux vector, plays an important role in the generation or dissipation
of helicity.

3. Generation of vorticity

In this section, we present a three-dimensional extension of Morton’s (1984) inviscid
theory of vorticity creation. Under this formulation, circulation is generated on an interface
by the inviscid relative acceleration between fluid elements and the solid boundary, due to
either tangential acceleration of the solid boundary or tangential pressure gradients and
body forces in the fluid. Viscosity is responsible for the diffusion of vorticity into the fluid
after it has been generated, but is not involved in the vorticity creation process.

The inviscid description of vorticity generation has been controversial. In particular, Wu
& Wu (1993, 1996) and Wu (1995) have argued that viscosity is essential to the vorticity
creation process. Inviscid formulations, such as those of Morton (1984), Morino (1986),
Brøns et al. (2014) and Terrington et al. (2020), interpret the velocity discontinuity across
a free-slip boundary as an ‘interface vortex sheet’, and treat it as part of the vorticity field.
However, Wu & Wu (1993) argue that the interface vortex sheet does not correspond to
the rotation of fluid elements, and therefore does not represent a layer of vorticity on the
boundary. More precisely, vorticity corresponds to rotation of the principal rate-of-strain
axes, and the principal axes do not necessarily rotate on a free-slip boundary.

These observations necessitate a distinction between boundary vorticity and the
interface vortex sheet. Boundary vorticity represents the rotation of fluid elements on the
boundary, and is computed from gradients in the fluid velocity. The interface vortex sheet
corresponds to circulation contained in the velocity discontinuity at the boundary, as fluid
elements slide along the boundary, and is not related to fluid rotation. By maintaining
this distinction, Wu & Wu’s observations do not contradict the inviscid model of vorticity
creation.

Including the interface vortex sheet as part of the vorticity field is a conceptually
attractive approach, as it allows the generation of vorticity to be decoupled from its
subsequent diffusion (Morton 1984), as well as admitting a general description of vorticity
creation, applicable to both no-slip and free-slip boundaries (Terrington et al. 2020).
Moreover, the interface vortex sheet generalises several kinematic properties of the
vorticity field across tangential discontinuities (§ 3.2), providing further justification for
the inviscid description of vorticity generation.
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Vorticity generation in 3D: Lyman’s flux

(a) (b)

(c) (d )

Rotation axis

ω = 2Ω

Ω

ω

ω

σ

σ

γ

γ
p/ρ,Φg, or dV/dt

Figure 10. Schematic illustration of the proposed vorticity generation mechanism. Circulation is generated
in the interface by the inviscid relative acceleration, and diffused into the fluid by the viscous forces which
enforce the no-slip condition. (a,b) Pressure gradients, body forces and pure translational acceleration generate
solenoidal vortex lines, with no change in the normal vorticity on the boundary. (c,d) The circulation generated
by rotational motion of the solid body ensures that vortex lines are continuous across the boundary.

The structure of this section is as follows: in § 3.1, a qualitative overview of the
inviscid description of vorticity creation is presented. Then, in § 3.2, important kinematic
properties of the interface circulation are discussed. Finally, further mathematical details
of the generation mechanism are provided in § 3.3.

3.1. Summary of the generation mechanism
A schematic illustration of the vorticity generation process on a solid boundary is provided
in figure 10. Under Morton’s (1984) interpretation, the creation of vorticity is interpreted
as an inviscid process, independent of the fluid viscosity. In the absence of viscous forces,
a relative acceleration between fluid and solid may occur, due to tangential pressure
gradients, body forces or external acceleration of the boundary. This produces a velocity
discontinuity across the boundary, which is interpreted as a vortex sheet, γ = n̂ × (u − v).
Here, u and v are the velocities of the fluid and solid, respectively, and n̂ is the unit normal
vector directed out of the solid boundary. The inviscid creation of interface circulation is
illustrated in figure 10(a,c).

On a no-slip boundary, all circulation generated by the inviscid mechanism is
immediately diffused into the fluid by viscous forces, which enforce the no-slip condition,
as illustrated in figure 10(b,d). Tangential acceleration of the solid boundary, as well as
tangential pressure gradients and body forces, produce solenoidal interface circulation
(figure 10a,c), and the interface circulation diffuses into the fluid without affecting the
normal vorticity on the boundary. Rotational acceleration of the solid body, however,
produces a uniform vorticity field within the solid body and a non-solenoidal interface
circulation. As the interface vortex sheet is diffused into the fluid, the associated diffusion
of normal vorticity along the boundary ensures that vortex lines remain continuous across
the boundary, as illustrated in figure 10(b,d).

Under Lyman’s definition of the boundary vorticity flux, normal vorticity is not created
on a boundary. While this result is reasonable on stationary boundaries, where the normal
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vorticity is zero, it appears to contradict the Dirichlet condition, ω · n̂ = 2n̂ · Ω , on a
rotating boundary. Although normal vorticity is not created on a rotating boundary, the
Dirichlet condition is maintained by the diffusion of normal vorticity along the boundary,
due to the secondary effect of the Lyman–Huggins flux tensor. In addition to enforcing
the kinematic condition that vortex lines do not end in the fluid interior, the secondary
effect also ensures that vortex lines do not end on a solid boundary, enforcing the Dirichlet
condition on normal vorticity.

A closely related interpretation of vorticity creation has been widely used in
vorticity-based numerical methods (Payne 1956, 1958; Lighthill 1963; Chorin 1973;
Leonard 1980), which predate Morton’s (1984) interpretation. Each of these authors
recognises that vorticity must be introduced at the boundary, in order to satisfy the
no-slip condition. Moreover, the amount of vorticity added in each timestep is deduced
from the tangential slip velocity that would occur in the absence of vorticity creation.
This corresponds to the creation of circulation (slip velocity) by the inviscid relative
acceleration, and subsequent diffusion of circulation into the fluid. The success of these
methods in capturing the physical behaviour of various flows provides further support for
Morton’s interpretation of vorticity creation.

3.2. Kinematic properties of the interface circulation
Kinematic properties of the interface vortex sheet are discussed here, including a
generalised expression for the vector circulation ((3.3)), divergence-free condition ((3.6))
and Biot–Savart law ((3.7)). The results of this section are purely kinematic, and apply to
any interface, including the boundary between a fluid and a solid.

The interface circulation is defined by comparison with the vector circulation for a single
fluid domain, introduced in (1.9). A control volume, V , which includes an interface, I,
between two fluids may be split into two smaller control volumes, V1 and V2, as illustrated
in figure 11(a). This approach is based on the two-dimensional control area formulation
presented by Brøns et al. (2014) and Terrington et al. (2020). The total vector circulation
in V may be expressed as

Γ =
∮

∂V
n̂ × u dS =

∫
V1

ω dV +
∫

V2

ω dV +
∫

I
ŝ × (u2 − u1) dS, (3.1)

where ui is the velocity of fluid in Vi. The density of circulation in the interface is

γ = ŝ × (u2 − u1), (3.2)

and the total circulation in V includes contributions from vorticity in the fluid interior, as
well as circulation due to the velocity discontinuity on the interface,

Γ =
∫

V
ω dV +

∫
I
γ dS. (3.3)

The interface circulation generalises the divergence-free property of the vorticity field
across an interface. This can be demonstrated as follows. First, consider Stokes’ theorem
on each side of the interface, ∫

I
ωi · dS =

∮
∂I

ui · ds, (3.4)

where ωi is the vorticity in fluid i. The jump in the ‘flux of vortex lines’ through each side
of the interface is∫

I
ŝ · (ω2 − ω1) dS =

∮
∂I

(u2 − u1) · ds =
∮

∂I
γ · b̂ ds. (3.5)
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Vorticity generation in 3D: Lyman’s flux

Fluid 2

Fluid 1 V1

V2

I

∂I

∂V

n̂

b̂

t̂

ŝ
ŝ

Interface

ω1 ∙ dS

ω2 ∙ dS

γ · b̂

(a) (b)

Figure 11. (a) Control volume used to analyse the total circulation across an interface, I. Here, V1 and V2 are
the portions of the control volume, V , in each fluid; ŝ is the unit normal to the interface, and n̂ is the unit normal
to the control volume boundary, ∂V . b̂ is a vector tangent to I, but orthogonal to ∂I, and t̂ is the tangent to the
boundary curve ∂I. (b) Illustration of the flux of vortex lines into a section of the interface. The difference in
circulation between vortex tubes on each side of the interface is balanced by the flux of circulation along the
interface ((3.5)).

Now, γ · b̂ can be considered the ‘flux of interface circulation’ through ∂I, and then the
generalised divergence theorem for V can be expressed as∮

∂V
ω · dS +

∮
∂I

γ · b̂ ds = 0, (3.6)

where the sum of the flux of vortex lines, and the flux of interface circulation, across the
outer boundary of V is equal to zero. This relationship is illustrated in figure 11(b). Vortex
tubes do not end on a boundary or interface, but either continue across the boundary or as
circulation in the interface.

The interface circulation also generalises the Biot–Savart integral to interfaces with slip.
The Biot–Savart law is an application of Helmholtz’s theorem, which has been extended
to general interfaces by Kustepeli (2016). For an incompressible velocity field in an infinite
domain, their expression reduces to

u = ∇ ×
[∫

V

ω

4πR
dV +

∫
I

γ

4πR
dS

]
. (3.7)

In order to compute the induced velocity field, contributions from the interface vortex
sheet must be included, to capture a velocity discontinuity on the interface.

The kinematic properties presented here demonstrate that γ generalises the vorticity
field across a tangential discontinuity. Using distribution theory, the generalised curl
operator is (Kustepeli 2016)

∇ × u = {∇ × u} + γ δ(I), (3.8)

where { } denotes the regular value (i.e. the vorticity in each fluid), and δ(I) is the Dirac
delta distribution on I. Thus, the interface circulation arises naturally as part of the
vorticity field, if distribution theory is used to allow differentiation across the interface.
Inviscid formulations of vorticity creation are therefore justified in interpreting the slip
velocity as a vortex sheet.

3.3. The vorticity generation mechanism
Key mathematical results which support the inviscid interpretation of vorticity creation
outlined in § 3.1 are presented here. Let u be the fluid velocity, and v be the velocity of the
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solid body, so that the interface circulation is

γ = n̂ × (u − v), (3.9)

where n̂ is the unit normal directed out of the solid boundary. Temporarily ignoring the
no-slip condition, the rate of change of interface circulation at a material point on the solid
body is

dγ

dt
= dn̂

dt
× (u − v) + n̂ ×

[
du
dt

− dv

dt
+ (v − u) · ∇u

]
. (3.10)

Terms involving v − u describe the kinematic evolution of interface circulation once it has
been created, and are not related to the generation of circulation on a no-slip boundary.
Assuming the interface circulation is initially zero, this expression reduces to

dγ

dt
= n̂ ×

[
du
dt

− dv

dt

]
, (3.11)

and only a relative acceleration between the fluid and the solid generates circulation in the
interface. Now, the acceleration of the fluid may be replaced by the tangential momentum
equation,

dγ

dt
= −n̂ ×

[
ν∇ × ω + ∇

(
p
ρ

+ φg

)
+ dv

dt

]
, (3.12)

where φg is a body force potential. Viscous forces act to maintain the no-slip condition,
γ = 0, and (3.12) can be recast as an expression for the necessary viscous acceleration
(boundary vorticity flux),

σ = νn̂ × (∇ × ω) = −n̂ ×
[
∇

(
p
ρ

+ φg

)
+ dv

dt

]
. (3.13)

The right-hand side of (3.13) is the ‘inviscid relative acceleration’ – the relative
acceleration between the fluid and the solid that occurs in the absence of viscous forces.
Interface circulation is created during this inviscid acceleration; however, the relative
acceleration is opposed by viscous forces, which diffuse vorticity into the fluid via the
boundary vorticity flux. Under this interpretation, viscosity is responsible for the diffusion
of vorticity, once it is created, but is not involved in the creation of vorticity.

The generation of vorticity on a rotating boundary is easier to interpret if the vorticity
field in the solid body is considered. Solid body rotation is represented by the following
velocity field:

v(y, t) = V (t) + Ω(t) × y, (3.14)

where V is the translation velocity, Ω is the angular velocity and y is the displacement of
a material point from the axis of rotation. The corresponding vorticity field is twice the
angular velocity, ∇ × v = 2Ω , and the rate of change of vorticity is

d
dt

∫
Vs

∇ × v dV = d
dt

∫
Vs

2Ω dV = d
dt

[2ΩVol(Vs)] , (3.15)

where Vol(Vs) indicates the volume of the solid body, Vs. The solid body contains parallel
vortex filaments of equal strength, which are aligned with, and proportional to, the angular
velocity vector.

Changes to the angular acceleration of the solid body alter the normal vorticity on the
boundary, and the interface circulation generated by this acceleration must satisfy the

915 A106-20

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

15
 Ju

l 2
02

1 
at

 0
3:

52
:4

2,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
9

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.179


Vorticity generation in 3D: Lyman’s flux

generalised solenoidal condition, (3.6). The right-hand-side of (3.13) represents the rate of
creation of interface circulation, which satisfies the solenoidal condition in the following
manner:∮

∂I
−

(
n̂ ×

[
∇

(
p
ρ

+ φg

)
+ dv

dt

])
· b̂ds =

∫
I
∇ ×

[
∇

(
p
ρ

+ φg

)
+ dv

dt

]
· dS

=
∫

I
2

dΩ

dt
· dS. (3.16)

Here, I is a section of solid boundary, and b̂ is the unit normal across the boundary curve,
∂I, which is tangent to the solid boundary. Since d/dt(dS) = Ω × dS, the final term in
(3.16) is equal to the rate of change of the ‘flux of vortex lines’ out of the solid body,

d
dt

∫
I

2Ω · dS =
∫

I
2

dΩ

dt
· dS +

∫
I
(2Ω) · (Ω × dS) =

∫
I

2
dΩ

dt
· dS. (3.17)

In the absence of viscous diffusion, the change in normal vorticity on the solid
boundary is balanced by the flux of interface circulation along the boundary (figure 10a,c).
Only rotational acceleration changes the flux of normal vorticity out of the boundary;
translational acceleration (dV/dt), pressure gradients (p/ρ) and body forces (φg) create
interface circulation which is solenoidal along the interface, in the sense that∮

∂I
−

(
n̂ ×

[
∇

(
p
ρ

+ φg

)
+ dV

dt

])
· b̂ ds = 0. (3.18)

Interface circulation is immediately diffused into the fluid, with simultaneous diffusion
of normal vorticity along the boundary. Equation (2.2) allows the rate of change of normal
vorticity on the fluid side of the boundary to be expressed in terms of the boundary
vorticity flux across ∂I,

d
dt

∫
I
ω · dS =

∮
∂I

[
νn̂ × (∇ × ω)

] · b̂ ds =
∮

∂I
σ · b̂ ds. (3.19)

By substituting (3.13) into (3.19), and equating the result with (3.16), one obtains

d
dt

[∫
I
ω · dS −

∫
I

2Ω · dS
]

= 0, (3.20)

which demonstrates that the diffusion of normal vorticity along the surface of the solid
body due to the generation of tangential vorticity on the interface maintains the condition
that vortex lines do not end on the solid boundary. Just as the secondary effect in Lyman’s
flux maintains the kinematic condition that vortex lines do not end inside the fluid (unless
the vorticity is zero), Lyman’s flux also provides a natural mechanism to ensure that vortex
lines do not end on a no-slip boundary (except if the vorticity is zero).

4. Example flows

Several example flows are examined in this section, demonstrating the advantages afforded
by Lyman’s definition of the boundary vorticity flux. The flow driven by a rotating sphere
is considered first, to illustrate the appearance of normal vorticity on a rotating boundary.
Then, flow over a translating sphere is considered. The analysis of vortical structures in the
wake is simplified by using Lyman’s flux, as key aspects of the wake dynamics, including
vortex tilting and viscous cross-annihilation, can be understood by considering the fluxes
acting in a two-dimensional reference plane.
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(a) (b)
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φ

(r, θ, φ)

x
Ω

φ

θ

Figure 12. Coordinate system for (a) rotating and (b) translating sphere flows.

4.1. Flow over a rotating sphere
The generation of vorticity on a rotating sphere is investigated in this section. Vortex
lines are continuous across the solid boundary, and Lyman’s flux clearly illustrates
the mechanisms that enforce this condition. The Stokes approximation is considered
first, isolating the effects of viscous diffusion. Then, the full Navier–Stokes solution is
discussed, where inertial effects generate azimuthal vorticity by vortex tilting in the fluid
interior, as well as by tangential pressure gradients and centripetal acceleration at the
boundary.

4.1.1. Stokes flow over a rotating sphere
By using a Stokes approximation, the generation and diffusion of vorticity are isolated
from the effects of advection and vortex tilting. We consider the following transport
equations for the ‘velocity’ field, and its corresponding vorticity field:

∂u
∂t

= −∇
(

p
ρ

)
+ ν∇2u, (4.1a)

∂ω

∂t
= ν∇2ω. (4.1b)

Using the spherical coordinates in figure 12(a), the following similarity transformation,

ur(r, θ, t) = 0, (4.2a)

uθ (r, θ, t) = 0, (4.2b)

p(r, θ, t) = 0, (4.2c)

uφ(r, θ, t) = Ωr sin θ f (r̂, τ ), (4.2d)

r̂ = r/R, (4.2e)

τ = t/(R2/ν), (4.2f )

reduces (4.1a) to a one-dimensional equation

∂f
∂τ

= 4
r̂

∂f
∂ r̂

+ ∂2f
∂ r̂2 . (4.3)

Equation (4.3) is solved using a finite-difference method, with two sets of initial and
boundary conditions. The first is an impulsively rotated sphere, in an initially stationary
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Vorticity generation in 3D: Lyman’s flux

flow, with

f (1, τ ) = 1, (4.4a)

f (r̂, 0) = 0, (4.4b)

while the second is the periodic flow driven by a rotationally oscillating sphere,

f (1, τ ) = sin(πkτ), (4.5a)

f (r̂, τ ) = f (r̂, τ + 2/k). (4.5b)

The transient Stokes flow driven by the impulsively rotated sphere is illustrated in
figure 13. Impulsive rotation of the sphere produces a solid body vorticity field, ω = 2Ω ,
inside the sphere. A sheet of interface circulation (velocity discontinuity) is created by the
tangential acceleration of the boundary,

γ = −ΩR sin θ êθ , (4.6)

and the flux of vortex lines out of the solid body is balanced by the flux of circulation
along the interface ((3.6)). Effectively, vortex filaments generated during the initial rotation
are closed loops, passing through the solid body and continuing along the interface, as
illustrated in figure 13(a).

The interface circulation is immediately diffused into the fluid by viscous forces, and, for
τ > 0, vorticity is non-zero throughout the entire fluid domain. Vortex filaments remain
closed loops, passing through the fluid domain, rather than along the interface (figure 13b).
According to Lyman’s flux, the diffusion of tangential vorticity out of the boundary occurs
alongside the diffusion of normal vorticity along the boundary, and this ensures that vortex
lines are continuous across the interface ((3.20)).

Under Lyman’s definition, the boundary vorticity flux is zero for τ > 0, and no new
vorticity is created on the boundary. Vorticity in the fluid diffuses away from the sphere,
as illustrated in figure 13(b–d), eventually reaching the following steady-state profile:

f (r̂, ∞) = 1/r̂3, (4.7a)

ωr(r̂, ∞) = 2Ω cos θ/r̂3, (4.7b)

ωθ(r̂, ∞) = Ω sin θ/r̂3. (4.7c)

In contrast to unbounded two-dimensional flows, where vorticity continues to diffuse
infinitely far from the sphere, vorticity in the present flow is bounded by a 1/r̂3 decay
with distance from the sphere.

The steady-state behaviour is easily explained by Lyman’s flux. The flux of tangential
vorticity (ωθ ) in the radial direction (away from the sphere) is

êr · J · êθ = −ν
∂ωθ

∂r
+ ν

r
∂ωr

∂θ
− ν

r
ωθ . (4.8)

On the equator (z = 0), the first term is due to gradients in tangential vorticity, while the
remaining terms represent the curvature of vortex lines (see § 2.4). Gradients in tangential
vorticity act to diffuse vorticity away from the sphere, and this term initially dominates the
flow dynamics. However, the curvature of vortex lines acts to diffuse tangential vorticity
towards the sphere, and prevents the unbounded diffusion of vorticity away from the
sphere. In the steady-state limit, these two effects are exactly balanced, and Lyman’s flux
is zero throughout the entire fluid region.
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Figure 13. Transient Stokes flow over an impulsively rotated sphere. (a) The initial circulation sheet generated
during the impulsive acceleration. A cut-away showing vortex lines in the solid body is also provided. (b–d)
vortex lines in the r–z plane, with colour contours of the dimensionless vorticity magnitude, at a dimensionless
flow time (b) τ = 0.05, (c) τ = 1 and (d) steady–state flow.

Under Lighthill’s definition, however, the flow is more difficult to interpret. The
boundary vorticity flux,

σ ′
r = −ν

∂ωr

∂r
, (4.9a)

σ ′
θ = ∂uφ

∂t
− ν

r
∂ωr

∂θ
+ ν

r
ωθ, (4.9b)

is non-zero for all time, and vorticity is continually generated on the boundary. The
boundary vorticity flux depends on vorticity gradients near the boundary, and cannot
be determined independently of the vorticity field. Moreover, it is difficult to attribute
a distinct vorticity creation mechanism to the vorticity gradient terms.

The steady-state behaviour is also more difficult to interpret under Lighthill’s definition.
The boundary acts as a constant source of vorticity, and the 1/r̂3 profile is a result of
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Figure 14. Vortex lines in the r–z plane, and colour contours of the dimensionless vorticity magnitude, at
select time instants during one half-period of transient Stokes flow over an oscillating sphere. The colour map
for vorticity contours is the same as for figure 13.

the cross-annihilation of opposite-signed vorticity, as it diffuses away from the sphere.
Lyman’s definition affords a much simpler interpretation, where no new vorticity is created
on the boundary, and the diffusive flux approaches zero in the steady-state.

The impulsively rotated sphere is an example of ‘fast generation’ (Morton 1984), where
all vorticity in the flow is created instantaneously, and the total circulation in both the
fluid and the solid remain constant thereafter. The rotationally oscillating sphere, on the
other hand, demonstrates ‘slow generation’, where vorticity is continually generated on
the boundary, and the creation and redistribution of vorticity occur simultaneously.

The Stokes flow over a rotationally oscillating sphere, over one half-period of the
motion, is presented in figure 14, and a transient animation is also available in
supplementary movie 2. Between kτ = 0 and kτ = 0.5, while the sphere is accelerating,
the solid-body vorticity in the sphere increases, and closed vortex loops, passing through
both the solid and the fluid, are created. While the sphere is decelerating, between kτ = 0.5
and kτ = 1, the solid body vorticity in the sphere decreases and closed vortex loops are
shed into the fluid. These flux loops subsequently decay by viscous annihilation, in a
manner analogous to the two-dimensional ‘O’-point.

The rate of vorticity creation is given by the boundary vorticity flux,

σ/(νΩ/R) = πk sin θ cos(πkτ)êθ . (4.10)
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Initial position

of vortex line

Final position

of vortex line
Interface circulation

(a) (b)

Figure 15. Schematic illustration of the generation and diffusion of vortex lines during (a) the acceleration
phase, and (b) the deceleration phase, for Stokes flow driven by an oscillating sphere. New flux loops are created
on the equator during the acceleration phase, while flux loops are shed into the fluid during the deceleration
phase.

Positive tangential vorticity, directed from the north pole to the south pole, is generated
while the sphere is accelerating, whereas negative tangential vorticity is created while the
sphere is decelerating. There is an associated diffusion of normal vorticity – towards the
poles during the acceleration phase and towards the equator during the deceleration phase
– which ensures that vortex lines are continuous across the boundary.

While the generation and diffusion of vorticity occur simultaneously, the underlying
flow behaviour is easier to interpret when these processes are conceptually decoupled.
As illustrated in figure 15, the solid body vorticity in the sphere increases (or decreases)
during an infinitesimal time interval. The interface circulation created during this time
period connects the updated vortex lines in the solid to the vortex lines in the fluid. This
circulation is immediately diffused into the fluid, along with the corresponding diffusion
of normal vorticity, which ensures that vortex lines remain continuous across the boundary.

This description clearly explains the creation and shedding of flux loops on the equator.
During the acceleration phase (figure 15a), the interface circulation on the equator
connects a new vortex filament in the solid to itself, forming a new flux loop. The interface
circulation is immediately diffused into the fluid, and the new vortex loop passes through
both the solid and the fluid. During the deceleration phase (figure 15b), the interface
circulation connects a vortex line in the fluid, which originally passed through the solid,
to itself. When the interface circulation is diffused into the fluid, this loop is shed from the
sphere and becomes closed entirely within the fluid.

4.1.2. Inertial flow over a rotating sphere
The full Navier–Stokes solution to the flow over an impulsively rotated sphere is
considered in this section. Inertial effects result in the creation of azimuthal vorticity on
the boundary by pressure gradients and centripetal acceleration, as well as by vortex tilting
in the fluid interior. Under Lyman’s definition, these effects are represented by boundary
fluxes, which describe the balance of azimuthal circulation in the r–θ plane. A detailed
investigation of this flow has been provided by Calabretto et al. (2015) and Calabretto,
Denier & Levy (2019), and only details relevant to the azimuthal circulation balance are
discussed here.

The numerical results presented in this section were obtained using the
commercial finite-volume software ANSYS Fluent, on a 200 × 200 grid, with axial
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Vorticity generation in 3D: Lyman’s flux

symmetry enforced. Adequate numerical resolution was confirmed by running additional
simulations on a finer grid (400 × 400) and with a reduced timestep (from �t = 1 × 10−3

to �t = 5 × 10−4), and changes to both the azimuthal circulation and viscous torque on
the sphere, up to Ωt = 5, were below 0.1 %.

The velocity and vorticity fields, at a Reynolds number of Re = R2Ω/ν = 1000, are
provided in figure 16, and a transient animation is provided in supplementary movie 3. The
initial creation and diffusion of vorticity occurs in a manner similar to the Stokes flow,
with the impulsive creation of flux loops, passing through both solid and fluid regions.
Following the initial creation of tangential vorticity, positive azimuthal vorticity (ωφ) is
continually created on the boundary, while negative azimuthal vorticity is generated by
vortex tilting, just outside the boundary layer. The layers of opposite-signed vorticity on
the boundary induce a tangential flow (uθ ) towards the equator. The tangential velocity
field carries azimuthal vorticity towards the equator, where it encounters opposite-signed
azimuthal vorticity from the lower boundary layer. The subsequent boundary layer
collision produces a pair of counter-rotating vortices, above and below the equator. The
vortex pair induces a radial jet flow, which carries both momentum and vorticity away
from the sphere.

The dynamics of azimuthal vorticity can be investigated through a control surface
analysis ((2.2)). For the control surface, A, in figure 17(a), the balance of azimuthal
circulation is

dΓφ

dt
= d

dt

(∫
A

ωφdA
)

= Fvt. + Fdcy. + Fgen., (4.11a)

Fvt. =
∫

eqt.
−uφωz dx +

∫
sph.

−uφ(n̂ · ω) ds, (4.11b)

Fdcy. =
∫

eqt.
−ν

∂ωφ

∂z
dx +

∫
ax.

−2ν
∂ωφ

∂x
dz, (4.11c)

Fgen. =
∫

sph.

n̂ × (∇ × ω) ds. (4.11d)

The boundaries of A are: sph., the surface of the sphere; eqt., the equatorial axis (z = 0);
and ax., the symmetry axis (x = 0). The contributions to the total azimuthal circulation
include the effects of vortex tilting (Fvt.), viscous annihilation on the equatorial and
symmetry axes (Fdcy.) and the creation of vorticity on the solid boundary (Fgen.).

The time history of Γφ , as well as the contributions to the circulation balance from
each of the boundary fluxes, is provided in figure 18. The azimuthal circulation in A is
negative, and the magnitude of negative circulation increases throughout the time period
considered. The circulation balance is dominated by the creation of negative circulation
by vortex tilting (Fvt.), which is stronger than the generation of positive circulation
on the boundary (Fgen.). The intensity of vortex tilting increases during the boundary
layer collision (τ ≈ 5), with the largest rate-of-change of circulation occurring during
this collision. The viscous annihilation of vorticity (Fdcy.) is only significant after the
boundary layer collision, as opposite-signed vorticities from the upper and lower vortices
cross-annihilate on the equatorial axis.

While the effects of vortex tilting are represented as a boundary flux (Fvt.), vortex tilting
is usually considered to be a local effect occurring in the fluid interior (Kolár 2003).
Referring to the sketch in figure 17(b), the boundary fluxes in Fvt. ((4.11b)) represent the
rate of advection of vortex lines in the azimuthal direction, across the outer boundary of A
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Figure 16. Contours of azimuthal velocity (a,c,e), and azimuthal vorticity (b,d, f ), as well as a vector plot
of the in-plane velocity (a,c,e), and the projection of vortex lines in the x–z plane, computed as contours
of constant ξ = 2πxuφ (b,d, f ). Visualisations are provided at a range of dimensionless flow-times, τ = Ωt.
Velocity vectors are displayed on a coarse grid, and are not representative of the mesh used for numerical
simulation.

(see § 2.2). Each vortex line enters A through the boundary of the sphere and exits along
the equatorial plane. The negative value of Fvt. indicates that the rate of transport along
the sphere is greater than the rate of transport along the equator, so that the flux of vortex
lines (negative azimuthal circulation) in A must be increasing.

An expression for the boundary vorticity flux is obtained from (3.13):

σ = ∂uφ

∂t
eθ +

[
u2
φ

R tan θ
− 1

ρR
∂p
∂θ

]
eφ. (4.12)

The first term describes the impulsive creation of tangential vorticity during the initial
rotation of the sphere. The remaining two terms describe the continuous generation of
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Vorticity generation in 3D: Lyman’s flux

(a) (b)

ax.

sph.

eqt.

–uφωz

–uφ(ω · n̂)

A

Figure 17. (a) The control surface A, used to compute the total azimuthal circulation in (4.11a). (b) Illustration
of the various terms in Fvt. Each vortex line enters A through the sphere, and leaves along the equatorial
axis. The generation of negative azimuthal vorticity by vortex tilting is related to the condition that the rate of
advection of vortex lines across A, in the azimuthal direction, is greater on the sphere than on the equatorial
axis.
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/
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D
)

(a) (b)

Figure 18. (a) Time history of azimuthal circulation in the upper quadrant of the x–z plane, and (b)
contributions of each flux term in (4.11a) to the total circulation balance: Fvt., the effects of vortex tilting;
Fgen., the generation of vorticity on the surface of the sphere; and Fdcy., the decay of vorticity due to viscous
cross-annihilation. σp is the contribution of pressure gradients to Fgen..

azimuthal vorticity, by pressure gradients (∂p/∂θ ) and centripetal acceleration (u2
φ/R).

From figure 18, pressure gradients (σp) provide only a small contribution to the boundary
vorticity flux, and most of the azimuthal circulation is created by the centripetal
acceleration. Points on the solid body undergo circular motion, with a (tangential
component of) centripetal acceleration equal to u2

φ/(R tan θ). In the absence of viscous
forces, boundary fluid elements would suffer a centrifugal acceleration towards the
equator, generating azimuthal circulation in the interface. Circulation generated in this
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manner is immediately diffused into the fluid by the viscous forces which enforce the
no-slip condition.

The dynamics of azimuthal vorticity has been expressed as a two-dimensional
conservation law ((4.11a)), using Lyman’s definition of the boundary vorticity flux.
Under Lighthill’s definition, azimuthal vorticity may diffuse in the out-of-plane direction,
requiring a fully three-dimensional description. Owing to axial symmetry, azimuthal
vorticity is essentially a two-dimensional field, and the two-dimensional description
afforded by Lyman’s flux is clearly a more convenient representation.

4.2. Flow over a translating sphere
Flow over a translating sphere is examined in this section. Lyman’s flux provides a more
convenient description of vorticity creation, as the boundary flux can be computed directly
from the surface pressure distribution. Moreover, Lyman’s flux provides a powerful
description of three-dimensional wake dynamics, where the evolution of vortical structures
in the wake can be understood by considering the fluxes of vorticity in the two-dimensional
symmetry plane.

The flow over a sphere has been extensively studied, and a comprehensive review is
provided by Tiwari et al. (2020). Three Reynolds numbers are considered here, Re =
UD/ν = 125, 250 and 300, corresponding to the first three wake modes: the axisymmetric
regime (20 < Re < 210), the steady planar symmetric mode (210 < Re < 270) and the
symmetric vortex shedding regime (270 < Re < 800). These wake modes have previously
been discussed in detail by Johnson & Patel (1999).

The results presented in this section were obtained numerically, using the commercial
finite-volume software ANSYS Fluent. These results display both qualitative and
quantitative agreement with Johnson & Patel (1999), and adequate grid resolution was
confirmed by running simulations with two separate grid resolutions (≈4 × 104 and
≈3 × 105 elements, on a two-dimensional mesh, were used for the Re = 125 flow;
≈2 × 106 and ≈9 × 106 elements were used for the Re = 250 case). In each case, the
lift and drag coefficients were found to vary by less than 1.8 % between the coarse and
fine grids. The transient simulation at Re = 300 was performed on the ≈2 × 106 element
grid.

4.2.1. Axisymmetric wake mode – Re = 125
The axisymmetric wake mode occurs for Reynolds numbers below Re = 210. Referring
to the cylindrical coordinate system in figure 12(b), velocity vectors are confined to
the r–x plane, and the only non-zero vorticity component is the azimuthal vorticity,
ωφ . The steady-state vorticity field, along with velocity streamlines, is provided in
figure 19, at Re = 125. Negative vorticity is created near the front of the sphere and is
transported downstream by advection. A small quantity of positive vorticity is generated
behind the sphere; however, it is almost immediately eliminated by cross-annihilation
with the surrounding negative vorticity. The intensity of vorticity in the wake decreases
downstream of the sphere, due to the cross-annihilation of opposite-signed vorticities from
each side of the symmetry axis. The cross annihilation process is analogous to that at a
two-dimensional ‘O-’point (§ 2.3), as vortex lines are closed loops orbiting the symmetry
axis.

For the present flow, Lyman’s flux allows the vorticity creation rate to be determined
directly from the surface pressure isobars: σ is aligned in the direction of the isobars
and is proportional to the pressure gradient. As illustrated in figure 20, surface isobars,
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Vorticity generation in 3D: Lyman’s flux
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Figure 19. Contour plot of azimuthal vorticity (top) and streamlines (bottom) for steady flow over a sphere at
Re = 125.
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(c)

Figure 20. Contour plots of (a) surface pressure, and (b) boundary vorticity magnitude, on the surface of the
sphere, at Re = 125. Vectors indicate (a) the boundary vorticity flux, and (b) the boundary vorticity, along with
representative vorticity lines on the surface. (c) gives the distributions of boundary vorticity, and boundary
vorticity flux, on the surface of the sphere, where θ = sin−1(−r/x) is the polar angle.

and hence the boundary vorticity flux, are aligned in the azimuthal direction, and only
azimuthal vorticity is created on the boundary. The strong negative pressure gradient near
the front of the sphere produces a strong flux of negative vorticity in this region, while a
weaker flux of positive vorticity occurs in the adverse pressure gradient behind the sphere.
Corresponding trends are observed in the boundary vorticity profile (figure 20b), where
intense negative vorticity is located near the front of the sphere and weak positive vorticity
is located at the rear.

Lyman’s flux also describes the transport of azimuthal vorticity, ωφ , in terms of fluxes
acting in the r–x plane. Referring to figure 21(a), the net flux of vorticity in the streamwise
direction is denoted Fx(x). As flow is steady, the net flux into any closed control volume
is zero, and the variation in Fx(x) in the streamwise direction is balanced by either the
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Generation of positive azimuthal vorticity
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azimuthal vorticity

Advection of azimuthal vorticity

Diffusive annihilation of vorticity

on the sysmmetry axis

Generation of negative vorticity

on the sphere’s surface

ur

ux

σθ =  –1/ρ(∂p/∂s) 

σθ =  –2v ∂ωφ/∂r 

Fx (x) = ∫0
∞ êx ∙ J ∙ êθ dr

= ∫0
∞ uxωθ – v(∂ωθ/∂x) dr

r

x

(a)

(b)

Figure 21. (a) A schematic illustration of vorticity transport in the x–r plane. Fx(x) is the net flux of ωφ in the
streamwise direction, while σφ gives the rate of generation of vorticity on the sphere, and the rate of viscous
annihilation on the symmetry axis. (b) The streamwise distribution of streamwise vorticity flux, Fx(x).

creation of vorticity on the sphere or the viscous annihilation of vorticity on the symmetry
axis.

The streamwise distribution of Fx(x) is plotted in figure 21(b). Over the surface of the
sphere (|x|/D < 0.5), gradients in Fx are due to the boundary vorticity flux,

dFx

dx
= [n̂ × (∇ × ω)] · êφ

∂s
∂x

= 1
ρ

∂ps

∂s
∂s
∂x

= 1
ρ

∂ps

∂x
, (4.13)

where s is an arc-length parametrisation of the sphere, and ps is the pressure on the surface.
The generation of negative vorticity at the front of the sphere increases Fx, while the
generation of positive vorticity behind the sphere produces a small decrease in Fx.

When |x|/D > 0.5, the variation in Fx is due to the viscous cross-annihilation of
vorticity on the symmetry axis. The flux of vorticity across the symmetry axis is

dFx

dx
= −2ν

∂ωθ

∂r
, (4.14)

which acts to decrease the streamwise vorticity flux downstream of the sphere, as
vortex loops are annihilated by cross-diffusion on the symmetry axis. Analogous to the
annihilation of flux at a two-dimensional ‘O’-point, opposite-signed vorticities from above
and below the symmetry plane are cross-annihilated, reducing the total circulation orbiting
the symmetry axis.

The analysis in this section demonstrates two advantages of Lyman’s definition of the
vorticity flux. First, the vorticity creation rate on a solid boundary can be determined
directly from the distribution of surface pressure. Second, Lyman’s definition is easily
applied to curvilinear coordinate systems, by using the surface-integral formulation of
the vorticity transport equation. This allows, for example, a direct measure of the viscous
annihilation of vortex loops, which is not readily afforded by Lighthill’s definition.
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Vorticity generation in 3D: Lyman’s flux
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Figure 22. (a) Two streamwise-oriented vortices in the wake behind a sphere at Re = 250, visualised using
the λ2 criterion. (b) Isosurfaces of streamwise vorticity: ωx/(U/D) = 0.3 (red), and ωx/(U/D) = −0.1 (blue),
as well as representative vortex lines.

4.2.2. Planar steady wake – Re = 250
The planar steady wake mode occurs at Reynolds numbers in the range 210 < Re < 270.
As illustrated in figure 22(a), the dominant wake structure is a pair of streamwise-oriented
vortices. These structures are visualised using the λ2 criterion (Jeong & Hussain 1995),
consistent with previous numerical studies (Johnson & Patel 1999; Gushchin et al. 2002;
Gushchin & Matyushin 2006). While the λ2 criterion is used to visualise vortical structures
in the wake, the full vorticity field must be considered when interpreting the dynamical
evolution of these structures (Bernard 2011, 2019). By using Lyman’s definition of the
vorticity flux, key aspects of the wake dynamics can be understood by considering the
vorticity fluxes in the two-dimensional symmetry plane.

The vortices in figure 22(a) are essentially composed of streamwise vorticity
(Thompson, Leweke & Provansal 2001), as illustrated in figure 22(b). The left-hand
(z > 0) vortex contains positive streamwise vorticity, while the right-hand vortex contains
negative vorticity. The outer-wake region also contains some streamwise vorticity, of
opposite sign to the main vortex. While some streamwise vorticity is created on the sphere,
most of the streamwise vorticity in the wake is created by the tilting of spanwise vorticity
(ωy or ωz). In figure 22(b), vorticity loops shed from the sphere become tilted in the
near-wake region, and the streamwise component of vorticity in these loops is responsible
for the streamwise vortices (Thompson et al. 2001).

Vortex lines near the sphere in figure 22(b) are nearly vertical, indicating that the
generation of spanwise-oriented vorticity (ωy,ωz) is much stronger than the generation
of streamwise vorticity. The pressure contours and vortex lines plotted in figure 23(a,b)
show that near the front of the sphere, the pressure field is nearly axisymmetric. This is
the region with the strongest pressure gradients, and where most of the vorticity in the
wake is generated. Thus, most of the vortex loops that separate from the surface of the
sphere are initially aligned nearly perpendicular to the flow direction and contain little
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Figure 23. Colour contours of (a) surface pressure, and (b) vorticity magnitude. Pressure isobars are plotted
in (a), while surface vortex lines are included in (b). Vectors in (a,b) are of the boundary vorticity flux (σ ) and
vorticity (ω), respectively.
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Figure 24. Colour contours of spanwise-oriented vorticity, ωz, as well as a vector plot and streamlines of the
velocity field, in the symmetry plane (z = 0), for flow past a sphere at Re = 250.

streamwise vorticity. However, the pressure field at the rear of the sphere shows clear loss
of axial symmetry. Pressure contours are tilted, and some streamwise vorticity is generated
behind the sphere. Surface vortex lines behind the sphere are also tilted, and there is some
streamwise vorticity, concentrated towards the rear surface of the sphere.

A contour plot of vorticity in the symmetry plane, along with streamlines and velocity
vectors, is presented in figure 24. The recirculation region is not symmetric, with the
lower recirculation region being larger, and closer to the sphere. The lower recirculation
entrains vorticity into the near wake to a greater extent than the upper recirculation, and
the recirculating region behind the sphere contains a greater quantity of positive vorticity.

Using Lyman’s flux, many important aspects of the three-dimensional wake dynamics
can be understood by considering the fluxes of vorticity in the symmetry plane. The net
flux of spanwise vorticity (ωz) in the downstream direction, Fx(x), is defined in precisely
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Vorticity generation in 3D: Lyman’s flux

x

Ax(x) z = 0

sph.

sym. cx

uxωz

uxωz

Ax (x + cxt)Ax (x)

(a) (b)

Figure 25. (a) Reference surface, Ax, for computing the total streamwise circulation in each vortex. In the
wake, only fluxes across the symmetry plane boundary (z = 0) contribute to the vorticity balance. When
−0.5 < x/D < 0.5, the circulation balance includes fluxes across the symmetry plane, and across the surface
of the sphere. (b) Schematic illustration of (4.18), when F∗

x < 0. The rate of transfer of the upper portion of
vortex loops through Ax exceeds the rate of transfer of the lower portion, indicating the tilting of vortex lines
and the generation of streamwise vorticity.

the manner done for axisymmetric flow:

Fx(x) =
∫ ∞

−∞

[
uxωz − ν

(
∂ωz

∂x
− ∂ωx

∂z

)]
dy. (4.15)

As flow is steady, Fx is zero at each streamwise location. However, opposing contributions
to Fx from regions of positive (F+

x ) and negative (F−
x ) vorticity decrease in the spanwise

direction, due to the viscous cross-annihilation of opposite-signed vorticities on the line
ωz = 0,

∂F+
x

∂x
= −∂F−

x

∂x
= ν

(
∂ωz

∂y
− ∂ωy

∂z

)∣∣∣∣
ωz=0

. (4.16)

As in the axisymmetric wake, this represents the viscous annihilation of closed vortex
loops, and Lyman’s flux provides a direct measure of the rate of annihilation. The general
trends in both F−

x and F+
x are the same as for the axisymmetric flow and are not repeated

here.
The generation of streamwise vorticity by vortex tilting can also be described

by vorticity fluxes in the symmetry plane. Consider the reference surface, Ax(x),
in figure 25(a), which is orthogonal to the streamwise direction and comprises the
semi-infinite plane z ≥ 0. The streamwise circulation in Ax,

Iωx =
∫

Ax

ωx dA, (4.17)

which is plotted in figure 26(a), indicates the strength of the streamwise vortices at each
streamwise location. Iωx increases slightly between x/D = −0.5 and x/D = 0.5, due to
creation of vorticity on the sphere’s surface. The sharp rise in Iωx behind the sphere is due
to vortex tilting in the near-wake region, and the gradual decay of Iωx in the wake is due to
the viscous cross-annihilation of streamwise vorticity on the symmetry plane.
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Figure 26. The streamwise distribution of (a) the streamwise circulation, Iωx , and (b) the vortex tilting fluxes,
F∗

x . The vertical dotted line indicates the maximum downstream extent of the sphere. Various terms in (4.20)
are illustrated for |x|/D < 0.5, while the balance of fluxes in (4.18) are provided for x/D > 0.5, including the
contributions to F∗

x from both viscous (F∗
ν ) and advective (F∗

u ) effects.

As flow is steady, the rate of change of Iωx in a stationary surface is zero. Instead, the
rate of change of circulation in a surface travelling downstream is considered,

d
dt

(
Iωx(x + cxt)

) = cx
dIωx

dx
= −

∫ ∞

−∞

[
(ux − cx)ωz − ν

(
∂ωz

∂x
− ∂ωx

∂z

)]
dy = −F∗

x ,

(4.18)
where cx is a mean advection velocity, weighted by the spanwise vorticity magnitude,

cx =
∫ ∞

−∞
ux|ωz| dy/

∫ ∞

−∞
|ωz| dy. (4.19)

Equation (4.18) has a simple physical interpretation. F∗
x is the net flux of spanwise vorticity

in the streamwise direction, computed in a reference frame travelling downstream with
velocity cx. When F∗

x < 0, negative spanwise vorticity is transported downstream of x +
cxt more rapidly than positive spanwise vorticity. As illustrated in figure 25(b), this causes
vortex loops to become tilted in the downstream direction, generating streamwise vorticity.
Of course, equal quantities of opposite-signed streamwise vorticity are created on each side
of the symmetry plane, and no net creation of vorticity occurs.

The distribution of F∗
x with streamwise location is presented in figure 26(b). In order

to capture the balance between the generation of streamwise vorticity on the sphere and
the downstream transport, we have used cx = 0 between x/D = −0.5 and x/D = 0.5. The
balance of streamwise vorticity reduces to

dIωx

dt
= −

∫
symm

[
uxωz − ν

(
∂ωz

∂x
− ∂ωx

∂z

)]
dy +

∫
sphere

σx dy = 0, (4.20)

and the generation of streamwise vorticity on the solid boundary is exactly balanced by
the transport fluxes, which include the effects of diffusion, advection and vortex tilting.

For x/D > 0.5, F∗
x gives the rate of change of Iωx , according to (4.18). The contributions

to F∗
x from advection (Fu) and viscosity (Fν) are also indicated in figure 26(a). Vortex

tilting, which is associated with the advective fluxes, is responsible for most of the
streamwise vorticity in the wake. Vortex tilting is strongest in the near-wake region,
between x/D = 0.5 and x/D = 2, which suggests that the formation of streamwise vortices
can be attributed to the recirculation region in the near wake. For x/D > 2, F∗

x is almost
entirely due to viscous fluxes, which reduce the magnitude of streamwise vorticity as
opposite-signed vorticities from each vortex are cross-annihilated on the symmetry plane.
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Vorticity generation in 3D: Lyman’s flux

By using Lyman’s definition of the boundary vorticity flux, vorticity transport has been
expressed in terms of fluxes acting in the symmetry plane, affording an elegant description
of the wake dynamics. Tangential pressure gradients on the surface of the sphere generate
closed vorticity loops, which are nearly perpendicular to the free-stream flow. These
vorticity loops are carried downstream by advection; however, the lower portion of these
loops are entrained into the recirculation region to a greater extent than the upper portions
(figure 24), and are impeded from travelling downstream. As a result, vortex lines become
tilted in the streamwise direction (figure 25), generating the streamwise vorticity which
comprise the wake vortices.

4.2.3. Vortex shedding mode – Re = 300
The wake becomes unsteady above Re = 270, and, by Re = 300, transitions to the vortex
shedding mode. As illustrated in figure 27(a), alternately-oriented hairpin vortices are
periodically shed from the sphere. The isosurfaces of streamwise (b) and spanwise (c)
vorticity, shown in figure 27, reveal that the vortex heads are regions of concentrated
spanwise vorticity (ωz), while the vortex legs are regions of counter-rotating streamwise
vorticity (ωx). The heads of the upper vortices comprise negative spanwise vorticity, while
the lower vortex heads contain positive spanwise vorticity. The legs of the upper vortices
comprise spanwise vorticity from the inner wake, which is positive for z > 0 and negative
for z < 0. The legs of the lower vortices contain spanwise vorticity from the outer wake,
which is of opposite orientation to the upper vortices.

The vortex formation process in the near wake can be interpreted by considering the
dynamics of vorticity in the symmetry plane. Streamlines and vorticity contours are
provided in figure 28, along with streamwise distributions of the mean spanwise vorticity,

Iωz =
∫ y=∞

y=−∞
ωz dy, (4.21)

vorticity transport (Fx) and vortex tilting (F∗
x ) fluxes. The upper vortices, P1 and P2, are

identified as regions of elevated negative Iωx , while the lower vortices, S1 and S2, are
concentrations of positive Iωx .

The upper vortices form from the periodic shedding of the upper recirculation bubble.
At φ = 0, a new recirculation, P2, is beginning to form, while P1 has been shed into
the wake. Between φ = 0 and φ = π, P2 remains attached to the sphere and grows in
magnitude. During this process, Fx is negative upstream of P2 and positive downstream of
P2 (figure 28b), indicating that negative vorticity is rapidly drawn into P2 from upstream,
and accumulates inside the recirculation region. By φ = 3π/2, P2 is shed into the wake.
Fx is approximately proportional to Iωz , indicating the advection of P2 downstream, rather
than the accumulation of vorticity in the vortex head.

While P2 is developing, between φ = 0 and φ = π, a concentration of positive vorticity,
S1, is shed into the wake. This appears to be due to reduced intake of positive vorticity
into the lower recirculation bubble, producing a weaker recirculation region and an
elevated concentration of spanwise vorticity in the outer wake. This is consistent with
the observation that the legs of the lower vortices are formed from outer-wake vorticity.

The vortex lines in figure 27(b) demonstrate that vortex formation is associated with the
alternate tilting of vortex loops in the upstream and downstream directions. As illustrated
in figure 29, during the formation of the upper vortex head, the elevated flux of negative
vorticity tilts vortex loops forwards, generating positive streamwise vorticity (the legs of
the upper vortex). Similarly, vortex loops are tilted in the opposite direction during the
formation of the lower vortices, creating negative streamwise vorticity. This is supported
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Figure 27. Instantaneous visualisations of the wake behind a sphere at Re = 300. (a) Isosurfaces of λ2 = 0,
(b) Isosurfaces of streamwise vorticity, as well as representative vortex lines, and (c) isosurfaces of spanwise
vorticity (ωz). Opaque isosurfaces in (c) correspond to ωz/(UD) = ±0.3, while transparent isosurfaces are for
ωz/UD = ±0.05.

by the vortex tilting fluxes, F∗
x (figure 28), which demonstrate that the generation of

positive streamwise vorticity occurs behind the primary vortices (P1, P2), while the
generation of negative streamwise vorticity occurs behind S1.

In this section, vorticity dynamics has been used to interpret the flow over a translating
sphere. While analysis based on vortex visualisation methods alone, such as Gushchin &
Matyushin (2006), provides a detailed qualitative description of the vortical structures in
the wake, either vorticity or momentum considerations are required to understand their
dynamical evolution. Lyman’s definition of the vorticity flux allows key features of the
flow to be understood by considering the fluxes of vorticity in the symmetry plane alone,
providing a clear and elegant dynamical interpretation of the motion.

5. Conclusion

Vorticity dynamics provides a powerful framework for understanding the behaviour
of various flows, and often provides a deeper understanding of flow behaviour than
momentum considerations alone. While Lighthill’s original definition of the boundary
vorticity flux can provide insight into the generation and diffusion of vorticity, Lyman’s
alternative definition offers several compelling advantages. First, Lyman’s definition more
clearly demonstrates the kinematic relationship between vorticity and velocity: Lyman’s
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Figure 28. Colour contours of spanwise vorticity and velocity streamlines (top), and streamwise distributions
of vorticity and vorticity fluxes in the symmetry plane (lower), over one period of vortex shedding. φ is the
temporal phase angle, measured from the point of minimum lift coefficient (Johnson & Patel (1999) define φ

from the point of maximum lift).

Primary vortex head(a) (b)

Secondary vortex head

uxωz

uxωz

Figure 29. Schematic illustration of the generation of hairpin vortex structures. (a) Rapid shedding of negative
vorticity from the upper wake produces the primary vortex head, as well as tilting vortex lines forwards,
generating positive streamwise vorticity. (b) Rapid shedding of positive vorticity from the lower wake generates
the secondary vortex head, and tilts vortex loops backwards, generating negative streamwise vorticity in the legs
of this vortex.

flux is equal to the tangential viscous acceleration of boundary fluid elements, and this
provides a direct link between the dynamics of vorticity and the dynamics of linear
momentum.
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Moreover, Lyman’s definition also offers a simpler description of the generation of
vorticity on a solid boundary, where the vorticity creation rate is determined by tangential
pressure gradients, body forces and the acceleration of the solid boundary, and is
independent of viscosity. This allows Morton’s (1984) inviscid description of vorticity
generation to be applied directly to three-dimensional flows, providing an intuitive
conceptual model of the vorticity generation process.

Lyman’s definition of the vorticity flux can also be related to the kinematic condition
that vortex lines do not end inside the fluid. In vortex reconnection, Lyman’s flux ensures
that the loss of circulation from the symmetry plane is exactly balanced by the gain of
circulation in the dividing plane, so that the cutting and reconnection of vortex lines are
treated as a single process. Moreover, the generation of tangential vorticity on a rotating
solid boundary is associated with the diffusion of normal vorticity along the surface, and
this ensures that vortex lines do not end on the boundary. While Lighthill’s definition can
be used to describe these flows, it does not clearly illustrate how the kinematic condition
on vortex lines is maintained.

Finally, Lyman’s flux allows key features of the dynamics of three-dimensional flows
to be understood by considering the fluxes of vorticity in an appropriate two-dimensional
reference surface. Both the generation of streamwise vortical structures by vortex tilting
and the viscous cross-annihilation of vorticity in the wake behind a sphere can be described
and quantified by considering the fluxes of vorticity acting in the symmetry plane. The
evolution of coherent vortical structures in the wake, identified by vortex visualisation
techniques, cannot be understood without recourse to vorticity dynamics, and Lyman’s
definition of the vorticity flux provides an elegant interpretation of the dynamics of these
structures.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.179.
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Appendix A. Derivation of (2.2)

Consider the rate of change of circulation contained in an arbitrary reference surface,

dΓ

dt
= d

dt

∫
S
ω · dS = d

dt

∮
C

u · ds, (A1)

where C is the boundary curve of S, as illustrated in figure 1. By parametrising the
boundary curve, C = y(s′, t), the derivative may be taken inside the second integral,

d
dt

∮
C

u · ds =
∮

C

∂u
∂t

∣∣∣∣
s′

· ds +
∮

C
u · ∂2y

∂t∂s′ ds′ =
∮

C

∂u
∂t

∣∣∣∣
s′

· ds +
∮

C
u · ∂vb

∂s
ds, (A2)
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where vb = ∂y/∂t is the velocity of the boundary curve. Using the momentum equation,
the first term on the right-hand side of (A2) becomes∮

C

∂u
∂t

∣∣∣∣
s′

· ds =
∮

C

[
(vb − u) · ∇u

]
· ds +

∮
C

[−ν∇ × ω] · ds, (A3)

since the partial derivative is with respect to a moving frame. The advection term can be
replaced by the Lamb vector,∮

C
[u · ∇u] · ds =

∮
C
(ω × u) · ds, (A4)

while the remaining terms containing vb in (A2) and (A3) can be simplified:∮
C

[
vb · ∇u · t̂ + t̂ · ∇vb · u

]
ds =

∮
C

[
vb · ∇u + (∇vb) · u

]
· ds. (A5)

After using the product rule on the final term, we obtain the following expression:∮
C

[
vb · ∇u + (∇vb) · u

]
· ds =

∮
C

[
vb · ∇u − (∇u) · vb

]
· ds =

∮
C
(ω × vb) · ds.

(A6)

Finally, on substituting these results into (A1), we obtain

dΓ

dt
=

∮
C

[
ω × (vb − u) − ν∇ × ω

]
· ds, (A7)

and by using a vector identity, Lyman’s flux appears in this expression:

dΓ

dt
=

∮
C

[
n̂ ×

[
(u − vb) × ω − ν(∇ × ω)

]]
· ŝ ds. (A8)
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