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Abstract A hybrid of correlation and vector averaging is

introduced to capitalise on the advantages of each process.

An extensive series of Monte Carlo simulations have been

conducted to investigate hybrid averaging and evaluate it

against both vector and correlation averaging. The simula-

tions show that hybrid averaging improves the measurement

accuracy over both correlation and vector averaging over a

wide range of imaging conditions. The simulations are

validated by applying hybrid averaging to experimental

micro- and macro-flows. In pulsatile conditions, correlation

averaging yields an averaged correlation function that is

multi-modal, which can result in unpredictable measure-

ments. A Monte Carlo simulation shows the benefits of hybrid

averaging over correlation averaging in such conditions. This

has been experimentally validated on the unsteady wake

behind a shedding circular cylinder at Re = 98.

List of symbols

Roman

En Image signal-to-noise ratio

M Total number of image pairs within an image series

N Number of image pairs in a correlation average

ppw Particles per sampling window

Q Number of image pairs in a vector average

r Vector validation threshold

SNR Signal-to-noise ratio

U Magnitude of the velocity components, u and v

W Sampling window size

V Volumetric flow rate

Greek

q1 Average number of particle image pairs in a

sampling window

qeffective Apparent number of particle image pairs

rPIV Standard deviation of the vector error in pixels

lPIV Mean of the vector error in pixels

1 Introduction

Significant improvements in the measurement accuracy

and reliability of PIV have continued over the last two

decades (Adrian 2005). Typical sources of PIV measure-

ment error include correlation errors from inadequate

seeding, loss of image pairs and inadequate particle image

pairs (Keane and Adrian 1990, 1992), false correlations

from unmatched particle pairs (Westerweel 1997), peak

finding schemes (Lourenco and Krothapalli 1995; Huang

et al. 1997; Roesgen 2003), velocity gradients (Keane and

Adrian 1990) and non-uniform image seeding (Westerweel

1997). Recent advances in studying flow within
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microscopic devices using microscopic particle image

velocimetry (l PIV) (Santiago et al. 1998; Meinhart et al.

1999) have emphasised the importance of additional

sources of errors caused by out-of-focus particles (Olsen

and Adrian 2000), the depth of correlation (Fouras et al.

2009) and Brownian motion (Olsen and Adrian 2000).

Application of l PIV (Nesbitt et al. 2009) and X-ray PIV

(Fouras et al. 2007; Dubsky et al. 2010) to biomedical

flows have gained popularity over the past decade. How-

ever, the high background image noise inherent in

biomedical images reduces the precision of l PIV mea-

surements (Tiang and Qui 2002).

Image noise contributes to noisy artefacts in the cross-

correlation map, and the exact displacement information is

obscured. The displacement is measured by determining the

integer location of the maximum signal (peak detection)

and interpolating within the neighbouring correlation values

to estimate the exact location of the signal (peak interpo-

lation) with sub-pixel accuracy (Lourenco and Krothapalli

1995; Willert and Gharib 1991). In cases of very high noise

in the cross-correlation map, the displacement peak is hid-

den amongst random noise peaks (Keane and Adrian 1992;

Meinhart et al. 2000). In such cases, PIV interrogation is

likely to return a random value – or outlier (Willert and

Gharib 1991). Currently, a popular approach to reduce the

effects of outliers is to use vector validation algorithms

(Westerweel and Scarano 2005). Vector validation algo-

rithms, however, rely on neighbouring vectors for valida-

tion, a process that may be compromised in cases with high

correlation noise. Furthermore, vectors are validated based

on a detection threshold addressing only obvious devia-

tions, such as peak detection errors, while the vector errors

on a sub-pixel level (i.e. peak interpolation errors) are

neglected. In cases where time-averaged measurements are

of importance, the effects of outliers may be diminished by

temporal averaging of the vectors.

An obvious approach to reduce correlation errors is to

improve the signal strength of the cross-correlation peak.

Correlation-based correction (Hart 2000) involves multi-

plication of the correlation maps to filter out the noise

anomalies. This technique however can also remove the

maximum displacement signal in a noisy correlation map

and proves ineffective for applications involving high

image noise. Correlation averaging (sometimes referred to

as ensemble averaging) (Meinhart et al. 2000) was origi-

nally developed to reduce the effects of Brownian motion,

low image seeding and low image quality (Wereley and

Meinhart 2010). The process has proven to be more robust

than traditional processes such as vector averaging and

image averaging (Meinhart et al. 2000). Correlation aver-

aging has gained popularity over the years and is the most

commonly used technique for studying micro-scale flows

(Santiago et al. 1998; Wereley and Meinhart 2010) as well

as macro-scale applications (Fouras et al. 2008). Correla-

tion averaging has been used for medical applications

(Nesbitt et al. 2009; Irvine et al. 2008; Poelma et al. 2010)

as well as studying dispersed two-phase flows (Delnoji

et al. 1999) and PIV evaluation at a single pixel (Wester-

weel et al. 2004). Recently, correlation averaging has been

used to improve the robustness of spatially adaptive non-

isotropic algorithms (Theunissen et al. 2007, 2010).

Averaging the cross-correlation map spatially or tempo-

rally, greatly improves the signal-to-noise ratio of the

cross-correlation and enhances peak detection (Meinhart

et al. 2000; Westerweel 2000; Wereley and Meinhart

2010).

Image averaging reduces the signal-to-noise ratio of the

image and introduces noise to the cross-correlation map

(Meinhart et al. 2000; Wereley and Meinhart 2010).

Another image-based technique is image overlapping

(Nguyen et al. 2010), which reduces the effect of out-of-

focus particles in l PIV images by overlapping the maxi-

mum pixel intensities in an image pair on to a single image

pair. The technique is based on the work of Wereley et al.

(2002), which was initially intended as a technique to

increase the seeding density in l PIV images.

A discussion of the most relevant temporal averaging

processes in PIV and their respective error reduction

schemes is presented in Sect. 2. At least one study has

examined correlation averaging (Westerweel et al. 2004);

however, a study of both correlation and vector averaging

to further optimise PIV time-averaging processes has not

been conducted. The authors propose that noise in the

cross-correlation map leads to measurement errors through

two processes: errors through peak detection and errors

through peak interpolation. Correlation averaging improves

the signal-to-noise ratio (SNR) of the cross-correlation map

(Meinhart et al. 2000; Wereley and Meinhart 2010) and

enhances peak detection. However, a common miscon-

ception is that correlation averaging optimises peak inter-

polation errors. The advantages and disadvantages of both

correlation averaging and vector averaging are discussed in

Sect. 2. In Sect. 3, a novel time-averaging algorithm is

introduced that utilises current techniques to optimise the

two different error processes. A Monte Carlo simulation

utilising synthetic images is conducted to evaluate the new

process for steady flow conditions. Recommendations for

optimising time-averaging processes under steady condi-

tions are made in Sect. 4. In Sect. 5, these simulations are

validated by applying the hybrid averaging process

to l PIV data as well as macro-PIV data. A Monte Carlo

simulation is conducted to test existing time-averaging

processes as well as the hybrid averaging method under

pulsatile flow conditions. To validate the synthetic
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simulation, the novel process is applied to experimental

flow behind a circular cylinder.

2 Background

2.1 Vector averaging

In vector averaging, instantaneous measurements are tem-

porally averaged to yield an averaged displacement vector

field (Landreth and Adrian 1990) (Fig. 1a). Since the

decrease in the standard deviation of the measurements

(rPIV) is related to the number of measurements averaged,

Q, as shown in Eq. 1, vector averaging reduces the effects

of interpolation errors on time-averaged measurements

(Fig. 2a).

rPIV /
1
ffiffiffiffi

Q
p ð1Þ

Validating vectors (Westerweel and Scarano 2005) with

respect to the neighbouring vectors can easily detect the

most obvious of measurement deviations; however, the

more subtle measurement errors at a sub-pixel level may

not be identified. Exclusion of outliers from the vector

average improves the accuracy of the vector averaging

algorithm, while small errors do not significantly affect the

time-averaged measurement. Outliers are statistically ran-

dom in nature, and the probability distribution of these

vectors, illustrated in Fig. 2b, has a mean of 0 px, and a

high standard deviation that is a function of sampling

domain geometry (Westerweel 1994). Inclusion of outliers

in the vector average therefore introduces a measurement

bias towards a mean of 0, while the standard deviation of

the measurement increases, as illustrated in Fig. 2b.

A more recent and popular technique for obtaining time-

averaged measurements is correlation averaging (or

ensemble averaging) (Meinhart et al. 2000). Figure 1b

shows a graphical representation of this process. It is rec-

ommended that the keen reader refer to Meinhart et al.

(2000), for a detailed description of the algorithm.

Keane and Adrian (1992) showed that the amplitude of

the averaged cross-correlation map is a function of the in-

plane and out-of-plane loss-of-correlation and the image

density (number of particle image pairs in a sampling

window). Their study (Keane and Adrian 1992) recom-

mended an image seeding density of at least 5–7 particle

image pairs in a sampling window (ppw) to yield a cross-

correlation map with sufficient signal strength for satis-

factory peak detection probability. It was later confirmed

that image seeding higher than 5 ppw produced little

improvement in the PIV displacement error and that for

these high seeding levels, the probability of detecting the

maximum correlation signal is a function of image seeding

density (Westerweel 2000).

2.2 Correlation averaging

A Monte Carlo simulation using synthetic images was

conducted to test the measurement accuracy of the corre-

lation averaging technique as a function of seeding density

and image noise. Since all parameters used for synthetic

image generation, including the exact flow details, are

known, the errors arising from the processing technique

can be determined. Synthetic image series of resolution

1,024 9 1,024 px2 were generated for different flow cases,

with the parameters as shown in Table 1. The PIV data set

used comprises of 1,024 image pairs.

Results for all flow cases were similar, and therefore, for

clarity, only the case for Taylor vortices (Table 1: A) will

be presented and discussed. For a given pair of images, the

average number of particle image pairs in a sampling

window is defined as the instantaneous seeding density, q1.

The effective seeding density, qeffective, is the apparent

number of particle image pairs per window after N number

of correlation averages:

qeffective ¼ q1 � N ð2Þ

White noise was added to the images by generating a

random number with a Gaussian distribution of standard

deviation, r = En% of the maximum pixel intensity. The

particle images have a Gaussian shape with a radius of

2.1 px to reduce the effect of precision errors governed by

the particle image diameter (Willert 1996). The particle

image diameter is defined as the full-width-half-max of the

Gaussian function used to generate the particle image. The

samples of the images (grey values of the pixels) are

sampled at the pixel centre position, i.e. a pixel fill factor of

0. The sampling window size used was 32 9 32 px2. The

common 3-point parabolic fit (Willert and Gharib 1991) is

used to determine the displacement with sub-pixel

accuracy. The instantaneous seeding density, q1, is varied

from q1 ¼ 1
16

ppw to q1 = 16 ppw (Fig. 3a) and the image

noise ratio En is varied from En = 0.05% to En = 70%

(Fig. 3b). Data for noise levels of above En = 50% are not

discussed as the effect of the noise on the correlation map

causes the peak detection to be random and produces

inconclusive results. At extremely high noise levels, the

reader is referred to literature discussing noise reduction

(Westerweel 1997; Nguyen et al. 2010; Wereley et al.

2002). The number of instantaneous cross-correlation

maps, N, included in a correlation average is varied from

N = 1 to N = 1,024 and statistics for the error are

determined.

Figure 3a shows the standard deviation of the PIV error,

rPIV, as a function of qeffective for a range of instantaneous
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Sequence of 
image pairs

Instantaneous
cross-correlation

maps
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Time-averaged

(a)

A B C D M

Sequence of 
image pairs

Instantaneous
cross-correlation

maps

Averaged
cross-correlation

map

Time-averaged

(b)

Fig. 1 Schematic diagrams of current averaging processes. (a) Vector

averaging: instantaneous vectors are evaluated from instantaneous cor-

relation maps and then averaged to yield a time-averaged displacement

vector. (b) Correlation averaging: instantaneous cross-correlation maps

are averaged to yield a single correlation map. This single cross-correlation

map is interrogated to obtain a time-averaged displacement vector

PIVσ

μ~Uexact0

P

Q
Actual measurement
Averaged measurement
w/o outliers

(a)

PIVσ

μ~Uexact0

P

Outliers

Averaged measurement
w/ outliers

μ=Umeas

Increase 
in bias

= __W
2

(b)

Fig. 2 Probability density functions (PDF) for instantaneous and

vector-averaged velocity measurements. (a) Vector averaging reduces

the PIV error with 1=
ffiffiffiffi

Q
p

: Increasing Q reduces the standard deviation

of the measurement velocity PDF, and the mean measurement

converges towards the exact displacement of the particles. (b) Outliers

have a PDF with a mean of 0 and a large standard deviation, which is a

function of the sampling window size, W. As outliers are included in a

vector average, the averaged measurement is biased towards a mean of

0 and the standard deviation is increased
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seeding densities, q1. Increasing qeffective corresponds

directly to increasing the number of correlation averages,

N, as demonstrated by Eq. 2. In Fig. 3a, excellent collapse

of data is achieved by plotting the data as a function of the

effective seeding density. Increasing the effective seeding

density increases the signal strength of the averaged cross-

correlation map resulting in significant reductions in error.

In cases of correlation maps with a low SNR, peak detec-

tion is optimised with the use of correlation averaging

(Meinhart et al. 2000). A secondary trend can also be seen

in Fig. 3a: in general, at any effective seeding density,

lower errors occur when lower instantaneous seeding

densities are used in conjunction with correlation averag-

ing. These higher signal-to-noise ratios are the result of

smaller number of false correlations.

Figure 3b demonstrates the effect of increasing image

noise on rPIV. The relative increase in error is minor for

low levels of image noise which is consistent with the work

on image noise and quantisation levels by Raffel et al.

(2007) and Willert (1996). However, increasing the number

of correlation averages, N, becomes less effective with

Table 1 Details of flow cases

studied
Case Flow type Flow conditions

A Taylor vortices u,v = -12 to 12 px

B Constant flow u = 5 px, v = 0 px

C Low spatial gradient flow u,v = 4 to 5 px

D Pulsatile flow u,v = 5cos(xt) px

E Micro-channel stenosis model V = 0.48 ml/min

F Wake behind a cylinder Re = 66 and Re = 99 (Ng et al. 2011)

ρeffective

σ P
IV

(p
x)

10-1 100 101 102 103 104
10-2

10-1

100

101

ρ1 = 1/16
ρ1 = 1/4
ρ1 = 1
ρ1 = 4
ρ1 = 16

Instantaneous seeding
(a)

ρeffective

σ P
IV

(p
x)

10-1 100 101 102 103 10410-2

10-1

100

101

En = 0.5%
En = 5%
En = 10%
En = 15%
En = 20%
En = 25%
En = 50%

Image noise(b)

Fig. 3 Standard deviation of PIV error (px) as a function of increasing

number of correlation averages, N. a Varying instantaneous seeding

density, q1. The error is plotted against the effective seeding density,

qeffective, where qeffective = q1 9 N. The image noise ratio, En, is 0.5%,

and no post-interrogation vector validation is employed. b Varying

image noise, En. The instantaneous seeding density is low ðq1 ¼ 1
16
Þ:

The error with correlation averaging increases with increasing image

noise

ρeffective

σ P
IV

(p
x)

10
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0
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1
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2
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3

10
4

10-2

10
-1

100
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No validation
r = 2px
r = 1px

Vector validation

Fig. 4 Standard deviation of the PIV error as a function of effective

seeding for different vector validation thresholds, r. Results are shown

for images with a low instantaneous seeding density ðq1 ¼ 1
16
Þ; and

low image noise (En = 0.5%)
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increasing image noise. More correlation averages are

required to average the noise artefacts in the cross-corre-

lation map.

Figure 4 shows the effect of vector validation on rPIV as

the number of correlation averages is increased. Vector

validation greatly enhances the accuracy of correlation

averaging at lower effective seeding densities since the low

seeding contributes to a poor correlation map and higher

number of outliers. As the number of correlation averages is

increased, vector validation has little effect on the mea-

surement accuracy. The vector validation algorithm used in

this analysis is a median level vector validation technique

(Westerweel 1994) where r is the validation threshold (in

pixels). Details of vector validation algorithms are not

discussed here as this work has been covered in detail by

Westerweel and Scarano (2005). For larger qeffective, the

error in Fig. 3 converges to approximately 0.01 px. This

limit has been observed with the 3-point parabolic fit we

have used, in previous literature (Willert and Gharib 1991).

Correlation averaging is ideally suitable for images with

low instantaneous seeding as the algorithm improves the

correlation map signal by increasing the effective seeding

density in the sampling window. This is consistent with the

work of Meinhart et al. (1999, 2000), where correlation

averaging yielded optimal results with approximately

N = 20 correlation averages. Our analysis also confirms

that improving the signal via correlation averaging is

effective; however, this trend diminishes with increasing

image noise. Vector averaging is an effective algorithm if

the signal strength of the instantaneous correlation maps is

adequate. The accuracy of vector averaging is dependent

on the quality of the vectors averaged; therefore, vector

validation improves the measurement reliability (Fig. 2b).

In summary, correlation averaging enhances peak

strength and reduces the percentage of outliers selected

during peak detection by increasing the effective seeding

density within a sampling window. However, improve-

ments to the shape of the peak through correlation aver-

aging, and hence optimisation to peak interpolation, are

inefficient compared to vector averaging. Vector averaging

reduces the measurement standard deviation with increas-

ing number of averages. However, the measurement

accuracy of vector averaging is dependent on the percent-

age of outliers present. The authors propose a new algo-

rithm, hybrid averaging, which uses correlation averaging

followed by vector averaging to obtain time-averaged

measurements; such that both processes in PIV interroga-

tion are optimised.

3 A hybrid averaging technique

A hybrid averaging process that utilises both correlation

and vector averaging algorithms is proposed. The new

algorithm, illustrated in Fig. 5, involves splitting the image

sequence of M image pairs, into Q subsets of N image

pairs. N image pairs are correlation averaged to get

Q averaged displacement measurements. A vector average

of Q measurements yields the time-averaged displacement

measurement.

Fig. 5 Schematic of the hybrid averaging algorithm that uses an

amalgamation of vector averaging and correlation averaging,

N. Instantaneous correlation maps are correlation averaged to yield

Q averaged correlation maps. The vectors from the averaged cross-

correlation map are vector averaged to obtain the time-averaged

measurement. When the number of pairs in a correlation average, N,

is 1, hybrid averaging represents vector averaging. Likewise, N =

M represents correlation averaging
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To optimise the hybrid averaging algorithm, the number

of pairs in a correlation average, N, is varied thus altering

the ratio of correlation averaging to vector averaging,

where this ratio represents the relative optimisation for

either peak detection or peak interpolation. When N = 1,

the hybrid averaging algorithm simply represents vector

averaging. However with N = M, the algorithm averages

all instantaneous correlation map to yield one averaged

correlation map, representing correlation averaging.

Clearly, the interesting region of parameter space is when 1

\ N \ M, where the algorithm uses a hybrid ratio of

correlation averaging to vector averaging to obtain dis-

placement measurements.

To test the new algorithm, synthetic image pairs for a

low spatial gradient flow (Table 1: C) were generated. The

data set consisted of 1,024 image pairs (M). The image

noise ratio En was varied from 0.5% to 50.0%. PIV data

sets for another flow type with a high spatial gradient

(Table 1: A) were tested with the results following similar

trends, and for brevity, these results are not discussed.

Other parameters used for generating the images are

equivalent to the parameters discussed in Sect. 2.2.

Results for a low noise (0.5%) and a high noise (50%)

data set are shown. The error statistics are determined for

each case of hybrid averaging for the different instanta-

neous seeding densities and image noise ratios. Figure 6

shows a plot of the relative accuracy for low noise images

(En = 0.5%) with low seeding ðq1 ¼ 1
16
Þ using hybrid

averaging. The relative accuracy is the difference in the

PIV error obtained through hybrid averaging (rPIV) com-

pared to the PIV error with correlation averaging ((rPIV)c),

expressed as a percentage, as shown in Eq. 3. Thus, posi-

tive values of relative accuracy represent an improvement

in the PIV error relative to correlation averaging. The

relative accuracy is plotted as a function of both the

effective seeding density and the number of pairs in a

correlation average, N, where as discussed previously the

increase in N corresponds to an increase in the effective

seeding density.

Relative accuracy ð%Þ ¼ ðrPIVÞc � rPIV

ðrPIVÞc
� 100 ð3Þ

3.1 Low image noise

Figure 7a shows the relative accuracy as a function of N for

low noise images with instantaneous seeding densities

ranging from 1
16

to 16 ppw. The simulations show that at

very low instantaneous seeding densities ð 1
16
� q1� 1Þ;

correlation averaging (N = 1,024) has superior measure-

ment accuracy over vector averaging (N = 1), which is

consistent with previous findings (Meinhart et al. 2000;

Wereley and Meinhart 2010). However, optimised hybrid

averaging yields a further improvement of 4% compared to

correlation averaging for the low instantaneous seeding

density cases ð 1
16
� q1� 1Þ: When the seeding density is

low, increasing amounts of correlation averaging help

optimise the peak detection error. By subsequently per-

forming vector averaging with hybrid averaging, the peak

interpolation error is further optimised.

When the instantaneous seeding density is high

(q1 C 4), the PIV error is reduced by vector averaging

(N = 1). When there are an adequate number of particles

in a sampling window (Keane and Adrian 1992), no further

optimisation is gained through correlation averaging. The

relative accuracy of vector averaging over correlation

averaging for q1 = 4 is around 4%. However, with

increasing instantaneous seeding density, the relative ben-

efits of vector averaging over correlation averaging

diminish to 2% for q1 = 16. Figure 7b shows the data

plotted in Fig. 7a replotted as a function of the effective

seeding density. The excellent collapse of the data points

illustrates that relative accuracy is strongly dependent on

the effective seeding density. The relative accuracy is

optimised when the effective seeding density is around

seven particles per window. This is in agreement with a

previous study (Keane and Adrian 1992), which recom-

mends at least seven particle image pairs in a sampling

window for an ideal correlation.

Number of pairs in a
correlation average, N

Effective seeding density,ρeffective

R
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u
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)

100 101 102 103

10
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Correlation
averaging

Vector
averaging

Increasing number of vector averages, Q

Increasing number of correlation averages,N

In
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se

d
ac

cu
ra
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Fig. 6 Relative accuracy (percentage relative to correlation averag-

ing) as a function of increasing number of pairs in a correlation

average, N, and the effective seeding density. The image series has a

low seeding density ðq1 ¼ 1
16
Þ; low image noise (En = 0.5%) and

1,024 image pairs. The number of pairs in a correlation average, N, is

varied from 1 (vector averaging) to 1,024 (correlation averaging)
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3.2 High image noise

Figure 8a shows the relative accuracy for hybrid averaging

plotted as a function of N for high noise images with

instantaneous seeding densities ranging from 1 to 16 ppw.

For these high noise cases, only seeding densities of q1 C 1

produce satisfactory conditions for acceptable PIV mea-

surements. For moderate to high seeding densities

(q1 C 1), vector averaging improves the relative PIV

accuracy over correlation averaging. Vector averaging

(N = 1) yields superior measurement accuracy with

improvements in the relative accuracy of up to 40% com-

pared to correlation averaging. The results from Fig. 8a are

plotted as a function of the effective seeding density in

N
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Fig. 7 Hybrid averaging with low image noise. a Relative accuracy

as a function of increasing number of correlation averages, N, for

images with low noise (En = 0.5%). For low and moderate instan-

taneous seeding ð 1
16
� q1� 1Þ; the relative accuracy is improved at

intermediate values of N corresponding to hybrid averaging. For high

seeding densities (q1 C 4), vector averaging optimises the PIV error.

b The same data are now plotted as a function of the effective seeding

density, qeffective. Excellent collapse of the data points is evident with

the optimal effective seeding density being approximately seven

particles per sampling window
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Fig. 8 Hybrid averaging with high image noise. a Relative accuracy

as a function of increasing number of correlation averages, N, for

images with high image noise (En = 50.0%). For cases of moderate to

high instantaneous seeding (q1 C 1), vector averaging yields the most

optimal measurement accuracy over correlation averaging (at least

40%). b The same data are now plotted as a function of the effective

seeding density, qeffective. The data points do not collapse as well as

those observed in the low image noise case (Fig. 7b)
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Fig. 8b. Collapse of the data points indicates a dependence

on the effective seeding density; however, the collapse is

not as tight as for the low noise cases.

3.3 Image oversampling

Image oversampling is a process by which image pairs in a

given sequence of images are oversampled, thereby

increasing the number of vector averages in a hybrid

average. Figure 9 shows the relative accuracy as a function

of the effective seeding density for hybrid averaging with

and without temporal image oversampling. The different

curves represent increasing amounts of oversampling that

increases the number of vector averages by two to sixteen

times. The images used have low seeding and low image

noise. Increasing oversampling reduces the PIV error for

sub-optimal effective seeding densities. This was confirmed

with highly seeded images where temporal image over-

sampling made no improvement over hybrid averaging.

4 Recommendations: steady flows

We have established the mechanisms by which vector

averaging and correlation averaging improve measurement

accuracy. Vector averaging optimises by improving peak

interpolation and correlation averaging by optimising peak

detection. Based on this, we have proposed a new hybrid

averaging process that utilises both vector and correlation

averaging. Below are summarised a few recommendations

in determining the optimal averaging process.

We define three regimes, as shown in Fig. 10, to help

explain these recommendations. These regimes are defined

as a function of the instantaneous seeding density and

image noise.

1. In cases of low image seeding, i.e. when qeffective \ 7

or q1\ 7
M ; it is recommended to use correlation

averaging alone. The low image seeding results in a

poor signal to noise ratio decreasing the detectability

of the signal peak.

2. In cases where there are 7 or more particle image pairs in

a sampling window (Keane and Adrian 1992), no further

optimisation is measurement accuracy is achieved by

optimising for peak detection (correlation averaging). In

this regime, it is recommended to use vector averaging

to determine the averaged velocity field.

3. In cases of moderate seeding density, i.e. when
7
M \q1� 8; hybrid averaging delivers the highest

measurement accuracy. Hybrid averaging is the most

accurate process when there is an effective seeding of

7 particles per window (qeffective = 7).
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vector averaging is the recommended process. For a regime of

parameter space in between the above-mentioned regimes, the novel

hybrid averaging process is the most accurate
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4. Decreasing the size of the data set, M, favours

correlation averaging as the optimal process. This is

denoted by the lines in Fig. 10. Increasing the size of

the data set favours additional vector averages as the

chances of achieving the optimal effective seeding

density of 7 ppw are higher.

5. If the images have high levels of noise and moderate to

high levels of seeding, then it is recommended that

vector averaging is used. PIV measurements in cases

of high image noise and low seeding are not recom-

mended; however, depending on how many frames are

included in the average, hybrid averaging or correla-

tion averaging could be employed.

6. Temporal image oversampling is beneficial to improve

averaging accuracy if the seeding density is inadequate

for hybrid averaging.

7. Consider the use of the sampling window size to obtain

further improvements in measurement accuracy when

using hybrid averaging. In this way, one can vary the

seeding density in a sampling window by varying the

window size.

5 Application to experimental data

5.1 Application to micro-PIV

Hybrid averaging was applied to two different sets of

experimental images, a l PIV flow inside a model of a

stenosis; and a traditional PIV flow behind a circular

cylinder.

A glycerol solution (50% Water/Glycerol) was seeded

with 6-lm fluorescent particles (0.075% solids). The model

of the stenosis is 200 lm 9 6,000 lm, while the stenosed

section is 3,000 lm wide. The flow was set at a flow rate of

V = 0.48 ml/min, using the hydrostatic pressure differen-

tial, Dh; between the fluid levels in the inlet and outlet

reservoirs and verified using a flowmeter (Transonic

TS420). The centre of the micro-channel is illuminated

using a continuous diode-pumped solid-state laser source

(Melles Griot, Wavelength = 532 nm) as shown in Fig. 11.

1,000 image pairs of the flow were captured using a high

speed digital camera at a rate of 200 fps (IDT Y4,

1,016 9 1,016 px2) through a 5 9 NA = 0.15 objective

lens (Leica).

A subset of 512 image pairs was evaluated using hybrid

averaging. The number of image pairs in a correlation

average, N, was varied from N = 1 (vector averaging) to

N = 512 (correlation averaging). Figure 12 shows the

averaged velocity field of the complex flow through the

micro-channel, evaluated with hybrid averaging (N = 4).

The contours represent the vorticity field where the vor-

ticity is calculated using the method specified by Fouras

and Soria (1998).

Typically, a standard method to determine the averaged

displacement would be to correlation average the image

pairs. In our case, we correlation averaged 1,000 image

pairs and assumed this to be the correct result. The relative

PIV error, i.e. the difference in the PIV error between the

CCD

Flow probe

V = 0.48 ml/min

1016 x 1016 CCD Array
Rate = 200 frames/sec
Exp = 1766 μs

5x NA 0.15
Objective Lens

Inlet
Outlet

Nd:YAG

Continuous 
light source

Microchannel 
with optical 
access

Dichroic Mirror

Δh

Fig. 11 Experimental set-up used for the l PIV experiments. The

micro-channel is a complete model of a stenosis, and the flow has a

low Reynolds number (Re � 1)

200 μm

Fig. 12 Hybrid-averaged velocity (vectors) and vorticity field (con-

tours) for the l PIV experiment (Table 1: E). The number of

correlation averages in a pair was 4 image pairs (N = 4). Only every

8th vector in x and 2nd vector in y are shown for the purpose of clarity
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hybrid-averaged measurement and the standard correlation-

averaged measurement (N = 1,000), was determined for

each value of N. The relative accuracy of the PIV error was

calculated using Eq. 3. The image sequences were ana-

lysed separately using different sampling window sizes, W

(recommendation 7). Figure 13 shows the relative accuracy

of hybrid averaging versus the effective seeding density for

two sampling window sizes. Optimised hybrid averaging

(N = 4) is approx. 3% more accurate than correlation

averaging, irrespective of window size. The collapse of the

relative accuracy as a function of qeffective is similar to that

observed in the low noise theoretical simulations (Fig. 7b).

To simulate images with high sensor noise, synthetic

noise with a Poisson distribution was added to the l PIV

image sequence. In similar fashion to the high noise the-

oretical simulations carried out in Sect. 3, vector averaging

(N = 1) improved the measurement accuracy by 86% (not

shown) over standard correlation averaging.

5.2 Application to macro-PIV

The hybrid averaging process was further evaluated via the

application of macro-PIV to the steady wake behind a

circular cylinder. The circular cylinder, placed in a shallow

water table, was used for the simultaneous measurement of

the velocity field and the surface topography (Ng et al.

2011; Fouras et al. 2008).

The wake is steady at a Reynolds number (Re) of 66;

however, since the cylinder is at a shallow depth, the flow

cannot be directly compared to a fully submerged cylinder

wake. The three temporal averaging processes, vector,

correlation and the novel hybrid averaging process, were

applied to determine the averaged velocity and vorticity

fields. The sampling window size was 32 9 32 pixels2,

corresponding to an average instantaneous seeding density

of 1–2 particles per window. The image sequence has low

image noise and consists of 512 image pairs.

Figure 14 shows the averaged measurements evaluated

using the three temporal averaging processes. The vectors

represent the averaged velocity, while the contours repre-

sent the vorticity. As indicated by the smoothness of the

vorticity contours (Fig. 14b), hybrid averaging delivers

superior measurement accuracy over vector averaging

(Fig. 14a), and a subtly more accurate measurement over

correlation averaging (Fig. 14c). This is in close agreement

with the results from the Monte Carlo simulations descri-

bed in Sect. 3 and the recommendations in Fig. 10, for

q1 = 1 ppw and low image noise. Hybrid averaging opti-

mised when N = 8, which corresponds to an effective

seeding density of 7 or more particles per window (Keane

and Adrian 1992).

6 Application to transient flows

6.1 Synthetic Monte Carlo simulation

Correlation averaging has become the standard time-aver-

aging process for various applications of PIV and is pre-

ferred in conditions with low seeding and high noise

(Wereley and Meinhart 2010). However, under some

experimental conditions, such as those found in biological

flows, the flow is not always steady. Although correlation

averaging improves the signal to noise ratio to yield

improved measurements in these conditions (Meinhart

et al. 2000), the transient nature of the flow can lead to

spurious results (Poelma et al. 2010).

Figure 15 shows the effect of using correlation averaging

on pulsatile flow measurements. The averaged cross-corre-

lation function is bimodal due to the transient flow conditions

(Fig. 15a). The resulting displacement measurements are

then biased towards either of the maxima and never towards

the mean signal. The signal peak closest to zero is preferred

as evident on the biased displacement measurements shown

in Fig. 15b. Recently, Poelma and Westerweel (2010)

showed that in cases with time-varying flow, conventional

peak fitting methods are not recommended

Here, we conduct a Monte Carlo simulation to study the

application of current time-averaging processes and hybrid

averaging to pulsatile conditions. Synthetic images were

generated as outlined in Sect. 2.2. The images are based on

a simple oscillatory flow (Eqs. 4, 5) and have low image
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Fig. 13 Relative accuracy as a function of the effective seeding

density for evaluating the averaged measurements of the l PIV flow,

with different sampling window sizes. The evident collapse of the

data points when plotted as a function of the effective seeding density

is similar to that found in the low image noise cases of the Monte

Carlo simulation (Fig. 7b)
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noise (En = 0.5%). The oscillatory flow has an amplitude

of 5 pixels, and the entire image sequence has two time

periods of the oscillation. In this particular case, the flow

follows Eqs. 4 and 5.

u ¼ 3:0þ 5cosðxtÞ ð4Þ
v ¼ 4:0 ð5Þ

Figure 16 shows the relative accuracy (Eq. 3) as a

function of N, for instantaneous seeding densities varying

from 1
16

to 16 particle per window. N was varied from N = 1

(vector averaging) to N = 1,024 (correlation averaging).

The gains in the measurement accuracy over correlation

averaging (N = 1,024) of both hybrid and vector averaging
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Fig. 14 Averaged velocity (vectors) and vorticity (contours) of the

flow behind a cylinder at Re = 66. The averaged measurements were

evaluated using (a) vector averaging; (b) hybrid averaging; and (c)
correlation averaging. Hybrid averaging with 8 image pairs in a

correlation average (N = 8), yields the optimal measurement accu-

racy over vector averaging and correlation averaging
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Fig. 15 Effect of correlation averaging in transient flows. a Contours

of the averaged cross-correlation function for a time-varying flow

(Eqs. 4, 5). The PDF is bimodal in nature with two distinct maxima

for the PIV signal. The amplitude of the sinusoid is 5 px. b The

resulting averaged displacement field from evaluating the averaged

cross-correlation function. The displacement measurement is biased

towards either one of the bimodal maxima from the averaged cross-

correlation function depending on random noise and never selects the

average value
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are immense due to the biased measurements resulting from

the summation of the instantaneous cross-correlations. For

images with low seeding density (q1 \ 1), hybrid averaging

yields in superior measurement accuracies over vector

averaging (10–80%) and immense accuracy over

correlation averaging (96–98%).1 As the number of

particles in a sampling window increases (q1 C 4), vector

averaging provides excellent accuracy over correlation

averaging. However, the accuracy of hybrid averaging is as

accurate as that of vector averaging. In cases with lower

seeding densities, phase averaging may be suitable but are

limited by the number of averages. The optimal

measurement is still dependent on the instantaneous

seeding density and the number of correlation averages

(optimise peak detection) and the number of vector

averages (optimise peak interpolation).

6.2 Application to an unsteady wake behind a circular

cylinder

Hybrid averaging was applied to an unsteady wake behind

a circular cylinder. The experimental conditions are similar

to that used in Sect. 5.2. The cylinder is placed in shallow
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hybrid averaging improves the measurement accuracy over current
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averaging offers similar accuracy. The time variant nature of the flow

decreases the measurement accuracy of correlation averaging. Hence,

hybrid averaging offers improved accuracy (96–98%) over correlation
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Fig. 17 Averaged velocity (vectors) and vorticity (contours) of the

flow behind a cylinder at Re = 98. The averaged measurements were

evaluated using (a) vector averaging; (b) hybrid averaging; and (c)
correlation averaging. The sinusoidal nature of the wake behind the

cylinder greatly deteriorates the measurement accuracy of correlation

averaging. Hybrid averaging yields optimal averaging accuracy over

vector averaging and correlation averaging, as is clearly represented

by the vorticity contours

1 Relative accuracy of the PIV error from hybrid averaging to the

PIV error from vector averaging.
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water with flow of Reynolds number, Re = 98. The size of

the sampling window size was 64 9 64 pixel2, and the

flow seeding conditions were similar to the steady flow

case in Sect. 5.2. The data set comprised of 512 image

pairs. For further reference to experimental conditions,

please refer to the recent work by Ng et al. (2011).

Figure 17 shows the averaged velocity vectors with

contours for vorticity obtained by vector, hybrid and cor-

relation averaging. Correlation averaging (N = 512) yields

averaged measurements biased by the pulsatile nature of

the wake. Vector averaging (N = 1) yields averaged

measurements more accurate than correlation averaging.

However, due to inadequate seeding (q1 = 4), the contours

for vorticity are not as well defined (Fig. 17a) as those

obtained from hybrid averaging. Hybrid averaging with 4

image pairs in a correlation average (N = 4) yielded the

most accurate averaged measurement (Fig. 17b). The

hybrid-averaged measurements are superior to correlation

averaging as can be determined by the correct wake profile

and smooth vorticity contours. This trend is similar to that

observed in our synthetic simulations (Fig. 16) for an

instantaneous seeding of 4 ppw with low image noise.

7 Summary and conclusions

We have introduced a novel hybrid averaging process

which incorporates a combination of correlation and vector

averaging processes. Correlation, vector and the novel

hybrid averaging processes have been evaluated using an

extensive series of Monte Carlo simulations and laboratory

experiments. The simulations evaluated the averaging

processes using synthetic images for both steady and pul-

satile flow conditions; varying tracer seeding densities and

image noise levels. The averaging techniques were applied

to a flow in a stenosed micro-channel and the wake behind

a circular cylinder. Comparisons between the measurement

accuracy of hybrid averaging to that of vector averaging

and correlation averaging showed that hybrid averaging is

optimal over a wide range of imaging conditions.

Guidelines have been developed to select the optimal

temporal averaging process for various seeding levels,

image noise and flow conditions. In cases where there is an

inadequate number of particles in a sampling window or a

lower number of frames in the image sequence, correlation

averaging is recommended. In cases with adequate seeding

(7 or more particles in a sampling window), vector averaging

is recommended. However, over a wide parameter space in

between these two regimes, hybrid averaging yields the most

accurate measurement. Hybrid averaging is optimised when

there are sufficient correlation averages to achieve an

effective seeding density of approximately 7 particles per

window. For larger data sets, higher effective seeding can

allow smaller sampling window sizes to be used, resulting in

a higher spatial resolution of the time-averaged measure-

ment. For noisy images with moderate to high seeding

densities (more than 1 particle per window), vector aver-

aging gives a greater accuracy than correlation averaging.

Pulsatile flow provides additional challenges producing

multi-modal correlation peaks, and the use of correlation

averaging is not recommended. For pulsatile images with

high seeding, i.e. 7 or more particle image pairs in a

sampling window, vector averaging is recommended; in all

other cases, hybrid averaging is the recommended temporal

averaging process.
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