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This experimental study investigates the effect of imposed rotary oscillation on the flow-induced
vibration of a sphere that is elastically mounted in the cross-flow direction, employing simultaneous
displacement, force and vorticity measurements. The response is studied over a wide range of
forcing parameters, including the frequency ratio fR and velocity ratio �R of the oscillatory
forcing, which vary between 0 ⩽ fR ⩽ 5 and 0 ⩽ �R ⩽ 2. The effect of another important flow
parameter, the reduced velocity, U∗, is also investigated by varying it in small increments between
0 ⩽ U∗ ⩽ 20, corresponding to the Reynolds number range of 5000 ≲ Re ≲ 30 000. It has been
found that when the forcing frequency of the imposed rotary oscillations, fr, is close to the natural
frequency of the system, fnw, (so that fR = fr∕fnw ∼ 1), the sphere vibrations lock-on to fr
instead of fnw. This inhibits the normal resonance or lock-in leading to a highly reduced vibration
response amplitude. This phenomenon has been termed ‘Rotary lock-on’, and occurs for only a
narrow range of fR in the vicinity of fR = 1. When rotary lock-on occurs, the phase difference
between the total transverse force coefficient and the sphere displacement, �total, jumps from 0◦
(in-phase) to 180◦ (out-of-phase). A corresponding dip in the total transverse force coefficient
Cy (rms) is also observed. Outside the lock-on boundaries, a highly modulated amplitude response
is observed. Higher velocity ratios (�R ⩾ 0.5) are more effective in reducing the vibration response
of a sphere to much lower values. The mode I sphere VIV response is found to resist suppression,
requiring very high velocity ratios (�R > 1.5) to significantly suppress vibrations for the entire
range of fR tested. On the other hand, mode II and mode III are suppressed for �R ⩾ 1. The
width of the lock-on region increases with an increase in �R. Interestingly, a reduction of VIV
is also observed in non-lock-on regions for high fR and �R values. For a fixed �R, when U∗

is progressively increased, the response of the sphere is very rich, exhibiting characteristically
different vibration responses for different fR values. The phase difference between the imposed
rotary oscillation and the sphere displacement �rot is found to be crucial in determining the
response. For selected fR values, the vibration amplitude increases monotonically with an increase
in flow velocity, reaching magnitudes much higher than the peak VIV response for a non-rotating
sphere. For these cases, the vibrations are always locked to the forcing frequency, and there is
a linear decrease in �rot . Such vibrations have been termed ‘Rotary-induced vibrations’. The
wake measurements in the cross-plane 1.5D downstream of the sphere position reveal that the
sphere wake consists of vortex loops, similar to the wake of a sphere without any imposed rotation;
however, there is a change in the timing of vortex formation. On the other hand, for high fR values,
there is a reduction in the streamwise vorticity, presumably leading to a decreased total transverse
force acting on the sphere and resulting in a reduced response.
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1. Introduction
Vortex-induced vibration (VIV) of structures is encountered in a variety of engineering situations,

such as for flows past offshore structures, bridges, heat exchangers, aircraft, pipelines, and other
hydrodynamic applications. The practical significance of VIV has led to numerous studies focusing
on understanding the underlying physics, including the comprehensive reviews by Bearman (1984),
Blevins (1990), Sarpkaya (2004), Williamson & Govardhan (2004), Païdoussis et al. (2010) and
Naudascher & Rockwell (2012). Most of the previous studies, however, were focused on 2D bluff
bodies like cylinders. There are relatively fewer studies on the VIV of elastically-mounted or
tethered spheres despite their ubiquitous practical significance, such as marine buoys, underwater
mines, other offshore structures, and tethered or towed spheriodal objects.Williamson&Govardhan
(1997), Govardhan & Williamson (1997) and Jauvtis et al. (2001) were among the first to report
on the VIV response of a sphere identifying three fundamental modes of vibration, namely modes
I, II and III. Since then, a number of systematic studies have investigated the VIV response of
spheres, e.g. Pregnalato (2003), Govardhan & Williamson (2005), van Hout et al. (2010), Behara
et al. (2011), Lee et al. (2013), Krakovich et al. (2013), Behara & Sotiropoulos (2016) and Sareen
et al. (2018a).

Large-amplitude vibration caused by VIV over a wide range of Reynolds number is a common
cause of serious structural fatigue and damage, which has led to a plethora of research studies
focusing on suppressing VIV over last four decades. For this reason, several active and passive
control methods have been studied previously for 2D bluff bodies. Choi et al. (2008) provide
a review on various control methods employed for flow over bluff bodies. Although passive
control methods do not consume external energy and are fairly insensitive to changes in the flow
direction, it tends to be difficult to dramatically reduce VIV, and the drag often increases. In
contrast, active control methods such as moving-surface boundary-layer control (MSBC) (Mittal
2001) and windward suction leeward blowing (WSLB) (Dong et al. 2008) reduce VIV to a much
lower level; however, the efficacy of both these active methods depends on the flow direction.
The control of VIV by rotary motion has received increased attention recently due to its

insensitivity to flow direction, efficacy over a broader range of flow parameters, and the greater
extent of VIV reduction. A recent experimental study by Sareen et al. (2018a) reported suppression
of VIV of a sphere by means of an imposed transverse rotation for a wide range of Reynolds
numbers and reduced velocities. They reported a reduction in the strength of the vortex street,
which can be associated with a reduction of the transverse force acting on the sphere. VIV can also
be suppressed by forced sinusoidal rotary oscillations of the bluff body, to prohibit the phenomenon
of resonance or ‘lock-in’ by deviating the vortex shedding frequency from the natural frequency
of the system towards the forcing frequency (also known as ‘lock-on’).
This approach has been extensively investigated on a fixed cylinder over the last four decades.

Taneda (1978) was the first to examine this experimentally for a rotary oscillating cylinder,
and reported the disappearance of vortex shedding for very high forcing frequencies. Later,
Tokumaru & Dimotakis (1991) reported a drag reduction of up to 80% for a certain range of
forcing frequencies and amplitudes of sinusoidal rotary oscillations. This pioneering study inspired
a number of systematic numerical studies aimed at understanding this wake control and the
underlying dynamics, such as (Lu & Sato 1996; Chou 1997; Baek & Sung 2000; Mahfouz & Badr
2000; Cheng et al. 2001; Shiels & Leonard 2001; Tokumaru & Dimotakis 1991; Lee & Lee 2006;
Choi et al. 2002; Kumar et al. 2013). It is known for the case of a fixed cylinder that for a certain
range of forcing frequency ratios encompassing the natural frequency of the system, the vortex
shedding locks to the forcing frequency, leading to the ‘lock-on’ phenomenon (Chou 1997; Baek
& Sung 2000). The state is accompanied by a significant drag reduction (Tokumaru & Dimotakis
1991; Lu & Sato 1996; Chou 1997). The lock-on region widens with increasing rotational speed
(Mahfouz & Badr 2000). The boundaries of lock-on and non-lock-on regions are associated with
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the modulation of the drag, lift and velocity (Choi et al. 2002), and the non-lock-on regions
exhibit quasi-periodicity (Baek & Sung 2000). Several studies have focused on understanding the
underlying dynamics. It was found that the lock-on region is associated with enhanced separation
and vortex coalescence in the wake (Cheng et al. 2001; Shiels & Leonard 2001; Lee & Lee 2006).
The experimental investigation by Thiria et al. (2006) also revealed that the phase lag between the
vortex shedding and the rotary motion of the cylinder effectively gives either a constructive or
destructive contribution to the wake, leading to a global decrease or increase in fluctuations in the
wake.

Recently, Du & Sun (2015) investigated numerically the potential of rotary oscillations to
suppress VIV of an elastically mounted cylinder at Re = 350. They found ‘lock-on’ for the
elastically mounted cylinder, which led to switching of vortex shedding from the natural frequency
to the forcing frequency, inhibiting resonance or VIV. They observed effective control only for
large enough velocity ratios, and the lock-on regime became narrower with an increase in reduced
velocity. They observed no significant reduction in the strength of vortices in the wake.

The papers discussed so far report on rotational control of 2D bluff bodies. However, there do
not appear to be studies investigating the potential of rotary oscillations in wake control for 3D
bluff bodies, such as spheres. However, a sphere is the most basic 3D body shape; certainly the
one with the most symmetry, and clearly spheres can undergo significant amplitude VIV. A sphere
provides a starting framework to comprehend VIV control of more complex three-dimensional
bluff bodies. The current study aims at producing an understanding of the effect of imposed rotary
oscillations on the VIV response of a sphere for a wide range of forcing and flow parameters.
One question to be addressed is whether similar features (as discussed above for a fixed cylinder)
are exhibited in the case of an elastically mounted sphere. Specifically, this study addresses the
following fundamental questions: Is ‘lock-on’ also observed for a sphere exhibiting a 3D wake? If
so, how does the lock-on range depend on various forcing and flow parameters? How does this
phenomenon affect the 3D wake structures of the flow past a sphere?

The outline of the article is as follows. The experimental methodology for the current experiments
are detailed in § 2. The VIV response of a non-rotating oscillating sphere is briefly presented in
§ 3. § 4 discusses in detail the effect of frequency ratio on the VIV response of a sphere, followed
by § 4.2 on the effect of velocity ratio. § 4.3 focuses on the effect of the reduced velocity on the
VIV response. § 5 discusses the effect on the wake structures, and finally § 6 draws conclusions,
and summarises the important findings and significance of the current study. To be clear, in this
article, if the vibrations are locked to the natural frequency, the phenomenon is termed ‘lock-in’ or
‘resonance’, and if they are locked to the forcing frequency instead, it is termed ‘lock-on’ or, in
this case,‘rotary lock-on’.

2. Experimental method
A schematic showing the experimental arrangement of the current fluid-structure interaction

problem is presented in figure 1. The sphere is elastically mounted in the direction transverse to the
incoming flow. The axis of the sinusoidal rotary oscillations imposed on the sphere is transverse
to the flow direction and the free vibration axis.

The two important parameters characterising the rotary oscillation motion of the sphere are fR
and �R. Here, fR is the forcing frequency ratio, expressed as the ratio of forcing frequency, fr,
and the natural frequency of the system, fnw, as

fR = fr∕fnw. (2.1)

Alternatively, sometimes the non-dimensional forcing Strouhal number is used to characterise the
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FIGURE 1. Definition sketch for the transverse vortex-induced vibration of sphere undergoing forced rotary
oscillations. The hydro-elastic system is simplified as a 1-DOF system constrained to move only in the
cross-flow direction. The axis of rotation (z) is transverse to both the flow direction (x-axis) and the oscillation
axis (y-axis). Here, U is the free-stream velocity, k the spring constant,D the sphere diameter, c the structural
damping, and � the imposed angular displacement.

Amplitude ratio A∗
rms

√

2Arms∕D

Damping ratio � c∕
√

k(m + mA)

Forcing frequency ratio fR fr∕fnw

Frequency ratio f ∗ f∕fnw

Forcing Strouhal number Sf frD∕U

Mass ratio m∗ m∕md

Mass-damping parameter � (m∗ + CA)�

Reduced velocity U ∗ U∕(fnwD)

Reynolds number Re UD∕�

Scaled normalised velocity U ∗
S (U ∗∕f ∗)S = fvo∕f

Strouhal number S fvoD∕U

Transverse force coefficient Cy (rms) Fy∕(
1
8
�U 2�D2)

Velocity ratio �R D�̇max∕(2U )

TABLE 1. Non-dimensional parameters used in this study. In this table: Arms is the root-mean-square (rms)
value of the vibration amplitude in y direction; D is the sphere diameter; f is the body oscillation frequency;
fr is the frequency of the imposed rotary oscillation; and fnw is the natural frequency of the system in
quiescent water. In addition,m is the total oscillating mass; c is the structural damping factor with k the spring
constant; U is the free-stream velocity; � is the kinematic viscosity; mA denotes the added mass, defined
by mA = CAmd, where md is the mass of the displaced fluid and CA is the added mass coefficient (0.5 for
a sphere); �̇max = maximum angular velocity of the sphere; fvo is the vortex shedding frequency of a fixed
body and Fy is the fluid force acting on the sphere in the transverse direction.
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forcing

Sf =
frD
U

.

The other key parameter, �R, is the forcing velocity ratio expressed as the ratio of the maximum
tangential velocity of the sphere surface and the free-stream velocity U as

�R =
D�̇max
2U

, (2.2)

where �̇max is the maximum angular velocity of the sphere. All other relevant non-dimensional
parameters for the current study are listed in table 1.

The governing equation of motion describing the cross-flow motion of the sphere can be written
as

mÿ + cẏ + ky = Fy , (2.3)
where Fy is the fluid force in the transverse direction, m is the total oscillating mass of the system,
y is the displacement in the transverse direction, c is the structural damping of the system, and k is
the spring constant. Using the above equation, the total fluid force in the transverse direction can
be calculated with the knowledge of the directly measured displacement, and its time derivatives.
The sinusoidal rotation imposed on the sphere can be expressed as

�(t) = �o sin(2�frt), (2.4)

where � is time-dependent imposed angular displacement, �o is maximum angular displacement
and fr is the forcing frequency. In terms of the angular velocity, the imposed rotation can be
represented as

�̇ = 2�fr�o cos(2�frt). (2.5)
The velocity ratio �R given in (2.2) can thus be written as

�R =
�fr�oD
U

. (2.6)

2.1. Experimental details
The experiments were conducted in the recirculating free-surface water channel of the Fluids
Laboratory for Aeronautical and Industrial Research (FLAIR), Monash University, Australia. The
test section of the water channel is 600mm in width, 800mm in depth and 4000mm in length.
The free-stream velocity can be varied continuously over a range of 0.05 ⩽ U ⩽ 0.45ms−1. The
free-stream turbulence level for the current experiments was less than 1% at intermediate flow
speeds (see Zhao et al. 2014a,b).
Figure 2 shows a schematic of the current experimental set-up. The sphere was elastically

mounted in the transverse direction using a low-friction air-bearing system that provides low
structural damping. The structural stiffness was controlled by extension springs. More details of
the hydro-elastic facility can be found in Zhao et al. (2018). A solid spherical ball of diameter
D = 80mm (accuracy within ± 0.200mm) precision-machined from acrylic plastic was used in
the current experiments. The sphere model had a smooth polished surface finish. It was supported
with a cylindrical shroud support system. The immersed length of the total support setup for the
sphere was one diameter. A more complete description of the current experimental set-up can be
found in Sareen et al. (2018a).
The rotary motion was driven using a miniature low-voltage micro-stepping motor (model:

LV172, Parker Hannifin, US) with a resolution of 25 000 steps∕revolution. The rotary oscillations
were monitored using a digital optical rotary encoder (model: E5-1000, US Digital, US) with
a resolution of 4 000 counts∕revolution. The sphere displacement was measured using a linear
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FIGURE 2. Schematic of the experimental set-up for the current study showing the side and top-down views.

encoder (model: RGH24, Renishaw, UK) with a resolution of 1µm. The data acquisition and
the controls of the flow velocity and the sphere oscillations were automated via customised
LabVIEW programs. For each data set, the signal was acquired at a sampling frequency of 100Hz
for more than 100 vibration cycles. The natural frequencies and structural damping of the system
in both air and water were measured by conducting free decay tests individually in air and in
quiescent water. The natural frequencies in air and water were found to be fna = 0.208 ± 0.005
and fnw = 0.200 ± 0.005, respectively. The structural damping ratio with consideration of the
added mass was determined to be � = 4.3 × 10−3 ± 0.0006. The results in the current study are
reported for a mass ratio of m∗ = 12.116 ± 0.004.

To gain better insight into the flow dynamics, Particle Image Velocimetry (PIV) measurements
were employed in the cross plane, 1.5 diameters downstream of the sphere. The flow was seeded
with 13µm hollow micro-spheres having a specific weight of 1.1 gm−3. A continuous laser (model:
MLL-N-532-5W, CNI, China) was used to illuminate a laser plane of ∼ 3mm thickness aligned
parallel to the y-z plane. A mirror was placed at 45◦ angle to the freestream direction towards
the downstream side of the sphere. The mirror was placed more than 6 diameters downstream of
the sphere to limit any upstream disturbance. A distance of ≈ 2 diameters is sufficient to avoid
any upstream effect of the mirror in this setup (see Venning (2016)). Imaging was performed
using a high-speed camera (model: Dimax S4, PCO, AG) with a resolution of 2016 × 2016
pixels2. The camera was equipped with a 105mm Nikon lens, giving a magnification factor of
10.73 pixelmm−1 for the field-of-view. Velocity fields were deduced using in-house PIV software
developed originally by Fouras et al. (2008), using 32 × 32 pixel2 interrogation windows in a
grid layout with 50% window overlap. All the vorticity fields shown in the current study were
phase-averaged over more than 100 cycles. For each PIV measurement case, a set of 3100 image
pairs were collected by sampling at 10Hz. Each image set was sorted into 24 phase bins based on
the sphere’s displacement and velocity, resulting in more than 120 image pairs for averaging at each
phase. The final phase-averaged vorticity fields were smoothed slightly using an iterative Laplace
filter to remove small length-scale structures and to better highlight the larger-scale structures that
dominate the wake.
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FIGURE 3. (Colour online) Amplitude response of an elastically mounted sphere (1-DOF) obtained in the
current study ( ) with a mass damping of (m∗ + CA)� = 0.03 compared to previous studies by Govardhan &
Williamson (2005) (▾) with a mass damping approximately 0.92 and Sareen et al. (2018b) (■) with a mass
damping of 0.0169.

3. VIV response of a sphere without control
In this section, we provide a brief overview of what is already known for an elastically mounted

sphere undergoing VIV. A more detailed validation study based on the VIV response of an
elastically mounted sphere without imposed rotation can be found in Sareen et al. (2018a,b).

The VIV response of an elastically mounted sphere (1-DOF) without imposed rotation consists
of 2 fundamental modes of vibration, modes I and II, in the synchronisation region followed by a
‘plateau branch’, which appears to be a precursor to mode III, seen at higher reduced velocities
(Govardhan & Williamson 2005; Sareen et al. 2018a,b). The vibrations in the plateau region
are not as highly periodic as the vibrations in mode II, albeit that the frequency of oscillation
stays close to the natural frequency of the system for the entire U∗ range. Although the vortex
shedding remains similar in all three modes of vibration there is a change in the timing of the
vortex formation. Govardhan &Williamson (2005); Sareen et al. (2018a,b) showed that the sphere
vibration response transitions frommode I to mode II when the phase difference between the vortex
force and the sphere displacement, �vortex, crosses through 90◦, corresponding to an inflection
point in the amplitude response. Similarly, within mode II , the phase difference between the total
transverse force and sphere displacement, �total, passes through 90◦, corresponding to the peak of
the amplitude response. The variations of �total and �vortex for the current experimental setup can
be found in Sareen et al. (2018a,b).

Unlike the case of a tethered sphere with 2-DOF, where the modes are separated by a desynchro-
nised reduced velocity range (Jauvtis et al. 2001; Govardhan & Williamson 2005), the vibration
amplitude for a sphere in the 1-DOF case increases gradually and continuously from mode I
to mode II (4.5 ≲ U∗ ≲ 15) leading to an almost constant amplitude in the plateau branch
(15 ⩽ U∗ < 30). Although it is difficult to demarcate the two modes in the 1-DOF case, there
are considerable changes in the phase difference between the sphere displacement and the total
transverse force �total, and the phase difference between the sphere displacement and the vortex
force, �vortex. The response transitions from Mode I to Mode II when �vortex crosses through
90◦, corresponding to the ‘inflection point’ in the amplitude response. Likewise, within the Mode
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II regime, �total passes continuously through 90◦, corresponding to the peak of the amplitude
response (Govardhan & Williamson 2005; Sareen et al. 2018a,b). Lowering the mass-damping
parameter (m∗+CA)� leads to greater vibration amplitudes and a widened synchronisation regime,
as shown in Figure 3. The mass damping of the current study is (m∗ + CA)� = 0.03, compared to
approximately 0.92 in the study by Govardhan & Williamson (2005) and 0.0169 in the study by
Sareen et al. (2018b). When plotted against the scaled U∗

S , defined as U∗
S = (U∗∕f ∗)S ≡ fvo∕f ,

where S is the Strouhal number for vortex shedding (≈ 0.18 in this case), the saturation amplitudes
(peaks) line up for all the results with different mass-damping parameters as was demonstrated by
Govardhan & Williamson (2005).

4. Effect of rotary oscillations on the vibration response
4.1. Effect of the forcing frequency ratio

In this section, the effect of forcing frequency ratio, fR, on the sphere VIV response is discussed.
The response is studied for a wide range of frequency ratios varying from 0 to 5 in small increments
at several fixed velocity ratios; however, only a few of the representative cases are discussed in
detail here. The results are presented for three U∗ values of U∗ = 6, 10 and 15, corresponding to
modes I, II and mode III, respectively, of the sphere VIV response.

4.1.1. Mode I
Figure 4(a) shows the variation of the rms of the amplitude of the sphere oscillations, A∗

rms,
with fR. Figure 4(b) and 4(c) present the frequency power spectral density (PSD) contours of the
sphere displacement and the total transverse force, respectively. Figures 4(d) and (e) show the
variation of the coefficient of the total transverse force, Cy (rms), and the total phase difference,
�total, respectively.
As evident in figure 4(a), when fR is gradually increased from 0 to ∼ 0.5, A∗

rms progressively
decreases in magnitude. The vibrations remain locked to the natural frequency of the system, i.e.
f ∗= 1, as shown in 4(b). Although, the frequency response shows a clear dominant frequency
at f ∗= 1, the displacement is modulated in the presence of the forcing, as is clear from the time
trace of the sphere displacement shown in figure 5(a). As is also evident from figure 4(c), unlike
the frequency contour plot of the sphere displacement, the PSD of the total transverse force does
not show a single frequency in this region. Previous studies on rotationally oscillating cylinders
have also noted highly modulated states in the non-lock-on regions (Choi et al. 2002).

When fR is further increased to higher values beyond 0.5, the vibrations start to lock-on to fR
instead of fnw, as is clearly discernible in 4(b). Figure 4(c) shows that the total lift force also locks
on to fR. This marks the start of the rotary lock-on (RLO) region that extends from 0.5 ≲ fR ≲ 1.5
(bounded by dashed vertical lines). In the RLO region, the vibrations and the total transverse
force are locked to the forcing frequency instead of the natural frequency, which prohibits the
fluid-structure energy transfer. The vibrations are highly suppressed in this range except the case
when all the characteristic frequencies of the system are equal, i.e. fR = f ∗ = fnw; here, the
vibration amplitude is close to that of a sphere without imposed rotation, and the displacement
signal is highly periodic as shown in figure 5(c). In the RLO region, Cy (rms) drops to lower values
with a sudden dip for the fR = f ∗ = fnw case (shown in 4(d)). Also, figure 4(e) shows that
there is a sudden jump in the total phase difference, �total, from almost 0◦ (in-phase) to 180◦
(out-of-phase). Such a sudden jump in �total is associated with the change in the timing of vortex
formation as will be shown later in § 5 through wake measurements. Such a region of rotary
lock-on, where the sphere displacement locks-on to the forcing frequency, has also been observed
recently for an elastically mounted cylinder under imposed rotary oscillation in the experimental
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study by Wong et al. (2018). They also observed a sudden jump in �total from 0◦ to 180◦ for a
cylinder in the rotary lock-on region.
One can also note a transition region near the lock-on boundaries in figure 4(b). This region

has a richness in frequency content and relatively broadened spectral densities that appear to
be caused by competing fnw and fr. This is clearer for higher U∗ responses shown later in this
section. The time traces of the displacement signal near the boundaries (shown in figures 5(b)
and (d)) indicate a quasi-periodic state. Baek & Sung (2000) previously reported quasi-periodic
states near the lock-on boundaries for a cylinder. When fR is further increased to higher values,
fR > 2, the vibrations start to again lock-in to the natural frequency of the system instead of the
forcing frequency. For 2 < fR ⩽ 5, the vibration amplitudes and �total recover and become close
to their initial values without imposed rotation (shown in (a) and (d)). The time trace of the sphere
displacement (figure 5(e)) shows a highly periodic response in this range.

Figure 6 shows the response characteristics, similar to those shown previously, but for a relatively
higher velocity ratio of �R = 1.5 in mode I. One can clearly see the difference that the transition
region (or the non-lock-on region, where the flow is neither locked-in nor locked-on), where a
wide spectrum of frequencies is observed, now extends for a wider range of fR values between
1.5 ≲ fR ≲ 3. Also, the lock-in region is observed for a narrow range of high fR values in the
range 3 < fR < 5. The vibration amplitude in the lock-in region does not recover to the values
close to the non-rotating case but rather remains < 0.2D. So, as the velocity ratio is increased to
�R = 1.5, the transition region becomes wider, and lock-in occurs for a narrow range of fR values.
For even higher velocity ratio of �R = 2 (not discussed here), the lock-in region disappears, and
the transition range extends until the maximum fR tested in the current study.

4.1.2. Mode II
Figure 7 shows the response quantities for U∗ = 10, (in the heart of mode II) at a fixed velocity

ratio of �R = 0.5. One can note here that unlike mode I, the vibration amplitudes do not drop
at all before entering the RLO region. However, as the sphere response enters the RLO region,
the response characteristics are similar to mode I, with a sudden jump in A∗

rms for fR = 1 and a
corresponding drop in Cy (rms) and �total. Immediately past fR = 1, the vibrations become out
of phase with the total transverse force, and the vibration amplitudes drops to highly reduced
values. A transition region with a wide spectrum of frequencies and highly modulated vibration
amplitudes (see figure 8(b)) is also evident in the frequency contour plot as the response exits the
RLO region. For 2 ≲ fR ≲ 3, the vibrations lock back to fnw and the vibration amplitudes start to
recover. The dominant frequency of the transverse force, however, remains the forcing frequency
(see figure 7(c)). As the response approaches the vicinity of fR = 3, the vibrations lock-on to
the 3rd subharmonic of the forcing frequency, f ∗ = fR∕3, although the effect is localised to a
small fR range. Figure 7(c) shows that the transverse force locks on simultaneously to the third
harmonic as well. This is termed ‘Tertiary lock-on’ (TLO). Such a region of tertiary lock-on has
also been observed previously for a cylinder allowing 1-DOF transverse movement under imposed
rotary oscillation (Wong et al. 2018), and also for a rigidly-mounted cylinder (Choi et al. 2002;
Thiria et al. 2006). The TLO region is also characterised by a sudden jump in �total and Cy (rms), as
evident from figures 7(d) and (e), respectively. The time trace of the sphere displacement reveals a
highly periodic response in the TLO region (see figure 8(c)). As the sphere exits the TLO region,
the dominant frequency again becomes fnw; however, unlike standard lock-in, there is no clean
single frequency response. The vibrations exhibit amplitude modulation as evident from figure 8(d).
The vibration amplitude drops to lower values, ∼ 0.2, and remains almost constant until fR = 5.

It is interesting to see how the response changes as the velocity ratio is increased to �R = 1.
Figure 9 shows the observed response for a higher velocity ratio of �R = 1 in mode II. The lock-in
and the tertiary lock-on regions are absent for �R = 1, unlike the �R = 0.5 case. Again, the
vibration amplitude for the fR = f ∗ = fnw, case in the mode II region is even higher than the
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non-rotating case (shown as a dashed line in (a)). An interesting point to note here is that for
fR > 2, although �total recovers to its initial non-rotating values, the vibration amplitude does not
recover to its initial value as observed in mode I. Near the lock-on boundaries, a rich frequency
content is observed, however; it extends until fR = 3. For fR > 3, the frequency no longer follows
the fR line and the vibration is highly reduced. In this case, the vibration is neither locked-in
(as characterised by a single frequency response at f ∗ = 1) nor locked-on (as characterised by
a single frequency response at f ∗ = fR). Interestingly, the dominant frequency of the lift force
remains fR for fR > 3. Overall, the characteristics of the RLO region remain the same with a
sudden jump in �total from 0◦ to 180◦, and a drop in Cy (rms) correlated with the jump in A∗

rms.

4.1.3. Mode III
Figure 10 shows the response curves at even higher U∗ values towards the mode III region. As

evident from the figure, the width of rotary lock-on region is decreased in mode III, extending only
between 0.8 < fR < 1.4. Another interesting point to note is that for the fR = f ∗ = fnw case,
the vibration amplitude reaches a value of more than one sphere diameter, which is ∼ 66% higher
than for the non-rotating case. The imposed rotation is very effective in mode III in suppressing



12 A. Sareen and others

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0

100

200

0 1 2 3 4 5

(a)

0

1

2

3

4

5

-3

-2.5

-2

-1.5

-1

-0.5

0

(b)

0

1

2

3

4

5

-3

-2.5

-2

-1.5

-1

-0.5

0

(c)

(d)

(e)

A∗
rms

f ∗

f ∗
Cy

Cy (rms)

�total
(deg.)

Mode I, �R = 1.5

fR

RLO
lock-in

f ∗ = fR

FIGURE 6. (Colour online) The response of an elastically-mounted sphere under imposed rotary oscillation is
presented as a function of forcing frequency ratio, fR, at the fixed velocity ratio of �R = 1.5 in the mode I
region (U ∗ = 6). Refer to figure 4 for further details.

vibration for the entire range of fR tested in the current study (except of course the fR = fnw
resonant case). The response characteristics in mode III are quite similar to mode II (the �R = 1
case), where the vibrations do not recover to higher values after exiting the rotary lock-on region,
and a broad frequency spectrum is observed for higher fR values. However, in mode III, the
vibration frequency and the lift frequency follows the f ∗ = fR line for the entire range of fR
tested, unlike in the case of mode II. It appears that the transition region extends until fR = 5 in this
case. Interestingly, a clean single frequency response is observed for the lift force for 2 ≲ fR ≲ 4,
as seen in figure 10(c).
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4.2. Effect of velocity ratio
In this section, the effect of another important forcing parameter on the sphere vibration response,
the velocity ratio �R, is investigated. The velocity ratio was varied over the range 0 ⩽ �R ⩽ 2 in
small increments, keeping constant values of U∗ and fR. The response was studied for U∗ = 10
(heart of mode II) and frequency ratios of fR = 1 (resonance), fR = 1.2 (lock-on) and fR = 3
(non-lock-on).

Figure 11(a) shows the response as a function of �R at a constant value of fR = 1.2 in mode II.
It can be seen that when the velocity ratio is increased gradually to �R = 0.5, there is a progressive
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decrease in A∗
rms. The dominant frequency remains as fnw (see 11(a.ii)). However, when �R is

increased beyond 0.5, the oscillation frequency locks-on to the forcing frequency (f ∗ = 1.2), as
shown in figure 11(a.ii), and the displacement becomes out of phase with the total transverse force,
as shown in figure 11(a.iii). The vibrations are highly suppressed for �R ⩾ 0.5 with ∼ 77.7%
reduction in the vibration amplitude compared to the case of a sphere without imposed rotation.
This demonstrates that values of �R ⩾ 0.5 are desirable for effective suppression of VIV in mode
II, at least for fR = 1.2. An obvious question is that when fR is outside the lock-on range, what
velocity ratios are favourable for reducing the amplitude of oscillations?

To answer this question, another frequency ratio was chosen in the non lock-on range and the
response was investigated. Figure 11(b) shows the response quantities for fR = 3.0 in mode
II. Initially, when �R is increased, there are no significant changes in the vibration amplitude
compared to the case of the sphere without any imposed forcing. The oscillations are locked to
the natural frequency of the system, as shown in 11(b). However, there is a sharp reduction in
A∗
rms beyond �R ≳ 0.7. For higher �R values, the vibrations are suppressed completely. In the

frequency spectrum plot 11(b), a wide spectrum of frequencies are evident for �R ⩾ 0.7. The
forcing frequency fR = 3 is also present; however, fnw remains the dominant frequency. For
this case, the sphere vibrations are neither locked-in (single frequency response at f ∗ = 1) nor
locked-on (single frequency response at f ∗ = fR) and the frequency contour map is characterised
by a wide spectrum of frequencies. �total remain close to 90◦ for the entire range of �R(except
the higher �R values, where small deviation can be observed). Interesting thing to note here is
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10). Refer to figure 4 for further details.

that suppression of vibrations can be observed for a sphere even in the non-lock-on range for high
enough �R values.

Figure 12(a) shows the time trace of the sphere displacement at fR = 1.2 for the two different
velocity ratios of �R = 0.3 (top) and �R = 1.3 (bottom). For �R = 0.3, a pulsating signal is evident
with a beating frequency ∼ |fr − fnw|. For �R = 1.3, on the other hand, beating is not clear and
the vibrations are not very periodic. Figure 12(b) shows the time trace of the sphere displacement
at fR = 3 for two different velocity ratios �R = 0.3 (top) and �R = 1.3 (bottom). For �R = 0.3,
the vibrations are highly periodic without any signs of amplitude modulation. On the contrary, at
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�R = 1.3, where highly reduced vibrations are observed (A∗
rms < 0.08), the displacement signal is

highly non-periodic with chaotic intermittent vibrations similar to the ones reported by Sareen
et al. (2018a) in their experimental study on an elastically mounted sphere with imposed constant
rotation.
Another interesting case to examine is fR = 1, where vibration amplitudes higher than the

non-rotating case can be observed, depending on the U∗ and �R, as was shown in § 4.1. Figure 13
shows the response quantities for fR = 1 for varying velocity ratios in mode II. As �R increases
from 0 ⩽ �R ⩽ 0.5, �total decreases almost linearly from 90◦ to 0◦ but the vibration amplitudes
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remain close to the non-rotating sphere case. In this range, the sphere displacement has modulation
over a very large period of ∼ 40 cycles as clear from the time trace of the sphere displacement
shown in figure 13(b.i). The degree of modulation decreases for �R = 0.6 (see 13(b.ii)). For
0.5 < �R ⩽ 2, the vibration amplitudes increases by ∼ 94% compared to the non-rotating sphere
case. In this range, the displacement is always in phase with the total transverse force acting on
the sphere, and the vibrations become highly periodic without any signs of amplitude modulation
(see 13(b.iii)).

To summarise the discussions so far on the effect of the two main forcing parameters on the
vibration response of a sphere, all the results are synthesised and presented as contour plots in
Figure 14. Figure 14 (a-c) show the amplitude response (A∗

rms) contours over the fR−�R parameter
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space for all the three modes of sphere vibrations.The contour plots show there are two observed
lock-on regions: rotary lock-on (RLO) and tertiary lock-on (TLO). These regimes are determined
by examining the body vibration frequency response as a function of fR for each fixed �R. Such
regions have also been recently identified for an elastically mounted cylinder by Wong et al. (2018).
Evidently, these lock-on regions are a function of all three forcing parameters: fR, �R and U∗.
For all the three sphere vibration modes, the RLO region exists over a narrow window in the
vicinity of fR = 1. For �R < 1, the RLO region occurs in a narrow band around fR = 1 but
becomes considerably wider for higher velocity ratios, resulting in an inverted pear-shaped region.
A tertiary lock-on region (TLO) was also observed in mode II in the vicinity of fR = 3 for very
low velocity ratios of �R ⩽ 0.5. The RLO region remains fairly similar in mode I and mode II.
However, for mode III, the RLO region becomes narrower for �R ⩽ 1 and considerably wider for
higher velocity ratios of �R > 1.5. As evident from the contour plots, the reduced velocity can also
influence the lock-in and TLO regions. The lock-in region becomes significantly smaller for mode
II (U∗ = 10) compared to mode I (U∗ = 6), and vanishes completely for mode III (U∗ = 15).
TLO, however, was only observed for fR = 3 at very low velocity ratios (�R ⩽ 0.5) in mode I and
mode III.

In general, mode I was found to be quite robust, requiring high velocity ratios for the suppression
of vibrations. The control was highly effective in mode III, with highly reduced response obtained
over the entire parameter space studied (except for the fR = fnw case). For the fR = fnw case,
the sphere exhibited an ‘enhanced resonance’, where vibrations increased to much higher values
compared to the non-rotating case. Overall, higher velocity ratios of �R ⩾ 1 were effective in
suppressing the vibrations. Suppression of vibration was observed even in the non-lock-on region
at high fR and �R values.
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4.3. Effect of reduced velocity
In this section, the effect of another important flow parameter, the reduced velocity,U∗, is discussed.
In order to systematically investigate the effect of U∗, both the other forcing parameters (�R and
fR) were kept constant and U∗ was varied in small increments from 0 to 20. The results are
presented for �R = 1 at several representative fR values.
Figure 15 shows the response quantities for fR = 0.3 (left) and fR = 0.9 (right) at a fixed

velocity ratio of �R = 1. In the plots depicting the phases, the phase difference between the
imposed rotary oscillation and the sphere displacement, �rot , is also shown along as �total. It is
found that �rot , i.e., the phase difference between the imposed rotary oscillation and the sphere
displacement is an important parameter affecting the response of the sphere to the imposed rotation
during lock-on conditions. Readers should note here that �rot is only useful in lock-on regions,
where the sphere displacement is locked to the forcing frequency. As evident from figure(a), for
U∗ varying from ∼ 4.5 to ∼ 12, the vibrations are locked to the natural frequency. There is an
increase in the displacement amplitude with a corresponding increase in the transverse force
coefficient. The displacement is in phase with the total transverse force (or �total = 0). The time
trace of the sphere displacement shows a highly periodic response in this region (see figure 16(a.i)).
This indicates the occurrence of lock-in over this range. However, for higher values of U∗ > 12,
�rot drops to almost zero. In this region, the vibrations are locked to fR and the frequency at
fnw becomes weaker in power. There is no significant increase in the amplitude response up to
U∗ = 20. This region can not be termed lock-in. The time trace shows amplitude and frequency
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FIGURE 16. Time traces of the sphere displacement for fR = 0.3 (left) and fR = 0.9 (right) for a velocity
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modulation in this range (see figure 16(a.ii)). In this region, the two frequencies compete with
each other; such a region is termed the ‘Lock-in + RIV’ region in the text.

For fR = 0.9, the response clearly has two regions with different characteristic behaviours. For
0 ⩽ U∗ ≲ 8, the vibrations are locked to fR instead of fnw, and there is a linear decrease in �rot
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FIGURE 17. (Colour online) The response of an elastically-mounted sphere with imposed rotary oscillations
is presented as a function of reduced velocity for a fixed frequency ratio of fR = 1.0 (left) and fR = 1.1
(right) at a value of �R = 1. Refer to figure 4 for further details.

from ∼ 130◦ to 0◦. This is clearly not lock-in. It will be shown later in the text that such a region
corresponds to the rotary-induced vibrations (RIV). Nevertheless, the time trace shows highly
periodic vibrations in this range. For 8 < U∗ < 14, on the other hand, the behaviour is similar
to lock-in. The vibrations are locked to fnw, there is a jump in Cy (rms), and �total remains close
to 0◦. However, the time trace of the displacement signal shows beating in this range due to fr
being very close to fnw. When U∗ is increased beyond U∗ ⩾ 15, the vibrations lock to fR again.
In this range, both �total and �rot approach 0◦. In this region, extending from 8 < U∗ < 20, it can
be conjectured that the two frequencies compete with each other and there is no clear lock-in or
lock-on region.
Therefore, depending on the U∗ value, the vibrations may lock to fnw or fR. If vibrations

lock to fnw in the synchronisation region, lock-in or resonance is observed; however, if they
lock to fR, the response is reflected in �rot . Monotonically decreasing �rot values coincide with
monotonically increasing A∗

rms (that lead to RIV response) and constant �rot values coincide with
constant amplitudes. This behaviour will be further clarified in later discussions. �rot was plotted
here to highlight its correlation with the amplitude response in the lock-on regions. During lock-in,
however, �rot does not signify anything as the displacement and rotary oscillation do not exhibit
the same frequency: �rot is fixed at 90◦ in lock-in regions.

4.3.1. Rotary-induced vibrations
Figure 17 shows the response for fR = 1 (left) and fR = 1.1 (right). Overall, it is evident that

neither frequency ratio exhibits the typical bell-shaped response known for a non-rotating sphere
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FIGURE 18. Time traces of the sphere displacement for fR = 1 (left) and fR = 1.1 (right) for reduced
velocities of U ∗ = 4 and U ∗ = 12.

VIV over this U∗ range. Unlike the non-rotating case, �total remains at 0◦ for the entire range of
U∗ tested. Also, the vibrations are locked to the forcing frequency. Clearly, this is not a lock-in
phenomenon.
For fR = 1, initially the vibration amplitude increases almost linearly in the range 0 < U∗ <

10. In this range, �rot is not fixed at ∼ 90◦, as was previously found for lock-in but decreases
monotonically from ∼ 170◦ to lower values. The vibrations are highly periodic as clear from
figure 18(a.i), and the frequency contour plot shows a clean single frequency response at f ∗ = 1.
Interestingly, a ‘kink’ can be observed in the frequency response when�rot crosses zero atU∗ = 10.
Beyond this point in U∗, there are large modulations in the sphere displacement signal (at a low
frequency) as evident from the time trace shown in figure 18(a.ii). Also, �rot and A∗

rms remain
almost constant.
For fR = 1.1, initially the vibrations are not very periodic in the range 0 < U∗ < 6 (see

figure 18(b.i)) but as the reduced velocity is increased further (U∗ ⩾ 6), the vibrations become
periodic (see figure 18(b.ii)). For U∗ ⩾ 6, the frequency plot shows a clean frequency at f ∗ =
fR = 1.1. Also, �rot decreases monotonically from ∼ 260◦ to 90◦, and correspondingly, the
vibration amplitude increases monotonically (almost linearly) with the increase in reduced velocity
for the entire range of U∗ tested in the current study.

The vibration response observed in the above cases show some similarities to the ‘wake-induced
vibration (WIV)’ reported by Assi et al. (2010), or called ‘wake-induced galloping’ by Bokaian &
Geoola (1984) and Brika & Laneville (1999) for an elastically mounted cylinder placed downstream
of a fixed cylinder. The latter studies reported that for a fixed structural damping, the downstream
cylinder can exhibit vortex resonance, WIV, combined vortex resonance and WIV, or separately
vortex resonance and WIV depending on the cylinders’ separation. Assi et al. (2010) suggested
that wake-induced vibration (WIV) requires a frequency input such as upstream vortex shedding to
occur. They also highlighted that the upstream vortices interfering with the downstream cylinder
induce fluctuations in the fluid force. A favourable phase lag between the fluid force and the
displacement ensures a positive energy transfer from the flow to the structure that sustains the
oscillations. One may infer here that the wake of the fixed cylinder placed upstream provides an
oscillating forcing to the elastically mounted cylinder placed downstream. In the current study,
however, the forcing is imposed on the sphere itself in contrast to the less controlled forcing of
their study. The vibrations are not generated by a wake upstream but rather by rotary oscillations
imposed on the sphere. Thus, it makes sense to describe such vibrations as ’Rotary-induced
vibrations (RIV)’. Similar vibrations have also been observed recently for an elastically mounted
cylinder with imposed rotary oscillation by Wong et al. (2018). They reported vibration increasing
monotonically with U∗ for fR = 1 and �R = 1. Nevertheless, it should be mentioned here that the
vibrations observed in the current study are very different to the galloping response known for
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isolated non-circular bluff bodies; that is a low frequency phenomenon observed at very high flow
velocities (Blevins 1990; Zhao et al. 2014b). In contrast, in the current study, vibrations exhibiting
RIV were are always locked to the forcing frequency. It was also evident that monotonic increasing
amplitudes were associated with the monotonic decreasing �rot values (from ∼ 180◦ to lower
values). It can be conjectured here based on this evidence that RIV will only occur in the U∗ range
where lock-on is observed. In the case of monotonically decreasing �rot values from ∼ 180 to
lower values leads to monotonically increasing amplitude. In cases where �rot remains constant,
there is no appreciable increase in the vibration amplitude. In § 4.1, it was shown that the lock-on
range varies with U∗, becoming narrower with increasing U∗. This leaves a very narrow window
of fR values where lock-on, and hence RIV, can be observed for the entire range of U∗ tested in
the current study.
In § 4.1, the results showed suppression of vibrations for very high frequency (fR ⩾ 3) and

velocity ratios (�R ⩾ 1), even in non-lock-on regions. The question arises, as to whether a specific
set of parameters leads to RIV or VIV, or both? To investigate this, high frequency ratios of fR = 3
and fR = 4 were also investigated. Figure 19 shows the response characteristics for fR = 3 (left)
and fR = 4 (right). A wide lock-in region is evident for both the frequencies extending from ∼ 4.5
to ∼ 11, with a corresponding jump in the Cy (rms). As previously, �total is fixed at 0◦ in the lock-in
region, and the time trace of the displacement signal is highly periodic, as shown in figure 20
(a). When U∗ is increased beyond the lock-in region, the frequency contour plot shows a wide
spectrum of frequencies. The frequency does not lock-on to fR, and nor is there a clean single
frequency response at f ∗ = 1, as observed for lock-in. Interestingly, �total approached 90◦ in this
region. The time trace of the displacement signal shows a non-periodic signal in this range (see
figure 20 (b)).

5. Wake measurements
The VIV of a sphere is induced by streamwise vorticity, in contrast to its two-dimensional

counterpart, the cylinder, whose dynamics are mainly induced by spanwise vorticity. PIV measure-
ments in a plane normal to the flow can reveal important insights into the temporal evolution of
the streamwise vorticity as the vortex loops pass through a cross-plane. Hence, the current study
employs PIV measurements in the cross plane at a distance of 1.5D from the sphere’s downstream
surface, similar to that employed by Govardhan & Williamson (2005) and Sareen et al. (2018b).
Figure 21 shows the vorticity contour plots, phase-averaged over more than 100 cycles, at four
different phases of the oscillation cycle, separated by a quarter period, for a sphere without any
imposed rotary oscillation. The plots are shown for a reduced velocity of U∗ = 6 (mode I). As
evident from figure 21, the streamwise vorticity consists of a dominant counter-rotating vortex pair
consistent with the legs of vortex loops forming on both the sides of the sphere wake (Sakamoto &
Haniu (1990), Govardhan &Williamson (2005) and Sareen et al. (2018b)). As the sphere traverses
from one side to the other, the vorticity changes sign corresponding to hairpin loops being shed
downstream into the wake from opposite sides.
To understand how the wake structures differ in the lock-on region compared to the lock-in

region, some representative cases were chosen in mode I to give an overview of the underlying
associated wake dynamics. PIV measurements were also performed for a fixed velocity ratio of
�R = 1 at U∗ = 6 in mode I for four different fR values. Considering the limitation of the present
experimental setup, measurements were not performed for very high U∗ values, where very large
vibration amplitudes are observed. Moreover, studying the wake in mode I should be sufficient
to highlight some of the main features of the lock-on phenomenon. The chosen fR values are as
follows: fR = 1, where all the dominant frequencies are equal, leading to amplitudes higher than
for the non-rotating sphere; fR = 0.9 corresponding to a lock-on frequency just under fR = 1;
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FIGURE 19. (Colour online) The response characteristics of an elastically-mounted sphere with imposed
rotary oscillations is presented as a function of reduced velocity for a fixed frequency ratio of fR = 0.3 (left)
and fR = 0.9 (right) at a �R value of �R = 1. Refer to figure 4 for further details.
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FIGURE 20. Time traces of the sphere displacement for U ∗ = 6 (left) and U ∗ = 18 (right) for fR = 3.

fR = 1.1 corresponding to lock-on frequency just past fR = 1; and fR = 3, corresponding to the
lock-in region, where the amplitudes recover after the lock-on region.

Figure 22 shows the streamwise vorticity plots for four different phases, separated by a quarter
period of the oscillation cycle, for fR = 0.9 at a velocity ratio of �R = 1 in mode I. The position of
the sphere (placed upstream) and the maximum extent of the sphere vibration have been marked in
dashed lines. As evident from the plots, the wake consists of a counter-rotating vortex pair similar
to the wake of a sphere without any imposed rotation. However, there is a slight change in the
timing of the vortex formation. This finding is consistent with the fact that as the vibrations lock
to the forcing frequency, there is a slight change in �total as shown in figure 4.

When the streamwise vorticity for another lock-in frequency of fR = 1.1 is examined as shown
in figure 23, a drastic change in the vortex formation timing is clearly evident. The plots are exactly
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FIGURE 21. (Colour online) Streamwise vorticity plots showing the dominant counter-rotating vortex pair in
mode I (U ∗ = 6) without any imposed rotation. Each of these plots are separated by a quarter-period, and
were measured at a distance of x∕D = 1.5 from the sphere. The dashed lines show the maximum displacement
of the sphere and the sphere location. Blue contours show clockwise vorticity, red anti-clockwise vorticity.
The normalised vorticity vary in 8 steps in the range !∗ = !D∕U ∈ [−3, 3], where ! is the vorticity.

180◦ out of phase with the plots shown in figure 21 for a non-rotating sphere. This is congruent
with the data reported in figure 4, where one can clearly see that �total jumps from ∼ 0◦ to 180◦
as fR increases from fR = 1 to fR = 1.1 in the lock-on range. To provide a better perspective
on the wake structures, spatio-temporal reconstructions of the sphere wake were generated for
the fR = 1.1 case and compared to fR = 0 case, as shown in figure 24(b) and figure 24 (a). The
spatio-temporal reconstruction was generated from 24 cross-stream vorticity fields, each phase-
averaged for more than 100 cycles. A convection velocity of U (free-stream velocity) was assumed
to build the 3D image. As evident in this case, the wake consists of an alternating two-sided chain
of vortex loops, similar to the wake of an oscillating sphere with no imposed rotation reported by
Govardhan & Williamson (2005) and Sareen et al. (2018b). Of course, this reconstruction should
not be viewed as a typical image of the wake, since it is only representative of the average wake
behaviour as it passes through a fixed downstream plane.
On the other hand, the streamwise vorticity plot for fR = 1, as shown in figure 25, is similar

to that for a sphere without any imposed rotation; there is seen to be a similar timing of vortex
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FIGURE 22. (Colour online) Streamwise vorticity plots showing the dominant counter-rotating vortex pair in
mode I (U ∗ = 6) for the frequency ratio of fR = 0.9 under lock-on. Refer to figure 21 for further details.

(loop) shedding. Again, this is consistent with the data reported in figure 4. One can conclude
here that there is a change in the timing of vortex formation as the vortex shedding locks to fR
with no appreciable change in the vortex structures. The streamwise vorticity field consists of a
counter-rotating vortex pair which flips sign as the sphere traverses from one side to the other, as for
the wake of a sphere with no imposed rotation. Another interesting case to examine is that of higher
frequency ratios (fR > 2), where the vibrations lock-in to fnw again and the amplitude response
recovers. Figure 26 shows streamwise vorticity plots for fR = 3 for the same parameters discussed
earlier for other cases. The timing of vortex formation is similar to that for the non-rotating case.
However, there is an evident reduction in the streamwise vorticity in this case. As also shown
in figure 4, the vibration amplitude and the total transverse force coefficient are smaller than for
the non-rotating case. Therefore, it can be concluded here that although the vibration frequency
reverts to locking-in to fnw instead of fr in this case, a reduction in the vibration amplitude could
still be observed due to the reduction in the streamwise vorticity, in turn leading to a lower total
transverse force acting on the sphere. The effect of high fR is more pronounced in mode II and
mode III, where the vibrations were highly suppressed, as shown in figures 9 and 10.
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FIGURE 23. (Colour online) Streamwise vorticity plots showing the dominant counter-rotating vortex pair in
mode I (U ∗ = 6) for fR = 1.1 during the lock-on phenomenon. Refer to figure 21 for further details.

6. Conclusions
A comprehensive series of experiments and wake measurements were performed to examine

the effect of imposed rotary oscillation on the FIV of a sphere that is elastically mounted in the
cross-flow direction. The response was investigated for a wide range of forcing parameters, non-
dimensional forcing frequency, fR, in the range 0 ⩽ fR ⩽ 5, forcing amplitude, �R, in the range
0 ⩽ �R ⩽ 2, and reduced velocity U∗ between 0 ⩽ U∗ ⩽ 20. It was found that when the forcing
frequency fr was in close proximity to the natural frequency fnw, the vibrations locked-on to fr
instead of fnw inhibiting the resonance response. The vibrations were greatly suppressed in the
lock-on region, except for the case when fR = fnw, where an ‘enhanced resonance’ response was
observed leading to very large amplitudes, even greater than those observed for the non-rotating
sphere in some cases. In the lock-on region, a sudden jump in the total phase was observed from
0◦ to 180◦. The displacement signal was highly modulated in the non lock-on regions. Near the
lock-on boundaries, a wide spectrum of frequencies was observed. Interestingly, suppression was
also observed in the non lock-on regions for very high fR and �R values. Mode I was found to
be quite resistant to control requiring very high velocity ratios for the suppression of vibrations.
On the other hand, control (suppression) was most effective for mode III. Overall, relatively high
velocity ratios (quantified in this paper) were required to suppress the vibrations. The width of the
RLO region increased with an increase in �R for all three modes. When the reduced velocity was
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FIGURE 24. (Colour online) Three-dimensional spatio-temporal reconstruction of the sphere wake based on
phase-averaged streamwise vorticity (crossing the transverse plane at a distance 1.5D from the sphere rear
surface) for (a): fR = 0 and (b): fR = 1.1 and �R = 1 in the lock-in regime. The wake is shown for mode
I (U ∗ = 6), corresponding to a Reynolds number of ∼ 8000 . Blue indicates anti-clockwise vorticity, and
red clock-vorticity (both in x-y plane). The figure clearly shows that the dominant wake structures remain
the same for both the cases, however, there is a clear change in the timing of vortex shedding for fR = 1.1
compared to fR = 0.

increased progressively, several types of responses with different characteristic behaviours were
observed. For some cases, the vibration amplitudes increased monotonically with an increase in
U∗. Such vibrations have been termed ‘Rotary-induced vibrations’. The phase difference between
the rotary oscillations and the sphere displacement �rot was found to be crucial in determining the
response. Monotonically decreasing �rot values were always associated with the monotonically
increasing responses. Wake measurements performed in the cross-plane revealed structures similar
to those for an oscillating sphere without imposed rotation; however, there was a change in the
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FIGURE 25. (Colour online) Streamwise vorticity plots showing the dominant counter-rotating vortex pair in
mode I (U ∗ = 6) for a frequency ratio of fR = 1.0 under resonance. Refer to figure 21 for further details.

timing of vortex formation. For a high frequency ratio of fR = 3, there was a clear reduction in
the streamwise vorticity consistent with a reduced amplitude response.
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