
J. Fluid Mech. (2018), vol. 837, pp. 931–966. c© Cambridge University Press 2018
doi:10.1017/jfm.2017.881

931

Transverse flow-induced vibrations of a sphere
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Flow-induced vibration of an elastically mounted sphere was investigated computati-
onally for the classic case where the sphere motion was constrained to move in
a direction transverse to the free stream. This study, therefore, provides additional
insight into, and comparison with, corresponding experimental studies of transverse
motion, and distinction from numerical and experimental studies with specific
constraints such as tethering (Williamson & Govardhan, J. Fluids Struct., vol. 11,
1997, pp. 293–305) or motion in all three directions (Behara et al., J. Fluid Mech.,
vol. 686, 2011, pp. 426–450). Two sets of simulations were conducted by fixing the
Reynolds number at Re= 300 or 800 over the reduced velocity ranges 3.56U∗6 100
and 3 6 U∗ 6 50 respectively. The reduced mass of the sphere was kept constant at
mr = 1.5 for both sets. The flow satisfied the incompressible Navier–Stokes equations,
while the coupled sphere motion was modelled by a spring–mass–damper system,
with damping set to zero. The sphere showed a highly periodic large-amplitude
vortex-induced vibration response over a lower reduced velocity range at both
Reynolds numbers considered. This response was designated as branch A, rather
than the initial/upper or mode I/II branch, in order to allow it to be discussed
independently from the observed experimental response at higher Reynolds numbers
which shows both similarities and differences. At Re = 300, it occurred over the
range 5.56U∗6 10, with a maximum oscillation amplitude of ≈0.4D. On increasing
the Reynolds number to 800, this branch widened to cover the range 4.5 6 U∗ 6 13
and the oscillation amplitude increased (maximum amplitude ≈0.6D). In terms of
wake dynamics, within this response branch, two streets of interlaced hairpin-type
vortex loops were formed behind the sphere. The upper and lower sets of vortex
loops were disconnected, as were their accompanying tails. The wake maintained
symmetry relative to the plane defined by the streamwise and sphere motion directions.
The topology of this wake structure was analogous to that seen experimentally at
higher Reynolds numbers by Govardhan & Williamson (J. Fluid Mech., vol. 531,
2005, pp. 11–47). At even higher reduced velocities, the sphere showed distinct
oscillatory behaviour at both Reynolds numbers examined. At Re = 300, small but
non-negligible oscillations were found to occur (amplitude of ≈0.05D) within the
reduced velocity ranges 13 6 U∗ 6 16 and 26 6 U∗ 6 100, named branch B and
branch C respectively. Moreover, within these reduced velocity ranges, the centre of
motion of the sphere shifted from its static position. In contrast, at Re = 800, the
sphere showed an aperiodic intermittent mode IV vibration state immediately beyond
branch A, for U∗> 14. This vibration state was designated as the intermittent branch.
Interestingly, the dominant frequency of the sphere vibration was close to the natural
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frequency of the system, as observed by Jauvtis et al. (J. Fluids Struct., vol. 15(3),
2001, pp. 555–563) in higher-mass-ratio higher-Reynolds-number experiments. The
oscillation amplitude increased as the reduced velocity increased and reached a value
of ≈0.9D at U∗ = 50. The wake was irregular, with multiple vortex shedding cycles
during each cycle of sphere oscillation.

Key words: aerodynamics, computational methods, flow–structure interactions

1. Introduction
Over many years, considerable research effort has been directed to examining the

nature of fluid–structure interaction (FSI). This is due to its practical importance to
many fields where coupled interactions between a fluid flow and solid-body motion
can occur. One of the most crucial phenomena associated with FSI is flow-induced
vibration (FIV), which is the oscillatory response of a coupled fluid–structure system
due to fluid forcing. Vortex-induced vibration, or VIV, is a category of FIV, occurring
through the synchronization of structural vibration with wake unsteadiness, typically
vortex shedding. Fatigue damage, or even catastrophic structural failure, can result
from FIV. Thus, for structural design, it is always important to consider such possible
resonant interactions. Aircraft, marine vessels, submarines, ground vehicles, chimneys
and bridges are good examples of relevant engineering systems. Fundamental
understanding of VIV has been revealed through experimental and numerical
research studies for generically shaped bodies, with major findings summarized
in, e.g., Parkinson (1989), Sarpkaya (2004), Williamson & Govardhan (2004, 2008)
and Wu, Ge & Hong (2012). While most research conducted has been based on
cylindrical structures, especially circular cylinders, numerous applications involve
three-dimensional body shapes, including spherical bodies.

Key features of VIV of a sphere were revealed through experiments by Williamson
& Govardhan (1997). They found that a tethered sphere oscillates strongly at a
transverse saturation amplitude of close to two diameters peak to peak. In line
with previous studies of VIV of a circular cylinder, they recognized that plotting
the amplitude response versus the reduced velocity, U∗ = U/fnD, where U is the
free-stream velocity, fn is the natural frequency of the system and D is the sphere
diameter, was more suitable for interpreting and classifying the behaviour than
using the amplitude response versus the Reynolds number. They observed that the
transverse oscillation is dominant compared with the streamwise oscillation and that
the streamwise oscillation frequency is twice that of the transverse oscillation. They
also observed that there were two different modes of oscillation, namely modes I and
II. Both two modes appeared within the reduced velocity range U∗ ∼ 5–10, and the
body oscillation frequency, f , was close to the static body vortex shedding frequency,
fvo ( fvo/f ∼ 1); this clearly indicated that these vibrations were induced from vortex
shedding behind the sphere. However, there was no clear boundary between mode I
and mode II in the amplitude response diagram of VIV of a sphere, contrary to the
amplitude response of a cylinder, which has distinct initial, upper and lower branches.
Later, the question of how mode II differed from mode I was answered by Govardhan
& Williamson (2005) by examining the vortex phase, φvo. The vortex phase is the
phase difference between the vortex force on the sphere and the sphere displacement.
They found that there was approximately a 90◦ phase shift between modes I and II.
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Flow-induced vibration of a sphere 933

In addition to the first two modes of vibration observed with light spheres (m∗< 1,
where m∗ is the density ratio between solid and fluid) by Williamson & Govardhan
(1997), Jauvtis, Govardhan & Williamson (2001) found that there existed another
mode of vibration (mode III) which appeared within the reduced velocity range
U∗ ∼ 20–40 for heavy (tethered) spheres (m∗ � 1). For mode III vibration, it was
found that the principal vortex shedding frequency was three to eight times higher
than the sphere vibration frequency. Therefore, they stressed that this vibration
phenomenon was difficult to explain by classical ‘lock-in’ theories. Later, Govardhan
& Williamson (2005) argued that, in the absence of any body vibration in mode III,
there would be no fluid forcing at the natural frequency of the system. However,
if the body were to be perturbed, it could generate a self-sustaining vortex force
that could amplify, leading to body vibrations of large amplitudes. They categorized
mode III as ‘movement-induced excitation’ (Naudascher & Rockwell 2012). Jauvtis
et al. (2001) also observed another mode of regular vibration, mode IV, as the
reduced velocity was further increased to the range U∗ > 100. In this mode, the
sphere oscillation frequency was not regular and periodic as it was in the first three
modes, but, interestingly, the main frequency component was very close to the natural
frequency.

Govardhan & Williamson (2005) used digital particle image velocimetry (DPIV)
to observe the formation of a chain of hairpin-type vortex loops on both sides of
the wake behind the sphere for both modes I and II. Furthermore, they observed
a change in the timing of vortex shedding relative to body motion once it passed
from mode I to II, consistent with their observation of a change of vortex phase
between these modes. They identified that for a sphere undergoing VIV, there was a
preferred orientation of the loops to maintain a symmetry with the plane containing
the principal transverse vibrations. For mode III vibrations, they observed a two-sided
chain of trailing vortex pairs locked to the body oscillation frequency. In related
work, Brücker (1999) investigated the nature of freely rising air bubbles in water.
The bubbles showed spiralling, zigzagging and rocking motions during their rise
in water according to the diameters of the bubbles. For a zigzagging bubble, an
alternate oppositely oriented hairpin-type wake structure was observed, similar to the
observation of Govardhan & Williamson (2005) for mode I and II vibrations. For a
spiralling bubble, a steady wake was observed, which wound in a helical path.

Pregnalato (2003) numerically investigated the FIV of a tethered sphere at a
Reynolds number of 500 for two mass ratios, m∗ = 0.082 and m∗ = 0.8. He
observed three modes of vibration, corresponding to the last three modes of vibration
characterized by Jauvtis et al. (2001). In the study of Pregnalato (2003), the sphere
exhibited mode II vibration in the reduced velocity range U∗ = 5–10, and mode III
vibration for U∗ > 10 for both mass ratios. Mode II and III vibrations were highly
sinusoidal, similarly to the experimental studies. He observed mode IV vibration with
the higher mass ratio, m∗=0.8, sphere. However, for the low mass ratio, mode IV was
not observed, regardless of the reduced velocity. Recently, Lee, Hourigan & Thompson
(2013) studied VIV of a neutrally buoyant (m∗ = 1) tethered sphere constrained to
move on a spherical surface, which may be considered as locally planar for small
vibration amplitudes relative to the tether length. This was a combined numerical
and experimental study, covering the Reynolds number range Re = 50–12 000. They
distinguished seven broad and relatively distinct sphere oscillation regimes and
characteristic wake structures.

Behara, Borazjani & Sotiropoulos (2011) investigated VIV of a sphere through
numerical simulations. As distinct from the current study, the sphere was mounted
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on elastic supports, allowing movement in all three spatial directions, with the
Reynolds number set to Re = 300, reduced mass mr = 2, for the reduced velocity
range U∗ = 4–9. They observed two distinct branches of the response curve in the
synchronization regime, each corresponding to a distinct type of wake structure,
identified as hairpin and spiral vortices. The oscillation amplitude was lower in
the hairpin branch compared with the spiral branch. When the wake was in the
hairpin shedding mode, the sphere moved along a linear path in the transverse
plane, while when spiral vortices were being shed, the sphere vibrated on a circular
orbit. Furthermore, under VIV on the spiral mode branch, they observed hysteresis
in the response amplitude at the beginning of the synchronization regime. More
recently, Behara & Sotiropoulos (2016) extended this numerical study by expanding
the reduced velocity range to U∗ = 0–13. They observed that the lock-in regime was
U∗ = 5.8–12.2 for the spiral mode and U∗ = 4.8–8 for the hairpin mode. The hairpin
mode was found to become unstable and merge with the response curve of the spiral
mode at U∗ = 9. They also studied the effect of Reynolds number on VIV at a
fixed reduced velocity, U∗= 9. They found that the synchronized oscillation persisted
up to Re = 1000, although the sphere trajectory and wake structures were strongly
dependent on the Reynolds number. The spiral wake observed at Re= 300 underwent
a transition to a hairpin wake in the Reynolds number range Re = 500–600. During
this transition, the sphere trajectories on the transverse plane changed from circular
to elliptic orbits.

In many previous studies of a tethered sphere wake (Williamson & Govardhan
1997; Pregnalato 2003; Govardhan & Williamson 2005), researchers have observed
that the transverse oscillation was of higher amplitude than the streamwise oscillation.
Even though computational studies have been reported previously on VIV of a
sphere allowed to move in all three spatial directions (Behara et al. 2011; Behara &
Sotiropoulos 2016), surprisingly little effort appears to have been directed towards
simulating the reference case of VIV of a sphere free to move only in the transverse
direction. Therefore, this is the case considered in the present study. To gain a better
insight, two different Reynolds numbers were chosen for this investigation, namely
Re= 300 and 800. The Reynolds number of 300 was chosen because a static sphere
experiences unsteady vortex shedding at Re= 300, and, in previous numerical studies,
Behara et al. (2011) and Behara & Sotiropoulos (2016) observed large-amplitude
vibrations at this Reynolds number. The Reynolds number of 800 was chosen since
both a static and a tethered sphere show irregular vortex shedding at this Reynolds
number (e.g. see Lee et al. 2013). Moreover, simulations at Re = 800 enable more
relevant comparison with experimental studies conduced at higher Reynolds numbers.
A mass ratio of m∗ = 2.685 was chosen for this study, which is equivalent to a
reduced mass of mr = 1.5. This is representative of the lower end of mass ratios
that have been used for cylinder and sphere VIV experiments in water (e.g. Carberry,
Sheridan & Rockwell 2001; Williamson & Govardhan 2004; Govardhan & Williamson
2005; Wong et al. 2017; Sareen et al. 2018). Wide ranges of reduced velocity were
considered to improve the understanding of FIV. In particular, U∗= 3.5–100 and 3–50
were chosen at Re = 300 and 800 respectively. Finally, very long integration times
were used to gain a better understanding of the asymptotic system response, as it
was observed that some non-asymptotic states can be maintained for significant times
and yet may eventually evolve to different final states.

The structure of the paper is organized as follows: the numerical methods used
are presented in § 2; verification and validation of the numerical method and
implementation are presented in § 3; the predicted FIVs of a sphere at Re = 300
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Flow-induced vibration of a sphere 935

are discussed in § 4; effects of Reynolds number on FIV of a sphere are discussed
in § 5 with results obtained at Re= 800, including comparisons with previous work;
concluding remarks are made in § 6.

2. Numerical approach
The numerical method employed in this study is based on the open-source CFD

package OpenFOAM. This package is capable of handling a wide range of flows.
It also comes with a built-in dynamic mesh technique that enables the solution of
FSI problems (as Ding, Bernitsas & Kim (2013), Habchi et al. (2013) and Wu,
Bernitsas & Maki (2014) used in their studies). Dynamic mesh techniques are
generally expensive since the mesh is deformed according to the solid-body motion
during each time step. However, for VIV of a single body, the efficiency of solving
the coupled fluid–solid system can be improved by choosing a non-deformable
moving mesh, as adopted by Blackburn & Henderson (1996), Leontini et al. (2006a),
Leontini, Thompson & Hourigan (2006b) and Leontini, Lo Jacono & Thompson
(2013). Therefore, instead of using the built-in dynamic mesh technique, a new
solver was developed to treat the coupled fluid–solid system with a non-deformable
mesh. This approach is considerably more efficient than the dynamic mesh technique.
The FSI system and the FSI solver are discussed in detail in the following two
subsections.

2.1. Governing equations
Fluid flow was modelled in the moving reference frame attached to the centre of
the sphere. This is a non-inertial frame since it accelerates according to the sphere
motion. Thus, the fluid momentum equations need to be adjusted accordingly. This
can be achieved by adding the acceleration of the sphere to the momentum equation
on the right-hand side, acting as a fictitious force in the opposite direction. The fluid is
assumed to be incompressible and viscous, while the motion of the sphere is assumed
to behave as a spring–mass–damper system. The coupled fluid–solid system can be
described by the Navier–Stokes equations, given by (2.1) and (2.2), together with the
governing motion of the sphere, given by (2.3),

∂u
∂t
+ (u � r)u=−

1
ρ
rp+r � (νru)− ÿs, (2.1)

r � u= 0, (2.2)
m ÿs + c ẏs + k ys = f l. (2.3)

Here, u= u(x, y, z, t) is the velocity vector field in the moving frame, p is the scalar
pressure field, ρ is the fluid density, ν is the kinematic viscosity, and ys, ẏs and ÿs are
the sphere displacement, velocity and acceleration vectors respectively. In addition, m
is the mass of the sphere, c is the damping constant, k is the structural spring constant
and f l is the flow-induced integrated vector force acting on the sphere due to pressure
and viscous shear forces acting on the body surface.

2.2. The fluid–structure solver
A new fully coupled FSI solver (named vivicoFoam) was developed, based on the
‘icoFoam’ solver for laminar flows, to solve the coupled fluid–solid system defined
by (2.1)–(2.3). This solver employs a predictor–corrector iterative method, which
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predicts the solid motion explicitly in the first iteration and then corrects it as
necessary through several corrector iterations. Once an approximation to the solid
motion is known (from the predictor or a previous corrector step), the Navier–Stokes
equations are solved using the PISO algorithm (introduced by Issa 1986). The details
of the predictor and corrector iterations at the (n+ 1)th time step are as follows.

In the predictor iteration, initially, the sphere acceleration, ÿs, is predicted explicitly
using stored accelerations at previous time steps, based on third-order polynomial
extrapolation,

ÿ(n+1)
s = 3 ÿ(n)s − 3 ÿ(n−1)

s + ÿ(n−2)
s . (2.4)

Once the sphere acceleration, ÿs, is known, the Navier–Stokes equations can be
solved. However, before proceeding to solve these equations, the sphere velocity, ẏs,
and displacement, ys, are estimated by integrating the predicted ÿs and estimated ẏs
by a third-order Adams–Moulton method by

ẏ(n+1)
s = ẏ(n)s +

δt
12
(5 ÿ(n+1)

s + 8 ÿ(n)s − ÿ(n−1)
s ) (2.5)

and

y(n+1)
s = y(n)s +

δt
12
(5 ẏ(n+1)

s + 8 ẏ(n)s − ẏ(n−1)
s ) (2.6)

respectively, where δt is the time step. At the end of the predictor step, the Navier–
Stokes equations are solved with the predicted ÿs, and the fluid force exerted on the
sphere is calculated for the following corrector iteration.

In the corrector iteration, ÿs is corrected with the values of ys, ẏs and f l calculated
in the predictor or the previous corrector step by

ÿ(n+1)
s =−

c
m

ẏ(n+1)
s −

k
m

y(n+1)
s +

1
m

f (n+1)
l . (2.7)

Then, the correct values of ẏs and ys are updated using (2.5) and (2.6) with the
corrected ÿs. Subsequently, the Navier–Stokes equations are solved with the corrected
ÿs, and the fluid force exerted on the sphere is calculated. Several corrector steps are
performed until the magnitudes of the fluid force and the solid acceleration converge
to within given error bounds.

It should be recalled that the fluid domain is modelled in a moving frame of
reference. The motion of this reference frame is acknowledged through the outer
domain velocity boundary conditions (except for the outlet boundary). In this study,
all of the outer boundaries except for the outlet have velocities prescribed on them.
Once the predictor–corrector iterative process is completed, the velocity boundary
conditions are updated according to the sphere velocity, ẏs, before proceeding to the
next time step.

2.3. Mesh and domain details
A uniform flow in the x direction with magnitude U past an elastically mounted sphere
of diameter D, restricted to translate in the y axis, was simulated numerically using
the newly built FSI solver described above. As shown in figure 1, a cubic domain
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– free-stream velocity
– fluid velocity vector
– fluid pressure
– outward unit normal vector
– sphere diameter
– sphere velocity vector
– spring constant

FIGURE 1. (Colour online) Schematic of the computational domain and boundary
conditions.

with a side length of 100D was chosen for the computational domain with the sphere
at its centre. In this study, the sphere motion was assumed to behave as a spring–mass
system with zero damping constant to obtain the highest vibration amplitude. In the
FSI solver, ys, ẏs, ÿs and f l were treated as vectors with zero x and z components since
the sphere motion was restricted to the y direction. At the inlet and sphere boundaries,
a Dirichlet boundary condition was prescribed for the velocity, while a zero-gradient
Neumann boundary condition was prescribed for the pressure, as shown in figure 1.
At the sphere surface, no-slip and no-penetration boundary conditions were applied.
At the outlet boundary, the pressure was set to zero while the velocity was prescribed
as zero gradient in the surface normal direction.

A block-structured grid was generated using Ansys-ICEM-CFD for the fluid domain,
as shown in figure 2. A cubic block, with a side length of 5D, was placed around the
sphere and was decomposed into six square frustums, as shown in figure 2(b). In each
square frustum, exponentially distributed nodes were assigned in the radial direction to
achieve high concentration near the sphere surface (see figure 2c). In order to resolve
the wake structures behind the sphere, a large number of grid points were assigned
in the downstream direction. To examine the sensitivity of the computed solutions to
grid refinement (see the next section), four successively finer grids were employed.
The first three grids were generated by keeping the number of cells at the sphere
surface, N, constant. Grid 1 employed '0.79 million cells. In grid 1, the minimum
cell thickness in the radial direction from the sphere surface, δl, was 0.011D. The
second grid (grid 2) was generated by decreasing δl to 0.004D. This yielded '1.25
million cells, with approximately 10–16 cells within the boundary layer before flow
separation. This was sufficient to resolve the flow in the near wake. However, a third
grid (grid 3) was generated by further decreasing δl to 0.002D with the same number
of cells as grid 2, to determine the effect of δl on the solution. Finally, grid 4 was
generated by increasing the number of cells at the sphere surface with δl = 0.004D
to observe the effect of cell thickness in the tangential direction on the solution. This
yielded '2.57 million cells. The time step, δt, used for each grid was 0.005D/U.
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x

y

z

(a) (b)

(c)

FIGURE 2. (Colour online) The unstructured-grid computational domain: (a) isometric
view; (b) the cubic block placed around the sphere, which was decomposed into six square
frustums; (c) grid near the sphere surface at the x–y plane.

Study Cd Cl St

Present study 0.665 0.070 0.137
Poon et al. (2010) 0.658 0.067 0.134
Giacobello, Ooi & Balachandar (2009) 0.658 0.067 0.134
Kim (2009) 0.658 0.067 0.134
Kim, Kim & Choi (2001) 0.657 0.067 0.137
Constantinescu & Squires (2000) 0.665 0.065 0.136
Johnson & Patel (1999) 0.656 0.069 0.137

TABLE 1. Comparison of computed time-averaged drag coefficient, Cd, time-averaged
lift coefficient, Cl, and Strouhal number, St, at Re= 300 with other numerical studies.

3. Numerical sensitivity and validation studies

This section presents verification and validation studies. The first study aims to
verify that the computational domain and mesh are adequate to capture the flow
behind a stationary sphere at Re = 300 and validates against previous predictions.
The second study is undertaken to validate the newly developed FSI solver for VIV
studies. Finally, a mesh resolution study for the VIV of a sphere is also presented at
the end of this section.

3.1. Rigid sphere
Flow past a rigidly mounted sphere was modelled using the non-VIV solver
(which formed the basis of the VIV solver) at Re = 300. Calculated values for
the time-averaged drag coefficient, Cd, time-averaged lift coefficient, Cl, and Strouhal
number, St, are compared with other studies in table 1. The present results are in
close agreement with literature values, generally falling within the narrow ranges of
values from accepted benchmark studies (Johnson & Patel 1999; Constantinescu &
Squires 2000; Kim et al. 2001; Giacobello et al. 2009; Kim 2009; Poon et al. 2010).
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FIGURE 3. (Colour online) Response of an elastically mounted cylinder as a function
of reduced velocity: Re = 200, m∗ = 10, ζ = 0.01. (a) Maximum oscillation amplitude,
A∗max; (b) peak lift coefficient, C′l,max; (c) frequency ratio, f ∗= f /fn; (d) average phase angle
between lift force and cylinder displacement, φ.

3.2. Vortex-induced vibration of a circular cylinder
To validate the new solver developed for general FSI problems, a set of simulations
was conducted on the FIV of a circular cylinder with parameters chosen from Leontini
et al. (2006b). The mass ratio was set to m∗ = 10 and the damping ratio to ζ =

0.01. (In this case, the cylinder displacement was modelled by a spring–mass–damper
system.) The Reynolds number was Re = 200 and the reduced velocity range was
3 6 U∗ 6 7.5. Figure 3 compares current predictions for the maximum oscillation
amplitude, A∗max, the peak lift coefficient, C′l,max, the frequency ratio, f ∗ = f /fn, and
the average phase angle between the lift force and the cylinder displacement, φ, with
results from Leontini et al. (2006b); the results obtained are almost identical, with
minor differences probably attributable to a slightly different blockage ratio, mesh
resolution and/or convergence of the predictor–corrector iteration steps. This study
provides confidence in the new solver.

3.3. Resolution study
All FSI simulations reported in this work were carried out on grid 2. To demonstrate
that this grid was sufficient to resolve the flow in FSI simulations, grid sensitivity
analysis was performed for the vibrating sphere case for the following two sets
of parameters: Re = 300 and U∗ = 7, and Re = 800 and U∗ = 6, with a sphere
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Re Grid δl N A∗ Cd C′d,rms C′l,rms f /fn

300 grid 1 (0.79 million cells) 0.011D 7 350 0.38 0.81 0.05 0.11 0.93
300 grid 2 (1.25 million cells) 0.004D 7 350 0.37 0.80 0.05 0.11 0.93
300 grid 3 (1.25 million cells) 0.002D 7 350 0.37 0.80 0.05 0.10 0.93
300 grid 4 (2.57 million cells) 0.004D 18 150 0.37 0.80 0.05 0.10 0.93
800 grid 1 (0.79 million cells) 0.011D 7 350 0.52 0.76 0.12 0.31 0.93
800 grid 2 (1.25 million cells) 0.004D 7 350 0.52 0.75 0.12 0.31 0.93
800 grid 3 (1.25 million cells) 0.002D 7 350 0.52 0.75 0.12 0.31 0.93
800 grid 4 (2.57 million cells) 0.004D 18 150 0.51 0.75 0.12 0.32 0.92

TABLE 2. The sensitivity of the spatial resolution of the flow parameters of VIV of a
sphere at Re= 300 and U∗= 7, and Re= 800 and U∗= 6 (m∗= 2.865 in each case). Here,
δl is the minimum thickness of the cells (in the radial direction) on the sphere surface
in each grid and N is the number of cells on the sphere surface. The root mean square
(r.m.s.) value of the sphere oscillation amplitude, A∗, the time-averaged drag coefficient,
Cd, the r.m.s. values of the fluctuation components of the drag and lift coefficients, Cd,rms
and Cl,rms, and the ratio of the vortex shedding frequency to the natural frequency, f /fn,
are listed.

of m∗ = 2.865. These U∗ values were chosen because the sphere showed periodic
oscillation with a large amplitude near these values. Table 2 compares the effect of
grid refinement on the results for the r.m.s. value of the sphere oscillation amplitude,
A∗, the force coefficients (time-averaged drag coefficient, Cd, r.m.s. values of the
fluctuation components of the drag and lift coefficients, C′d,rms and C′l,rms) and the
frequency ratio, f ∗ = f /fn. It is noted that for this set of variables, there is less than
a 3 % variation in the predictions between grids 1 and 2 over all variables for both
Re = 300 and 800. Moreover, the results obtained from grids 2–4 are in a good
agreement with one another. This suggests that further decrease of δl or increase
of N will only affect the predictions weakly. Thus, this observation leads to the
conclusion that grid 2 is sufficient for the VIV simulations, and, therefore, this grid
was used to obtain all subsequently presented results.

4. Flow-induced vibration of a sphere at Re D 300

This section documents and discusses the results obtained for the flow past an
elastically mounted sphere allowed to oscillate only along the y direction at a
Reynolds number of Re = 300 and reduced mass of mr = 1.5 (corresponding to a
mass ratio of m∗ = 2.865) over the reduced velocity range 3.5 6 U∗ 6 100. The
Reynolds number of the flow was prescribed through the kinematic viscosity in (2.1)
(ν =DU/Re) and the reduced velocity was prescribed through the spring constant in
the solid motion equation (k= 4mp2/U∗2).

4.1. Sphere response
Figure 4 shows characteristics of the VIV response of the sphere in the reduced
velocity range 3.56U∗6100 in terms of sphere oscillation amplitude, A∗=

√
2 Yrms/D,

mean displacement of the sphere, Y/D, and frequency ratio, f ∗ = f /fn, where
Y = ys · (0 1 0) is the displacement of the sphere in the y direction, f is the oscillation
frequency of the sphere and fn is the natural frequency of the system calculated
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FIGURE 4. Response of an elastically mounted (on the y axis) sphere as a function of the
reduced velocity, U∗ (calculated without the added-mass effect), at Re= 300, m∗ = 2.865;
panels (a,c,e) show the results for U∗ = 3.5–100 while (b,d, f ) show enlarged views for
U∗ = 3.5–30: (a,b) sphere oscillation amplitude, A∗, (c,d) time-averaged non-dimensional
sphere displacement, Y/D, (e, f ) oscillation frequency normalized by the system natural
frequency, f ∗ = f /fn. The letters (A, B, C, D, E and F) in (a) mark specific points along
the response curve at which the time history of the sphere displacement is displayed in
figure 5.

without the added-mass effect. As can be seen from figure 4(a,b), the sphere oscillated
significantly, with a maximum oscillation amplitude of approximately 0.4D, in the
reduced velocity range 5.5 6 U∗ 6 10. Within this range, the sphere oscillation
frequency was locked in with the vortex shedding frequency and close to the static
body vortex shedding frequency, fvo. Moreover, the sphere oscillation frequency was
synchronized with the natural frequency of the system (figure 4e, f ), confirming that
this is a VIV response. This vibration state was designated as branch A.

Figure 4(c,d) displays the variation of the mean position of the sphere with
reduced velocity. In the range 3.5 6 U∗ 6 5, where oscillations were very small,
the mean position of the sphere was shifted away from its initial position by a
small amount. This is consistent with the asymmetric wake of a stationary sphere
at Re = 300 (e.g. Johnson & Patel 1999; Leweke et al. 1999; Ghidsera & Dusek
2000; Thompson, Leweke & Provansal 2001). Furthermore, in this reduced velocity
range, the mean displacement of the sphere, Y/D, increased as the reduced velocity,
U∗, increased. However, once the sphere began to oscillate in the reduced velocity
range 5.5 6 U∗ 6 10, it oscillated symmetrically about its initial position, yielding a
zero time-mean displacement (see figure 4c,d). Moreover, the oscillations observed
in branch A were purely sinusoidal, with zero offset (as the time history of sphere
displacement, Y/D, shows in figure 5(a) at U∗ = 7), suggesting that the wake was
symmetrical in the oscillation plane.
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FIGURE 5. Time history of sphere displacement, Y/D, against non-dimensional time, τ =
tU/D: (a) case A at U∗ = 7, (b) case B at U∗ = 10.5, (c) case C at U∗ = 15, (d) case D
at U∗ = 20, (e) case E at U∗ = 28 and ( f ) case F at U∗ = 75. See figure 4(a,b) for the
locations of the points A–F along the sphere response curve.

The time history diagrams in figure 5 show that it takes many oscillation periods
to reach the asymptotic system state. For example, in case A, the sphere began to
oscillate at τ ' 60, with the oscillation amplitude reaching its final value at τ '
150, where τ = t U/D is the non-dimensional time. In some cases (see below), the
oscillation response can maintain a semi-stable state for many periods prior to relaxing
towards the long-time asymptotic state. Hence, care is needed to ensure that the flow
is integrated forward in time for long enough to reach the representative long-time
system state.

In contrast to the sinusoidal responses observed for U∗ 6 10, quite different
responses were observed for the reduced velocities U∗ > 10. Furthermore, for each
U∗ > 10 case, varying sphere responses were observed at different time instances.
Time histories of the sphere displacement at the points B, C, D, E and F (marked in
figure 4(a,b) at U∗ = 10.5, 15, 20, 28 and 75) are shown in figure 5(b), (c), (d), (e)
and ( f ) respectively. Within the range U∗ ∈ [10.5–40], initially, the sphere oscillated
with a maximum amplitude of approximately 0.15D, but later the oscillation amplitude
decreased greatly. Therefore, all of these cases required simulations over extended
times until the solution became stable. In these cases, the time-mean position of the
sphere moved away from its initial position by a considerable amount. In addition,
over the initial evolution, the oscillation amplitude and the mean position of the
sphere varied with the simulation time. Over that initial period, the oscillations were
considerably weaker than the purely sinusoidal oscillations observed in branch A.

In the ranges U∗ ∈ [13–16] and [26–100], the oscillation amplitude decreased to
≈0.05D and 0.015D respectively after reaching the asymptotic state; see figure 5(c,e).
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Flow-induced vibration of a sphere 943

However, these vibrations were notably periodic. In particular, the response range
13 6 U∗ 6 16 is designated branch B and the range 26 6 U∗ 6 100 is designated
branch C. The sphere oscillation frequencies in both branches were locked in with
the vortex shedding frequency. It is not clear that either of these two branches is
directly analogous to the response branches observed in higher-Reynolds-number
experiments. The sphere oscillation frequency for branch B was approximately equal
to the system natural frequency, fn; see figure 4(e, f ). However, for branch C, the
sphere oscillation frequency was not close to the natural frequency of the system, but
was close to half of the static body vortex shedding frequency.

Weak initial oscillations in the reduced velocity ranges U∗ ∈ [10.5–12] and U∗ ∈
[17–25] eventually faded away, as shown in figures 5(b,d), leading to a minimally
oscillatory final state. The reduced velocity ranges U∗ ∈[3.5–5], [10.5–12] and [17–25]
are desynchronization regimes where no significant sphere oscillations were observed
(points B and D marked in figure 4a,b). In those three ranges, except for a few cases,
sphere oscillations were observed with a very small amplitude (6 0.005D), and the
sphere oscillation frequency was equal to the static body vortex shedding frequency,
fvo, as shown in figure 4(e, f ).

In both branches B and C, the time-mean displacement of the sphere increased as
the reduced velocity increased (see figure 4c,d). However, there was not any clear
pattern in the mean displacement over the reduced velocity ranges U∗ ∈ [10.5–12]
and [17–25], where no oscillations were observed. When the reduced velocity was
increased further from 30 to 100, the sphere shifted away from its initial position by
a substantial margin and oscillated periodically with an amplitude of approximately
0.05D about its new time-mean position, as shown in the time history of sphere
displacement at U∗ = 75 in figure 5( f ). Moreover, in this regime, the sphere showed
a secondary frequency besides the main frequency, as shown in 5( f ) in the zoomed-in
view. For U∗> 30, the time-mean displacement of the sphere increased as the reduced
velocity increased. At U∗ = 100, the time-mean position of the sphere migrated to
∼ 5D away from its initial position (see figure 4c,e).

4.1.1. Comparison with other research studies
Behara & Sotiropoulos (2016) studied VIV of a sphere that was allowed to move in

all three spatial directions for the same Reynolds number with a sphere with a reduced
mass of mr = 2. They observed two different hysteretic VIV responses, with different
possible states observable at the same reduced velocity. In one case, the sphere moved
in a linear path in the transverse plane (xz plane) with hairpin-type vortex loops shed
behind the sphere. In the other case, the sphere moved in a circular orbit with spiral
vortices observed in the wake. Figure 6 compares the amplitude response observed
with a sphere of reduced mass mr=2 for branch A with that of Behara & Sotiropoulos
(2016) for their response branch corresponding to linear oscillations for the reduced
velocity range 3.5<U∗ < 10. Here, the sphere response amplitude is observed to be
higher when motion is restricted to one DOF (degree of freedom). For the 3-DOF
movement, the three orthogonal springs may affect the motion slightly differently from
restricted 1-DOF motion aligned with the springs; hence, it is not clear how these two
problems exactly relate to each other despite the observed linear motion in a plane
in both cases. Despite this, the general amplitude response and lock-in range agree
reasonably well, while noting a shift to a slightly higher lock-in range for the current
simulations.

The sphere response curves observed for the reduced masses mr = 1.5 and 2
almost lie on top of each other (compare the response curves in figures 4a and 6).
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FIGURE 6. (Colour online) Comparison of VIV response for a sphere free to move only
in the transverse direction (y only), u, and free to move in all three spatial directions by
Behara & Sotiropoulos (2016) when the sphere is moving in a linear path in the transverse
plane (xz plane), q (orange), at a Reynolds number of Re = 300 and a mass ratio of
m∗ = 3.8197 (mr = 2).
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FIGURE 7. Variation of the sphere response amplitude at various mass ratios, at Re= 300
and U∗ = 6.5.

This demonstrates that a small variation in mass ratio does not significantly affect
the amplitude response. This was further investigated by varying the mass ratio of
the sphere from 1.2 to 10 at a fixed reduced velocity of U∗ = 6.5, where the peak
response occurred (see figure 7). The variation of the sphere response amplitude
with mass ratio was less than 2 %. This verifies that there is no significant effect
of mass ratio on the sphere peak response amplitude over this mass ratio range,
consistent with previous experimental findings for VIV of low-mass-damped spheres
and cylinders (Griffin 1980; Govardhan & Williamson 2006).

The highly periodic and large-amplitude vibration observed in branch A resembles
the vibration observed over a similar reduced velocity range by Govardhan &
Williamson (2005) in their experimental study on tethered spheres at much higher
Reynolds numbers. They found that the oscillations of a tethered sphere (xy motion)
and a hydroelastic sphere (y only) compared well for similar mass damping parameters.
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Flow-induced vibration of a sphere 945

In this velocity range, they observed two district modes of vibration (modes I and II).
In contrast to the clearly distinguishable mode transitions of a circular cylinder, there
was a smooth transition between modes I and II for a sphere. These two modes were
only clearly distinguishable from the amplitude response curve for spheres with small
mass ratios (Jauvtis et al. 2001, figure 2). It was even harder to distinguish them
from the amplitude response for hydroelastic spheres (Govardhan & Williamson 2005,
figure 2b). At Re = 300, the amplitude response variation is not indicative of two
different vibration modes.

For mode I, Govardhan & Williamson (2005) observed an oscillation amplitude of
≈0.4D for a sphere of mass ratio m∗ = 2.83 in 2-DOF motion (xy motion); this is
similar to the current observations for m∗ = 2.865 and with 1-DOF motion in the
y direction. However, they observed an oscillation amplitude of ≈0.8D for mode II
which was not the case in this study. Indeed, for both modes I and II, they observed
that the oscillating frequency of the sphere was close to the natural frequency of the
system, consistent with the low-Reynolds-number behaviour here. However, it would
be misleading to claim a strong analogy between modes I and II, and branch A, at
this low Reynolds number.

4.2. Force measurements
This section presents the pressure and viscous force components acting on the sphere
in the x, y and z directions. Figure 8 shows the variation with U∗ of the mean drag
coefficient, Cd (the force coefficient in the x direction), the mean lift coefficients in
the y and z directions, Cly and Clz respectively, the mean total lift coefficient, Cl =q

C
2
ly +C

2
lz, and the mean angle of lift, θ , where θ = arctan(Clz/Cly) is the angle

between the force coefficients in the y and z directions.
In the reduced velocity range 3.5 6 U∗ 6 5, both Cd and Cly were constant,

consistent with negligible sphere oscillation. Indeed, these values were identical
with the corresponding force coefficients of a rigidly mounted sphere at the same
Reynolds number. The non-zero mean displacement of the sphere in this reduced
velocity range is attributable to the non-zero mean lift. As expected, there was no
force component in the z direction over this U∗ range. Figure 9 shows the variation
of the r.m.s. values of the force coefficients in the x, y and z directions, Cd,rms,
Cly,rms and Clz,rms respectively, with the reduced velocity. Over this range, there were
negligible fluctuations of forces in any direction. Therefore, in this non-resonance U∗

range, the sphere effectively behaved like a rigidly mounted sphere with no significant
oscillatory motion, as discussed previously.

As the sphere began to oscillate at U∗=5.5, the mean drag coefficient, Cd, suddenly
increased by ≈30 % (see figure 8a,b) from its pre-oscillatory value. Over the reduced
velocity range U∗ ∈ [5.5–10], Cd decreased gradually as U∗ increased, returning to the
non-oscillatory value at the end of the range. A similar behaviour of Cd was reported
by Behara et al. (2011) in their study of VIV of a sphere in 3-DOF. In this velocity
range, the mean lift coefficient in the y direction, Cly, dropped to zero, as shown in
figure 8(c,d). This is consistent with symmetric sphere oscillations observed through
its initial position in this regime. However, within this U∗ range, the forces in the x
and y directions fluctuated with large amplitudes, as shown in figure 9(a–d) by the
r.m.s. values of the fluctuation amplitudes of the force coefficients. This is evidence
of the enhancement of sphere oscillations in this regime (branch A). As can be seen
from figure 9(a–d), the r.m.s. values of the drag coefficient and the lift coefficient in
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FIGURE 8. Variation of the force coefficients with the reduced velocity; panels (a,c,e,g,i)
show the results for U∗ ∈ [3.5–100] and (b,d, f,h,j) show enlarged views for U∗ ∈ [3.5–25]:
(a,b) mean drag coefficient, Cd, (c,d) mean lift coefficient in the y direction, Cly, (e, f )

mean lift coefficient in the z direction, Clz, (g,h) mean lift coefficient, Cl=

q
C

2
ly +C

2
lz, and

(i,j) mean lift angle, θ , where θ = arctan(Clz/Cly) is the angle between the lift coefficients
in the y and z directions.

the y direction (C′d,rms and C′ly,rms respectively) increased suddenly at U∗ = 5.5 and
then gradually decreased to zero as U∗ increased to 10. The analytical solution of
the governing motion equation of the sphere (2.3) subjected to a periodic input force
shows that the sphere oscillation amplitude is proportional to the fluctuation amplitude
of the force, C′ly, and is inversely proportional to the spring constant, k= 4mp2/U∗2.
Therefore, the sphere oscillation amplitude, A∗, is proportional to C′ly × U∗2. The
exponentially decaying C′ly, as shown in figure 9(c,d) for increasing U∗, leads to the
amplitude response profile shown in figure 4(a,b), whereby there is a sharp drop of
the maximum oscillation amplitude.
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FIGURE 9. Variation of the r.m.s. values of the fluctuation components of the force
coefficients with the reduced velocity; panels (a,c,e) show the results for U∗ = 3.5–100
and (b,d, f ) show enlarged views for U∗ = 3.5–25: (a,b) r.m.s. of drag coefficient, C′d,rms,
(c,d) r.m.s. of lift coefficient in the y direction, C′ly,rms, (e, f ) r.m.s. of lift coefficient in the
z direction, C′lz,rms.

For the case of U∗ 6 10, there was no force component in the z direction, as
expected. However, as U∗ increased beyond 10, surprisingly, a force component in
the z direction was found, indicating that the wake loses mirror symmetry in this
range. Figure 10 shows the time histories of the force coefficients in the y and z
directions at the points A–F marked in figure 4(a,b). As can be seen, for cases B–E
(in the reduced velocity range U∗ ∈ [10.5–40]), a force component in the z direction
appears gradually with simulation time. The y and z components of the forces are
of the same order of magnitude (see figure 8c–f ). Therefore, the influence of the z
component of the force is not negligible in this case. If the sphere were to be allowed
to move in both the y and z directions, it might well orbit with an elliptical trajectory.
For these reduced velocities, initially, forces in the y direction were irregular, with a
large oscillation amplitude. However, as the simulation time progressed, forces in the
y direction were attenuated and the oscillating amplitudes decreased. The behaviour
of the forces is consistent with the behaviour of the sphere displacement. The sphere
oscillation amplitude decreased as the fluctuation amplitude of the force in the y
direction decreased. Hence, there was a small oscillation amplitude for vibration
branches B and C. However, the force component in the z direction diminished with
increasing U∗ for U∗ > 26, in terms of both the mean and the fluctuating amplitude
(see figures 8e, f and 9e, f ). The mean lift force in the y direction approached that of
a stationary sphere with increasing U∗ for U∗ > 26.

As figure 8(c,d) shows, the lift force in the y direction was not zero in the vibration
branches B (13 6 U∗ 6 16) and C (26 6 U∗ 6 100). This non-zero lift force moved
the sphere away from its initial position, whereupon vibration in branches B and

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 M

on
as

h 
U

ni
ve

rs
ity

, o
n 

13
 Ja

n 
20

18
 a

t 0
4:

03
:3

5,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
1

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2017.881


948 M. M. Rajamuni, M. C. Thompson and K. Hourigan

0 100 200 300 400 500 600 700 0 100 200 300 400 500

0 100 200 300 400 500

0 100 200 3000 100 200 300 400 500 600

600 700

250 12500 500 750 1000

 –0.1

0.1

0

 –0.1

0.1

0

 –0.1

0.1

0

 –0.1

0.1

0

 –0.2

0.2

0

 0

0.05

 0.10

0.15

(a) (b)

(c) (d)

(e) ( f )

FIGURE 10. (Colour online) Time history of the force coefficients in the y and z directions
(Cly and Clz respectively); Cly is shown with the orange colour (light) curves while Clz is
shown with the black colour (dark) curves; τ = tU/D is the non-dimensional time: (a)
case A at U∗= 7, (b) case B at U∗= 10.5, (c) case C at U∗= 15, (d) case D at U∗= 20,
(e) case E at U∗ = 28 and ( f ) case F at U∗ = 75. See figure 4 for the locations of the
points A–F on the sphere response curve.

C occurred about this modified position. This may be another reason for the small
amplitude of vibrations for these branches. As U∗ increased from 26 to 100, the mean
displacement of the sphere increased greatly, attaining a value of 5D at U∗ = 100.
However, the mean lift force in the y direction increased only to the stationary
sphere value. Therefore, the increase in the mean displacement of the sphere can be
considered to be due to the effective decrease of the stiffness of the spring as the
reduced velocity is increased.

For U∗ > 10, even though the individual mean lift coefficients in the y and
z directions varied with the reduced velocity, the mean value of the total lift

coefficient, Cl =

q
C

2
ly +C

2
lz, interestingly remained constant and equal to that of

a stationary sphere (see figure 8g,h). This indicates that except for branch A, where
large-amplitude vibrations were observed, the time-mean of the total lift force was
essentially identical to its non-VIV value. The variation of the mean lift angle with the
reduced velocity is shown in figure 8(i,j), where the angle of lift, θ , is arctan(Clz/Cly).
The mean angle was almost 0◦ for U∗ 6 10. It was approximately −45◦ within the
first desynchronization regime and in branch B, and approximately −90◦ in the
second desynchronization regime. At the beginning of branch C, the mean lift angle
was approximately −45◦, and it approached 0◦ as the reduced velocity increased,
which is consistent with the variation of Clz for branch C.
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FIGURE 11. (Colour online) Variation of the total phase, Ctotal, and vortex phase, Cvortex,
with U∗; (b) and (d) show the zoomed-in view for small U∗.

4.2.1. Phase between sphere displacement and forces
As Govardhan & Williamson (2005) discussed, the total fluid force in the y

direction, Ftotal, can be split into a potential force component, Fpotential = −mA ÿ(t),
which arises due to the potential added-mass force, and a vortex force component,
Fvortex, which is due to the dynamics of vorticity. This recognizes the fact that a flow
solution can be constructed as a sum of a potential flow field plus a velocity field
associated with vorticity in the flow (see, e.g., Lighthill 1986). Here, mA is the added
mass due to the motion of the sphere. Therefore, the vortex force can be computed
from

Fvortex = Ftotal − Fpotential. (4.1)

Normalization of all forces by 0.5ρU2pD2/4 gives

Cvortex =Ctotal −Cpotential. (4.2)

Govardhan & Williamson (2005) observed a shift in vortex phase, φvortex, of 90◦
in the transition between mode I and mode II. The total phase, φtotal, only increased
slightly over the same U∗ range, but it increased towards 180◦ at the reduced velocity
close to the peak amplitude of the mode II range (Govardhan & Williamson 1997,
2005; Jauvtis et al. 2001; Sareen et al. 2018). Those experiments also show that
there is no desynchronized region between modes I and II for small-mass-ratio
1-DOF hydroelastic systems, although this is the case for light (m∗ < 1) tethered
sphere systems. Figure 11 shows the variation of the total phase and vortex phase
with the reduced velocity. As can be seen from figure 11(d), over branch A, the
vortex force gradually increased from 0◦ to 180◦ while the total phase stayed at 0◦.
Therefore, at the beginning of branch A, the force/displacement phasing is consistent
with mode I. The increase in total phase does not occur over the range covered by
this branch, but instead occurs in branch B; however, this is not to conclude that
branch B is analogous to the experimental mode II.

Figure 12 shows the variation of sphere displacement, total force, Ctotal, and vortex
force, Cvortex, for two periods for branch A at the reduced velocities U∗ = 5 and
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total

FIGURE 12. (Colour online) Relationship between the total force in the y direction, Ctotal,
and the vortex force in the y direction, Cvortex, in branch A: (a) at U∗= 5.5 (mode I) and
(b) at U∗ = 7 (mode II).

7 respectively. As can be seen, the sphere vibration frequency was locked in with
Ctotal as well as with Cvortex. As mentioned earlier, there is approximately 180◦ phase
difference between Cvortex and Y towards the end of branch A.

As the reduced velocity increased, for branches B and C, φvortex stayed at ∼180◦
(see figure 11). However, φtotal suddenly shifted from 0◦ to 180◦ within branch B.
Indeed, from this point of view, branch B shows some similarities to mode II for light
tethered systems, especially as the oscillation frequency follows a (1/2)fvo variation
– see figures 4 and 7 of Govardhan & Williamson (2005). Interestingly, branch C
also follows this variation but with a difference in vortex and total phase of 180◦.
On the other hand, mode III, observed in high-mass-ratio higher-Reynolds-number
experiments (Jauvtis et al. 2001), is locked to the natural frequency of the system,
with each oscillation period corresponding to 3–8 vortex shedding periods (Govardhan
& Williamson 2005). This is certainly not the case for branch C here, where
oscillation occurs at close to the subharmonic of the non-VIV vortex shedding
frequency. Thus, branch C and mode III do not appear to be related.

4.3. Wake structures
Vortical structures in the wake are depicted using isosurfaces of the second invariant
of the velocity tensor (known as the Q-criterion; see Hunt, Wray & Moin 1988). As
figure 13 shows, for branch A, two regular streets of hairpin vortices form the wake.
This structure resembles those in the wake observed by Govardhan & Williamson
(2005) for their mode I and II vibrations using DPIV to extract the vorticity field. The
wake also appears identical to the hairpin-type wake observed by Behara et al. (2011)
for VIV of a sphere with 3-DOF at Re = 300; the current study extends the range
of reduced velocity considered by an order of magnitude as well as extending the
length of the simulations, leading to different evolved states in some cases. The wake
observed for a rigidly mounted sphere (shown in figure 14) is modified considerably
under vibration of the sphere. Vortex loops are stretched towards positive and negative
y directions as the sphere vibrates. In particular, a vortex loop sheds in the positive y
direction as the sphere moves to the negative y direction. The evolution of the wake
for branch A (U∗= 7) over one cycle is shown in figure 15. As can be seen, a vortex
loop initiated from the outside sheds like a hairpin and ends from the inside. As a loop
is shed, three tails form, one from the tip and two from the sides. Later, these three
tails interconnect by creating two small loops. However, as the vortex loop moves
further, the connection from the tip disappears and the tail forms a ‘U’-shape. The
direction of the tail is the same as the direction of the streamlines upstream. The wake
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FIGURE 13. Instantaneous wake structures visualized by the Q-criterion (Q = 0.001) of
branch A (at U∗ = 7), branch B (at U∗ = 15) and branch C (at U∗ = 75) vibrations.

x

x

y

z

FIGURE 14. Instantaneous wake structures for a rigidly mounted sphere at Re= 300.

is symmetric in the xy plane (see also figure 13, branch A in xz plane). The upper
and lower vortex streets are equal in strength as the sphere oscillation is symmetric
through its initial position.

As figure 13 shows, the wake observed for vibration branch B is quite different.
This wake resembles more closely that of a rigidly mounted sphere than the wake
for branch A. The orientation of the wake is no longer aligned with the xy plane, as
also indicated by the non-zero lift angle shown in figure 9. A lift angle of θ ≈ 50◦
was found for branch B, and thus the wake for branch B is rotated by an angle of
≈50◦. In contrast to the wake for branch A, the loops in the wake for this branch are
interconnected and asymmetric.

The wake structures observed in vibration branch C (see figure 13) again more
closely resemble the wake structures observed for a rigidly mounted sphere than the
wake for branch A. However, the loops are elongated along the x axis, and the non-
dimensional shedding frequency is lower than for those structures in branches A and B.
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(a) (b)

FIGURE 15. Evolution of vortical wake structures behind the sphere with time for the
maximum response case of U∗= 7. (a) The first half of the cycle with the sphere moving
downwards, and (b) the second half of the cycle with the sphere moving upwards.

x

x

x

y

y

y(a)

(b)

(c)

FIGURE 16. Instantaneous wake structures in the xy plane in the desynchronization
regimes showing rotation of the wake alignment relative to the oscillation direction: (a)
at U∗ = 4 ∈ [3.5–5], (b) at U∗ = 10.5 ∈ [10.5–12], (c) at U∗ = 20 ∈ [17–25].

It should be recalled that in this branch, the oscillation frequency is half of the normal
shedding frequency. In contrast to the vortical wake structures for branch B, the wake
for branch C at higher U∗ values has the same orientation as for branch A and is
symmetric through the xy plane. This is reflected by the lift angle again decreasing at
higher reduced velocities. However, the loops are oriented more towards the negative
y direction, due to the non-zero lift force in the y direction.

Figure 16 shows the wake structures observed in the desynchronization regimes
where the sphere does not vibrate significantly. In each of these regimes, the wake
structures strongly resemble those observed for a rigidly mounted sphere. However,
their orientations are different. In the first desynchronization regime, U∗ ∈ [3.5–5],
the orientation of the wake is identical to that of the wake of a rigidly mounted
sphere. However, in the second and third desynchronization regimes (U∗ ∈ [10.5–12]
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and [17–25]), the wake has been rotated by angles of ≈ 50◦ and 90◦; again, this is
consistent with the observed lift angle variation.

Overall, the wake structures observed in branch A are similar to those observed by
Govardhan & Williamson (2005) for their mode I and II vibrations and Behara et al.
(2011) for the hairpin response branch. However, the wake structures observed for
branches B and C for the reduced velocity ranges U∗ ∈ [13–16] and [26–100], where
the sphere oscillated with a small oscillation amplitude, are different from the wake
structures for branch A as well as from the wake structures observed by Govardhan
& Williamson (2005) for mode III. This also explains why the vibrations observed in
branches B and C are different from the large oscillation amplitudes reported in the
experimental studies.

5. Flow-induced vibration of a sphere at Re D 800
The investigation of FIV of a sphere was extended by increasing the Reynolds

number to Re = 800. At Re = 300, even though higher reduced velocities were
considered, the low-frequency vibration regimes observed by experimental studies
with tethered spheres (mode III and IV vibrations investigated by Jauvtis et al. (2001))
were not able to be reproduced. Govardhan & Williamson (2005) explained that mode
III vibration response occurs for the normalized velocity regime (U∗/f ∗)S= fvo/f = 3
to 8, where S is the Strouhal number. Furthermore, mode IV vibration appeared after
mode III for (U∗/f ∗)S approximately greater than 19. However, at Re = 300, the
highest normalized velocity, (U∗/f ∗)S, that could be attained was 2 since f ≈ (1/2)fvo
for higher reduced velocities (U∗ > 26). Therefore, to investigate the low-frequency
regime and the effect of the Reynolds number in the laminar regime, the Reynolds
number of the flow was increased to Re = 800. The mass ratio used was again
m∗ = 2.865. Similarly to the Re = 300 case, the sphere was restricted to move only
in the y direction.

5.1. Sphere response at Re= 800
Figure 17 shows the characteristics of the FIV response of the sphere at Re=800 over
the reduced velocity range 36U∗6 50 in terms of the sphere response amplitude, A∗,
the time-mean displacement of the sphere, Y/D, and the frequency ratio, f ∗ = f /fn.
Similarly to the Re= 300 case, the sphere suddenly began to oscillate as the reduced
velocity increased to a value of 4.5. The sphere vibration amplitude maintained a bell-
shaped curve with a highest oscillation amplitude of ≈ 0.6D until U∗= 13. Then, the
oscillation amplitude increased as the reduced velocity increased from U∗= 14 to 50,
yielding an amplitude of approximately 0.9D at U∗ = 50.

Within the reduced velocity range U∗ = 4.5–13, the sphere vibrated periodically
about its initial position (Y/D= 0 in this velocity regime; see figure 17b). Moreover,
the amplitude response varied smoothly within this reduced velocity range. The
sphere vibration frequency was synchronized with the vortex shedding frequency.
Furthermore, it was identical to the natural frequency of the system ( f ∗ = f /fn = 1;
see figure 17c). Thus, these are indeed VIVs. This reduced velocity range can be
identified as branch A introduced for the simulations at Re= 300. Moreover, branch
A shows some aspects of behaviour similar to those seen in mode I and II vibrations
observed in previous experimental studies. This will be elaborated later in the section
discussing force measurements.

In contrast to the smooth amplitude response curve for U∗ = 4.5–13, the measured
r.m.s. amplitudes were scattered, with an overall increasing trend for U∗ > 14.
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FIGURE 17. Response of an elastically mounted (on y only) sphere as a function of
the reduced velocity, U∗, at Re = 800 and m∗ = 2.865: (a) sphere oscillation amplitude,
A∗ =

√
2Yrms/D, (b) time-averaged non-dimensional sphere displacement, Y/D, (c) sphere

oscillation frequency normalized by the system natural frequency, f ∗ = f /fn.

This scatter is presumably due to insufficient sampling times for the amplitude signal.
Moreover, for reduced velocities U∗ > 14, the sphere oscillations were not periodic
as at lower reduced velocities. The periodicity of the amplitude response (Govardhan
& Williamson 2005) is defined as �A =

√
2Yrms/Ymax, where Ymax is the maximum

oscillation amplitude observed at each U∗. According to this definition, the periodicity
takes values between 0 and 1, with �A = 1 for purely sinusoidal signals. Figure 18
shows the variation of the periodicity of the sphere response with the reduced velocity.
As can be seen from figure 18(b), for U∗= 4.5–11.5, the sphere response was purely
sinusoidal. However, as U∗ was increased beyond 12, the sinusoidal nature of the
signal decreased and the periodicity of the response dropped dramatically to a value
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FIGURE 18. Variation of the sphere response amplitude and the periodicity of the
response, �A =

√
2Yrms/Ymax, with the reduced velocity, U∗.

of ≈ 0.5 at U∗= 14. For U∗> 14, the sphere response was highly aperiodic. However,
the periodicity of the response remained close to 0.5, although showing a slightly
decreasing trend as the reduced velocity increased from U∗ = 14. In this regime,
the periodicity was also scattered, similarly to the amplitude response. Furthermore,
the time-mean position of the sphere was scattered around the initial position of the
sphere. These observations indicate that the sphere oscillation response was chaotic
for U∗ > 14. However, in this regime, the main oscillation frequency component
of the sphere was close to the natural frequency of the system, albeit it was not
synchronized with the main vortex shedding frequency (see figures 17c and 19).
Thus, the vibration state in the intermittent branch is not VIV.

The vibrations observed in the intermittent branch resembled the mode IV vibration
discovered by Jauvtis et al. (2001) with a tethered sphere of m∗= 80 for U∗> 100 in
wind-tunnel experiments. Even through Jauvtis et al. observed mode IV vibration with
a high-mass-ratio sphere for very large reduced velocities (U∗ > 100), surprisingly, a
very similar response was observed with a small-mass-ratio sphere and for quite low
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Dominant sphere oscillation frequency, f

0
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3010 20 40 500

FIGURE 19. (Colour online) Comparison of the dominant sphere oscillation frequency
with the dominant vortex shedding frequency and the natural frequency of the system in
branch A and the intermittent branch.

reduced velocities (U∗ 6 14) at Re = 800. This may be an effect of zero structural
damping, and it seems possible that an increased damping may reduce or even
suppress these randomly induced vibrations.

The sphere response at Re= 800 was much closer to that observed in experimental
studies than the response at Re= 300. However, at Re= 800, intermittent vibrations
(mode IV) were observed directly after the initial vibration response branch without
an intervening range of mode III vibration. Again, this may be due to the effect of
(zero) damping ratio, mass ratio or even Reynolds number.

Govardhan & Williamson (2005) recognized that the streamwise vortex pair of a
sphere creates a lift force analogous to aircraft trailing vortices. As the direction of
the streamwise vortices switches according to the two-sided hairpin structures behind
the sphere, it creates a periodic lift force that leads to vibration of the sphere and
synchronization. Hence, VIV of a sphere (or other such three-dimensional bodies)
can occur due to the streamwise trailing vortex pair formed behind it. According to
Govardhan & Williamson (2005), all of the first three modes of vibrations (modes I,
II and III) occur due to the synchronization of sphere displacement with the vortex
force (or streamwise vortex structures). Govardhan & Williamson showed that the
sphere vibration phase aligns with the vortex force in mode I and lags in phase with
the vortex force in mode II. Moreover, they observed multiple vortex loops shed
per sphere vibration cycle in mode III. The mode III vibration state was identified
as moment-induced vibration. It is possible that this state may not appear at low
Reynolds numbers, or that it requires a higher mass ratio or a non-zero damping to
stabilize it. This is difficult to investigate in a numerical parameter study because
increase in the mass ratio requires considerably longer integration times to reach an
asymptotic state.

The recent experimental study of Sareen et al. (2018) investigated the effect of
sphere rotation on VIV of a sphere that is free to oscillate in the cross-flow direction.
The amplitude responses of the sphere at Reynolds numbers of 300 and 800 are
compared with the experimental results of Sareen et al. (2018) for the case of a
sphere with zero rotation in figure 20. At this point, it worth mentioning that there
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Sareen et al. (2018)

FIGURE 20. Effect of the Reynolds number on the sphere response amplitude: u at Re=
300, @ at Re = 800, A experimental results from Sareen et al. (2018) with no sphere
rotation, for which the Reynolds number varies between Re' 5 000 and 30 000 over this
U∗ range. (For the latter study, m∗= 14.2 and the mass damping parameter m∗ζ = 0.0207.)

is a slight difference between our numerical study and previous experimental studies.
In this study, the Reynolds number of the flow was kept constant while varying the
spring constant to vary the reduced velocity. However, in experimental studies, the
reduced velocity is generally varied by adjusting the flow velocity. Thus, the Reynolds
number also varies with the reduced velocity. The Reynolds number in the study by
Sareen et al. (2018) was varied between 5 000 and 30 000. As can be seen from
figure 20, at low reduced velocities (U∗ 6 17), the peak sphere response amplitude
increases with increasing Reynolds number. The shape of the amplitude response
curves varies successively from Re = 300 to 800 to higher Reynolds numbers. In
particular, as the Reynolds number is increased, the transition from mode I to mode
II in this branch is relatively clear even at Re = 800. At Re = 300, there is no
indication of mode II response before reaching the end of the branch.

Comparison of the amplitude responses for Reynolds numbers of 800 and 300
shows a higher response amplitude at Re= 800 at each reduced velocity. In addition,
the range of reduced velocities that show large-amplitude periodic vibration (branch A)
is widened as the Reynolds number is increased from Re= 300 to 800. Moreover, at
higher reduced velocities, the sphere response shows aperiodic intermittent vibrations
(mode IV) at Re= 800, while it shows periodic vibrations with a very small amplitude
at Re= 300. Unsurprisingly, these observations show the strong effect of the Reynolds
number on FIV.

5.2. Force measurements at Re= 800
At the beginning of branch A (4.56U∗6 13), where the sphere vibrations are purely
sinusoidal, the force components were also sinusoidal, as shown in figure 21(a)
at U∗ = 6. Not only the transverse force component in the y direction but also
the streamwise force component fluctuated with a significant oscillation amplitude.
Moreover, the frequency of the streamwise force was twice the transverse frequency.
Therefore, if the sphere were allowed to move in the streamwise direction, it would
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FIGURE 21. (Colour online) The time histories of the drag and lift (in the y and z
directions) force coefficients, Cd, Cly and Clz respectively, in branch A (a,b) and the
intermittent branch (c,d) for 20 cycles of sphere vibration: (a) U∗ = 6, (b) U∗ = 12, (c)
U∗ = 30 and (d) U∗ = 46.

0

180

5 10 15 20

Branch A

FIGURE 22. Variation of the total and vortex phases (φtotal and φvortex) with U∗ at Re=800
over branch A.

show streamwise vibration with a small oscillation amplitude, as reported in
Govardhan & Williamson (2005). In this regime, the force in the z direction oscillated
with a negligible amplitude compared with the force in the y direction. Towards the
end of this reduced velocity range, the drag and lift forces in the y direction were
less sinusoidal, yet still showed a strong periodic component, as shown in figure 21(b)
at U∗ = 12.

In branch A, the displacement signal of the sphere was locked to both the total and
the vortex force signals (see figures 23 and 24). Figure 22 shows the variation of the
total phase, φtotal, and the vortex phase, φvortex, with the reduced velocity up to U∗=20.
The vortex phase rises up to 180◦ over the first part of branch A, consistent with the
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Flow-induced vibration of a sphere 959

FIGURE 23. (Colour online) The relationship between the total force in the y direction,
Ctotal, and the vortex force in the y direction, Cvortex, in branch A: (a) at U∗ = 5 and (b)
at U∗ = 12.

FIGURE 24. (Colour online) Power spectrum of the sphere response, Y/D, total force,
Ctotal, and vortex force, Cvortex, in branch A: (a) at U∗ = 5 and (b) at 12.

mode I behaviour seen in experiments (see figure 23a). The total phase rises towards
180◦ towards the end of the branch, which is also seen experimentally in the mode II
region (also see figure 23b). For low-mass-ratio tethered spheres, there is also distinct
change in the frequency response across the mode I to mode II transition (Govardhan
& Williamson 2005), clearly seen for m∗ = 0.76, that is not seen here. It is not clear
whether this is masked by the higher mass ratio of these simulations, which would
mean that any frequency jump would be smaller.

Figure 25 displays the drag and lift (in the y and z directions) force coefficients
in terms of time-mean values and r.m.s. of the fluctuating components. Similarly
to the Re = 300 case, the time-mean drag force coefficient suddenly increases by
≈60 % from its pre-oscillatory value as soon as branch A vibration starts at U∗= 4.5
(see figure 25a). This increment decreases with the reduced velocity in the branch
A regime and returns to the pre-oscillatory value at the end of the range. Similarly
to Cd, the fluctuation amplitudes of both the drag force and the lift force in the y
direction show sudden jumps at the beginning of branch A, and then that increment
decreases with increasing U∗ over branch A (see figure 25b,d). These observations
are consistent with the Re = 300 case as well as with the experimental study of
Sareen et al. (2018).

In branch A, Cly,rms decreases rapidly as the reduced velocity increases. However,
as U∗ passes beyond 11.5, Cly,rms begins to increase again and asymptotes to a value
of 0.06 at the end of the range. Simultaneously, Clz,rms also begins to increase towards
the end of branch A and reaches a value of ≈ 0.06. These observations again show a
smooth transition between branch A and the intermittent branch.
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960 M. M. Rajamuni, M. C. Thompson and K. Hourigan

FIGURE 25. Variation of the time-mean force coefficients (a,c,e) and the r.m.s. of the
fluctuation components of the force coefficients (b,d, f ) in the x, y and z directions with
the reduced velocity, U∗, at Re= 800. The drag force is measured in the x direction and
the lift forces are measured in the y and z directions.

5.2.1. Intermittent branch
For the intermittent branch (U∗ > 14), no significant variation was observed for

either the time-mean or the fluctuation force components with the reduced velocity.
The mean drag coefficient, Cd, was flat at the pre-oscillatory value, while Cly and
Clz were almost zero, as for branch A (see figure 25). All three force components
showed a small fluctuation over the intermittent branch. In particular, Cd,rms was
≈ 0.02, while both Cly,rms and Clz,rms were ≈0.06. The time histories of the forces
in the intermittent branch for approximately 20 sphere oscillation cycles are shown
in figures 21(c) and 21(d) at U∗ = 30 and 46 respectively. As can be seen, the
forces were neither periodic nor locked in with the sphere vibration. Therefore, the
intermittent vibration branch (mode IV) cannot be described by the classic lock-in
theory, but nevertheless represents a response of substantial magnitude. Again, this
intermittent response may be enhanced by the zero damping applied to the current
set of simulations.

5.3. Wake structures at Re= 800
As Sakamoto & Haniu (1990) also found, the wake observed for a stationary sphere
at Re = 800 was irregular in strength and frequency (see figure 26). The wake
became regular as soon as the sphere began to vibrate at U∗ = 4.5. For branch A,
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Flow-induced vibration of a sphere 961

FIGURE 26. Instantaneous wake structure of a stationary sphere at Re= 800.

FIGURE 27. Instantaneous wake structure in branch A (depicted at U∗ = 6) at Re= 800.

similarly to the Re = 300 case, the wake was formed with two streets of equal
strength vortex loops, as shown in figure 27 at U∗ = 6. The vortical structures were
clearly two-sided hairpin loops near the sphere. However, as they moved downstream,
the hairpin structures transformed into rings. Similarly to the Re = 300 case, a tail
was attached to each vortex loop. The vortex loops were slightly twisted in the z
direction; this may be due to the small-amplitude periodic force observed to occur in
the z direction in this regime. The sphere response and force measurements showed
a smooth transition between branch A and the intermittent branch, as discussed in
the previous two sections. However, the vortex structures were regular and the vortex
shedding frequency was locked in with the sphere vibration frequency until the end
of branch A.

In the intermittent branch (mode IV), where the sphere showed intermittent
vibration, the wake was irregular in strength and frequency. Several vortex loops
were observed during an oscillation cycle. Figure 28 shows wake structures, at five
consecutive times during a cycle, observed at U∗ = 30, for which the sphere vibrated
with a large amplitude. In particular, the top wake structure in figure 28 was captured
when the sphere was at its lowest point, while the last structure was captured when
the sphere next returned to its lowest point. As can be seen, the sphere vibration was
not locked in with the vortex shedding. For the intermittent branch, the vortex loop
formation appeared to be chaotic, as was the sphere response.

6. Conclusions

The VIV of a sphere restricted to move in a transverse direction (y direction)
was studied numerically at Re = 300 and 800 over the reduced velocity ranges
U∗ ∈ [3.5–100] and [3–50] respectively for a sphere of mass ratio m∗ = 2.865.
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962 M. M. Rajamuni, M. C. Thompson and K. Hourigan

FIGURE 28. Instantaneous wake structures characteristic of the intermittent branch
(depicted at U∗= 30) and at Re= 800 for a sphere starting at its lowest point and moving
upwards over four consecutive steps.

It was found that the effect of varying Reynolds number on FIV was significant,
with the higher-Reynolds-number simulations showing more similarities with typical
higher-Reynolds-number experimental responses.

At Re = 300, highly periodic and large-amplitude sphere vibration was observed
within the reduced velocity range U∗ ∈ [5.5–10]. The sphere response amplitude curve,
A∗–U∗, was approximately bell-shaped with a maximum oscillation amplitude of 0.4D.
Over this range, the sphere oscillated at the natural frequency of the system, which
also corresponded to the vortex shedding frequency, indicative of VIV. This large-
amplitude VIV response was named branch A. This branch showed some similarity
to the mode I state observed by Govardhan & Williamson (2005), at least in terms of
the jump in vortex phase over the initial part of the branch. The response curve was
also similar to that observed by Behara et al. (2011) in their numerical investigation of
3-DOF sphere VIV at the same Reynolds number and similar mass ratio (m∗=3.8197)
in the reduced velocity range U∗ ∈ [4–9]. Indeed, the effect of mass ratio on VIV
response amplitude was found to be negligible (less than 2 %) for the range 1.2 6
m∗6 10. On increasing the Reynolds number to 800, a similar resonant response was
observed within a wider reduced velocity range, U∗ ∈ [4.5–13], but with an increased
maximum amplitude of ∼0.6D. Compared with the case of Re = 300, the sphere
response amplitude was substantially higher and the synchronization regime was wider.
Towards maximal response, the total phase also increased, consistent with the switch
to mode II observed in experiments. However, no detectable jump in the frequency
response was observed across the branch, as observed in low-mass-ratio experiments,
where there is a distinct change in the frequency response at the transition.

At both Re=300 and 800, within branch A, a lift coefficient with a large fluctuation
amplitude was observed in the direction of sphere motion. The fluctuating lift and
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Flow-induced vibration of a sphere 963

drag coefficients both decreased with increasing reduced velocity. The magnitude
of the mean drag coefficient also displayed the same trend as the fluctuating drag
coefficient. Two streets of hairpin-type vortex loops were shed behind the sphere as
it oscillated, with tails attached to each loop oriented in the streamline direction. This
wake structure strongly resembled that observed by Govardhan & Williamson (2005)
for mode I and II vibrations, as well as the hairpin-type wake observed by Behara
et al. (2011).

As the reduced velocity was increased beyond the branch A regime, the sphere
response was highly dependent on the Reynolds number. For Re = 300, over the
reduced velocity ranges U∗ ∈ [13–16] and [26–100], the sphere vibrated at only
a small amplitude (one order of magnitude less than seen in branch A). These
states were named branches B and C respectively. In branch B, the sphere vibrated
periodically at the system frequency. However, its time-mean position moved away
from its initial position as a result of the non-zero mean lift force in the y direction
due to wake asymmetry. The alignment of the total lift was found to vary from the y
direction by ∼50◦ as the sphere vibration changed from branch A to branch B. This
was matched by a change in the orientation of the vortical structures in the wake.
The branch B wake resembled that of a rigidly mounted sphere with interconnected
vortex loops. Based on these observations, branch B appears to be different from
mode II observed in experimental studies, although there do seem to be similarities
to the mode II oscillation.

For branch C, the sphere response was also periodic. However, besides the dominant
frequency, the response showed an overlaid long-period oscillation. The dominant
sphere vibration frequency was synchronized with the vortex shedding frequency.
However, it was not close to the natural frequency of the system, as it was for
branches A and B, but instead close to half of the vortex shedding frequency for a
stationary sphere. The sphere oscillated about a mean position shifted from its branch
A position. The shift increased as the reduced velocity was increased, reaching a
value of 5D at U∗ = 100. Physically, this shift can be associated with the reduction
of spring stiffness as the reduced velocity is increased. A hairpin-type wake was
observed for branch C as well. However, the vortex loops were more stretched in
the streamwise direction due to the low frequency of shedding. Moreover, the vortex
loops were one-sided.

At Re=800, the sphere was found to vibrate intermittently over the reduced velocity
range U∗ ∈ [14–50] immediately after branch A. This vibration state was named the
intermittent branch. Even though the sphere response was aperiodic, interestingly,
its main vibration frequency component was close to the natural frequency of the
system. However, it was not locked in with the vortex shedding frequency, indicating
a non-VIV response. The measured r.m.s. sphere response amplitudes were scattered,
but with a linear increasing trend over this reduced velocity range. This sphere
response resembles the aperiodic mode IV vibration discovered by Jauvtis et al.
(2001) at higher reduced velocities for a heavy sphere (U∗> 100 and m∗= 80). There
was no sign of mode III occurring prior to the onset of the mode IV vibrations
found in previous experimental studies. This may be an effect of the zero-damping
ratio, possibly coupled with the lower mass ratio/Reynolds number. In the intermittent
branch regime, the time-mean drag coefficient was flat at the pre-oscillatory value
while the time-mean lift coefficient was almost zero. A small fluctuation was observed
in the lift coefficients for the y and z directions and for the drag coefficient. In the
wake, multiple vortices were shed during each sphere oscillation cycle. Moreover, the
vortex shedding was irregular in strength and frequency, as for a stationary sphere
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964 M. M. Rajamuni, M. C. Thompson and K. Hourigan

at Re = 800. Therefore, the generation of this aperiodic vibration appeared to be
a random process made possible by the large difference between the system and
shedding frequencies.

With these observations, we can conclude that the characteristics of FIV of a sphere
are highly dependent on the Reynolds number, particularly at high reduced velocities.
At the higher Reynolds number studied of Re = 800, the initial oscillatory response
branch bore a much stronger similarity to the response observed in the experimental
studies of Sareen et al. (2018) for a low-mass-damped 1-DOF elastically mounted
sphere, but at Reynolds numbers more than an order of magnitude greater. The non-
occurrence of mode III oscillations is puzzling, but the zero-system damping may
contribute to this. It would be interesting to see how increased damping and mass
ratio affect the response in the corresponding reduced velocity range.
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