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The flow behind a cylinder undergoing forced combined oscillatory motion has been studied. The
motion consists of two independent oscillations: cross-stream translation and rotation. Previous
studies have extensively investigated the effect of these motions individually on cylinder wakes;
however, the investigation of their combined effect is new. The motivation lies in its application to
vortex-induced vibration and its suppression and to biomimetic motion. The focus is on the effect
of the phase difference between the two motions. The results show that there is an unexpected loss
of synchronization of the wake for a finite range of phase differences. © 2009 American Institute of

Physics. [DOI: 10.1063/1.3139184]

The primary goal of this research is to understand the
physical mechanisms behind the response of a cylinder wake
to the combined forcing mechanisms of cross-stream trans-
lation and rotational oscillations. With an in-depth under-
standing of the flow physics it may be possible to propose a
novel means of actively or passively suppressing the lock-on
between vortex shedding and transverse oscillation. Also, we
are interested in the application to biomimetic motions and,
in particular, to carangiform motion." There has been consid-
erable research on the effect of either transverse or rotational
oscillations on cylinder wakes, as discussed in the extensive
reviews.>? Primarily, these have focused on the translational
oscillation due to their focus on vortex-induced vibration.
There have also been studies of the effect of rotational oscil-
lation on wakes.*” Previous numerical work has also been
performed on the effect of the combined motions in quies-
cent fluids® and when there is a flow past the cylinder;7 how-
ever, the influence of an important parameter was not con-
sidered. Indeed, previous interesting results®® indicate that
the phase difference between the two motions is of consid-
erable importance and this is the focus of the research dis-
cussed here. This work is part of a more extensive set of
experiments that considers the full range of independent
variables.

The experiments were conducted in the FLAIR free-
surface closed-loop water channel at Monash University. A
schematic of the problem is given in Fig. 1. The cylinder
used was 800 mm in length and with an outer diameter of
D=20 mm, giving an aspect ratio of 40. The experiments
were performed for a fixed upstream velocity U,
=0.0606 m/s giving Re=U.D/v=1322. Two sinusoidal
motions were imposed, namely, translational (cross stream),
given by y(r)=A, sin(2mf,r)/D, and rotational, given by
0(t)=A 4 sin(2af jt+®P). The frequencies are fixed close to
that of the natural frequency (7~'=f,=f,=0.6 s~ =fy). The
natural frequency was found to be equal to fy=~0.6154 s
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The Strouhal number based on this frequency is about St
=~ fyD/U,,=0.203 and the Strouhal number of the forcing is
St,=f,D/U.,,=0.198. The experiments presented are for fixed
amplitudes of oscillation, A,=D/2 and A,=1. These ampli-
tudes combined with the equal frequencies provide equal
maximum velocities from the translational and rotational
motions. The maximum velocities from the forcing are equal
to Uy =27f,A,=0.0377 m/s which correspond to a ratio of
Upax/ Ux=0.62.

As mentioned earlier, the results presented here show the
effect of the phase difference (®) between the translational
and rotational motions on the wake. This parameter was cho-
sen as its variation led to interesting behavior in a quiescent
fluid. Only a brief outline of that case will be given; a more
detailed discussion can be found in Refs. 1 and 6. If the
maximum velocities of the oscillatory motions are equal, it
can easily be shown that there will be an uneven distribution
of velocity at the surface of the cylinder depending on the
phase imposed. Indeed, for opposing phases ($=180°) the
two velocities will cancel on one side (orthogonal to the
translational motion) and add on the other side. This creates
a vorticity difference between the two halves of the cylinder,
resulting in a wake flow orthogonal to the translational
movement. The method used here to characterize the wake of
this forced cylinder is via particle image velocimetry (PIV).
The flow was seeded with spherical granular polyamide par-
ticles having a mean diameter of 55 um and specific gravity
of 1.016. The particles were illuminated using two mini yt-
trium aluminum garnet laser sources. The plane of interest
for these experiments was orthogonal to the cylinder’s axis
(xy plane) and downstream (x direction) of the cylinder. A
small section of the cylinder is replaced by a thin-walled
transparent cylinder, whose interior is filled with distilled
water. It is located at about 9D from the end of cylinder. The
measured xy plane is located through the center of this win-
dow. The experimental setup provided a field of view of
approximately 6D X 6D.

Figure 2 presents motion phase-locked vorticity isocon-
tours taken at r=T for various phase differences. The image
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FIG. 1. Schematic showing the problem geometry and important parameters

relevant to the combined forced oscillation and the circular cylinder model.
The streamwise direction is the x direction.
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at the top left shows the case where the two motions are of
opposite phase (®=180°); we observe a 25 mode (two single
vortices shed per period) in a single row aligned in the me-
dial plane. The field of view does not allow us to see the
double row that should occur further downstream.””" The
structure of a double-row wake is shown for the ®=-30°
case, in which alternate vortices align in two rows offset
from the centerline. As the phase difference is reduced to-
ward being in phase, ®=30°, the vortices are arranged closer
to each other and are less well aligned with the medial plane,
suggesting an earlier double-row transition. The in-phase
case, ®=0°, presents the signature of a P+S mode (a single
vortex and a vortex pair formed per cycle), at least in the
near wake. The classification of the different vortex modes is
given in Ref. 12. For this in-phase case, the vortices are shed
widely apart (nearly 4D), readily explained by the rotational
oscillation adding momentum to the translational motion.
The resulting strain favors a transition to the P+S wake."?
Reducing the phase difference to ®=-30° and ®=-60°, the
vorticity pattern returns to a 25 mode in a double-row con-
figuration. It should be noted that the spacing between the
two rows reduces (from 2.5D to 2D) as we decrease ®@. The
cases of ®=-90° and ®=-120° are of particular interest:
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Contrary to the other experimental cases, these two cases
were not synchronized with the translational motion beyond
2D downstream. The effect of this loss of synchronization
can be seen in the rapid downstream dissipation of the mean
vortex structures due to averaging. Only the two vortices
near the cylinder remain coherent. This a priori surprising
phenomenon might be explained by the fact that the separa-
tion between the two rows of vortices is smaller and that this
arrangement of vortices is not stable. Similar behavior can be
found behind elliptical cylinders.11 The last case ®=-150°
(and necessarily the first case, ®= * 180°) displays vortices
in a single row.

In addition to the experiments, numerical simulations
have been undertaken to elucidate certain behavior and to
confirm certain aspects of the unlocked regime. Although
these (two-dimensional) numerical simulations are per-
formed at a much lower Reynolds number, the near-wake
predictions are predominantly consistent with the experimen-
tal results (e.g., the vorticity pattern). This is likely due to the
strong forcing, partially overriding the modifying effect of
three-dimensional transition, at least for the near wake.

The description of the numerical methodology will be
brief because it has been adequately described in previous
papers. Details of the general method and its implementation
can be found elsewhere.'*'"> The code employed has been
well proven for use in bluff-body problems.mf18 The time-
asymptotic wake flows for the present study were calculated
by solving the incompressible, time-dependent Navier—
Stokes equations in a translating accelerating frame of refer-
ence attached to the cylinder. The discretization method em-
ployed was a spectral-element method using seventh-order
Lagrange polynomials associated with Gauss—Lobatto—
Legendre quadrature points. The computational domain, con-
sisting of a semicircular upstream section and a rectangular
downstream section, extended at least 30D in all directions.
This was split into 518 elements, the majority of which were
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FIG. 3. Lissajous pattern defined horizontally with the translational forcing
mechanism (y) and vertically with lift (top) or drag (bottom) coefficient.

concentrated in the cylinder boundary layer and wake re-
gions. At the cylinder surface, a time-dependent Dirichlet
condition was used that varied sinusoidally in time according
to the driven rotational oscillation. In all cases the numerical
simulations were performed for more than 200 cycles and
started at rest. This was found to be sufficient for the
asymptotic state to be achieved.

Various methods were used to analyze and characterize
the predictions. Lissajous figures of the lift and drag coeffi-
cients against the transverse forcing mechanism for each
phase difference have been produced. From these one can
assess whether the flow was periodic, quasiperiodic, or
highly irregular (or chaotic). Examples for two different
cases are given in Fig. 3. The left-hand figures show quasi-
periodic behavior with the phase plots repeating after five
forcing periods. The right-hand figures indicate chaotic be-
havior since the trajectories do not repeat.

Some representative base flows are displayed in Fig. 4.
Despite the Reynolds number difference (simulations Re
=225, experiments Re=1322) these qualitatively reproduce
the near-wake behavior of the PIV results. For ®>-20° a
single row of vortices is displayed. For —=30° =®=-20° a
double row of vortices appears after a single row of vortices.
The number of vortices in a single row diminishes as we
approach ®=-30°. For -70°=®=-30°, the wake no
longer displays an initial single row but instead immediately
forms a double row. These vortex rows interact further
downstream to form a quasiperiodic far wake. The number of
vortices forming the double row diminishes as ® diminishes.
For —130° = ® =-80° the wake immediately transitions to a
fully chaotic state. For & <<-130° the flow undergoes a suc-
cession of double row, to single row, then double row, until a
unique single row pattern. See the top wake pattern of Fig. 4
as representative of this final case.

Table I reports the experimental and numerical behaviors
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FIG. 4. Typical flow features for different imposed phase differences. Top:
single row of vortices transitioning downstream to a double row followed by
a further secondary instability in the far wake (®=-170°). Center: double
row of vortices followed by a quasiperiodic pattern (®=-40°). Bottom:
chaotic pattern of vortices (P=-100°). The domain of the numerical simu-
lation was extended to 100D downstream for these cases.

of the wake flow for the same set of parameters but with
Re=225 for the numerical results. As we will see the dis-
crepancy in the value of the Reynolds number does not have
an impact on the synchronization for ® values close to the
loss of synchronization. The numerical simulations confirm
the loss of synchronization for qualitatively the same region
as the experiments. The numerical simulations reveal that the
unlocked regime contains quasiperiodic and chaotic patterns.
It appears that the chaotic regime is surrounded by quasi-
periodicity. Also the likelihood of an unlocked regime is
greater when the ratio f,/f is higher than unity.

TABLE I. Summary of the synchronization around the unlocked regime. L,
QP, and C stand for locked on, quasiperiodic, and chaotic, respectively. The
unlocked regimes (UL) for the experimental results are likely to be chaotic.
f; and f stand for forced frequency and natural frequency for a fixed
cylinder.

filfs
Numerical
[ Expt.

(deg) ~1 0.9 1.0 1.1
-30 L L L L
—40 QP L L
=50 QP L QP
—60 L QP QP QP
=70 UL QP QP C
—80 UL QP QP C
-90 UL QP C C

—100 UL QP C C

—110 UL L C C

—120 UL L C C

—130 L C C

—140 L QP C

—150 L L L C

—160 L L L

—170 L L L

—180 L L L L
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FIG. 5. Poincaré map for two typical unlocked regimes for Re=225. Left:
quasiperiodic behavior for ®=-80°. Right: chaotic regime for ®=-130°.
The phase diagram shows the horizontal and the vertical velocities at 7D
downstream on the centerline.

To further examine the behavior, Poincaré maps have
been constructed for each phase difference. The horizontal
and vertical velocities are sampled at a prechosen point
downstream, (x,y)=(7D,0), at the end of each forcing pe-
riod T. For example, Fig. 5 illustrates the quasiperiodicity of
the case where ®=-80°. Here the periodicity of the flow is
of 5T as can be seen from the distribution of five distinct
islands of points in the phase diagram. The chaotic nature of
the regime in the case of ®=-130° can be readily seen by
inspection, with the distribution of points in the phase dia-
gram showing no preferred region or cycle.

It appears that synchronization may not be a clear con-
cept. Both the experimental and numerical results show that
the size of the nearly periodic near-wake region is very much
a function of the phase difference. Both sets of results show
that this section of the wake becomes very short for
® =-100°. Further downstream the wake undergoes a rapid
transition to a chaotic state. For other phase difference
ranges, the ordered near-wake persists further downstream
but still can be subject to secondary transitions resulting in a
quasiperiodic or chaotic far wake. If one measures the wake
response using integral measures such as the lift or drag co-
efficient, then these will be affected to some extent by the
far-wake behavior, even though they primarily respond to the
wake state near the cylinder. If the ordered near-wake region
is long, then these global measures should indicate synchro-
nization. As the near-wake is reduced in length, the far-wake
behavior can influence the signal recorded at the cylinder so
that it contains low frequency components or even increases
the frequency content to such an extent that the behavior is
chaotic. Interestingly, quasiperiodic and chaotic far-wake be-
haviors can be observed for elliptical shaped cylinders“ and
the normal flat plate,19 even in the unforced case.

Experiments and numerical simulations (not shown here)
suggest that the suppression mechanism also holds for
smaller amplitudes of motion (A, and A,). For the first time
experiments have been carried out on a cylinder wake when
the cylinder is experiencing combined rotary and transla-
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tional oscillations. The effect of the phase differences be-
tween the two forced motions reveals that regular shedding
can be suppressed for particular phase differences. This ex-
perimental study raised interesting features that were inter-
preted with the aid of numerical simulations, which qualita-
tively capture the near-wake behavior.
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