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ABSTRACT

The drag coefficient (CD) of a sphere freely rolling without slipping on a rough plane is presented in this study. Increasing panel roughness
has been found to increase CD, although lubrication theory predicts that the larger gap imposed by the rougher panel should yield a smaller
drag. We propose that this increase in drag is due to the effects of rolling resistance, which increases with panel roughness. The total drag on
a sphere is decomposed into fluid drag and drag due to rolling resistance, where the fluid drag is predicted using a combined analytical–
numerical approach. It is shown that rolling resistance can be modeled as a resistive torque opposing the sphere motion, generated by the
offset contact normal force from the sphere center plane. This coefficient of rolling resistance (lr) can be predicted using the root mean
square roughness (Rq) of the panel. Additionally, lr is observed to increase with sphere down-slope velocity and an empirical relationship
between lr , Rq, and non-dimensional velocity (U�) is given. A comparison of the drag predicted by the proposed model with measured data
indicates good agreement for all the four panels considered. Consistent with previous literature, a non-linear relationship between lr , Rq, and
U� is proposed. Although increasing panel roughness leads to a smaller fluid drag due to the larger gap imposed by rougher panels, the drag
due to rolling resistance increases more rapidly. This leads to an increase in total drag with increase in the panel roughness. Additionally,
increasing panel roughness is observed to have a significant effect on the sphere wake, leading to irregular wake shedding and increase in the
Strouhal number.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0232995

I. INTRODUCTION

The motion of small spherical particles in a viscous fluid at low to
moderate Reynolds numbers represents one of the earliest categories
of problems investigated in fundamental fluid mechanics. Reinforcing
its historical significance, the hydrodynamic interactions between par-
ticles and walls continue to be a subject of interest (Thompson et al.,
2021). These interactions play a crucial role in various applications,
such as separation techniques in analytical chemistry, biological flows,
movement of undersea vehicles, rock movements in debris flow, leuko-
cyte rolling, and sediment transport. Other related applications include
the handling, pumping, and storage of particulate materials, surface
cleaning, submarine dredging as well as modeling of ball bearings and
hydroplaning of underwater landslides (Thompson et al., 2021). A
simple example of this problem is the prediction and modeling of the

transport of sediments under the action of waves or underwater land-
slides in rivers and seabed, based on bed characteristics. The focus of
this article is to explore the hydrodynamic interactions between a par-
ticle and a rough wall at low to moderate Reynolds numbers.

A sphere immersed in a fluid that rolls down a plane wall without
slipping has been extensively studied as a canonical example of parti-
cle–wall interactions (Carty, 1957; Goldman et al., 1967; and
Thompson et al., 2021). At low to moderate Reynolds numbers
(Re¼UD/�), the drag coefficient (CD) has been found to decrease as
the combined amplitude of surface roughness of the sphere and wall
increases (Nanayakkara et al., 2024b). A similar observation was made
for cylinders rolling on a wall (Nanayakkara et al., 2024a). Surface
roughness introduces an effective hydrodynamic gap between the
sphere and the wall (Houdroge et al., 2023; Galvin et al., 2001; Zhao
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et al., 2002; Smart and Leighton, 1989; Smart et al., 1993; and King
and Leighton, 1997). As the surface roughness is increased, the imposed
gap height increases, which results in a decrease in the magnitude of
pressure in the gap where lubrication forces dominate, leading to a
decrease in hydrodynamic drag (Houdroge et al., 2023; Nanayakkara
et al., 2024b). However, many previous studies on the rolling sphere
problem have considered relatively smooth surfaces. When the panel
surfaces are significantly rougher than the sphere surfaces (by a factor of
10 or more), CD is found to increase with surface roughness (Jan and
Shen, 1995; Jan and Chen, 1997; and Garde and Sethuraman, 1969) in
contrast with the predicted decreasing hydrodynamic drag. This is likely
a result of increased rolling resistance with increasing surface roughness,
which we will explore in the present study. This study follows on from
the previous study by the same authors (Nanayakkara et al., 2024b),
where the effects of surface roughness on the drag coefficient of spheres
freely rolling on a relatively smooth inclined plane were discussed. The
planes considered here are significantly rougher (10–100 times) than
those investigated in Nanayakkara et al. (2024b). For the smoother pan-
els in Nanayakkara et al. (2024b), the effects of rolling resistance were
small and the drag coefficient was observed to decrease with increasing
panel roughness. The larger roughness of the panels investigated in this
study introduces significant rolling resistance, which increases with
increasing panel roughness.

Jan and Shen (1995) investigated the effects of rolling resistance
on the drag coefficient of a rolling sphere and found that the drag was
approximately 1.3 times higher for the simulated rough boundary.
They obtained expressions for the rolling resistance of a sphere on a
rough boundary by using an energy balance approach. They suggest
that rolling resistance is composed of two mechanisms, collisions with
roughness elements and friction; the combined rolling resistance and
drag coefficients were determined empirically using linear regression.
Jan and Chen (1997) also proposed that rolling resistance arises due to
a combination of collisions and sliding friction force, where both coef-
ficients are to be determined empirically. Garde and Sethuraman
(1969) conducted similar experiments for an artificial rough boundary
and found the drag coefficient to be larger for the rough boundary
than for the smooth boundary. Significant scatter was observed for the
rough boundary data, although the general underlying 1=Re trend was
observed. They found an increase in rolling resistance with a reduction
in Re and attributed the longer contact between sphere and roughness
elements at lower speeds to this observed increase in rolling resistance.
Additionally, a reduction in rolling resistance was observed for an
increase in the ratio D=K (sphere diameter/diameter of roughness ele-
ment). Jan and Chen (1997) also observed a similar decreasing trend
of friction coefficients with increasing D=K . This implies that for a
fixed roughness element size, the increase in sphere diameter results in
a smaller rolling resistance coefficient.

Zhao et al. (2002) considered the motion of a sphere down an
inclined plane containing a sparse distribution of large asperities with
smaller asperities between the larger ones. Their model included the
lubrication forces opposing the liftoff and settling motion when larger
asperities are encountered while also allowing for sphere slippage.
However, a constant coefficient of static friction and sliding friction
was assumed in their analysis and the relationship between roughness
and rolling resistance was not investigated.

Although rolling resistance has been attributed as a primary
mechanism responsible for the observed increase in drag coefficient

for rougher boundaries, the present literature lacks a detailed quantita-
tive investigation into the relationship between how surface roughness
affects the rolling resistance and drag coefficient of rolling spheres. The
aim of the present article is to investigate the relationship between sur-
face roughness on the combined effects of hydrodynamic drag and
rolling resistance on the motion of a sphere rolling without slipping on
a rough wall.

A. Rolling resistance

The study of the nature of friction and rolling resistance appears
to be first documented by Leonardo da Vinci using wooden balls as
the rolling element in bearings (Hutchings, 2023), which was later
investigated experimentally by de Coulomb using wooden cylinders
rolling on wooden surfaces. Numerous research articles have been
published on this subject, including foundational work by Tabor
(1955). Recent studies have focused on automotive applications (Sun
et al., 2024) and particulate systems (Ai et al., 2011). However, a com-
plete analytical model that predicts the rolling resistance of a sphere of
a known diameter rolling on a surface with known physical parame-
ters, such as surface roughness, is yet to be developed. As is typically
done with friction studies, rolling resistance is evaluated experimen-
tally using empirical data.

As a sphere rolls on a surface, any mechanism that causes asym-
metry of the forces at the area of contact leads to a resistance torque
that opposes sphere motion (Wilson et al., 2017). The diverse mecha-
nisms contributing to energy dissipation, collectively referred to as roll-
ing resistance (sometimes as rolling friction), have been previously
discussed in the literature (Bikerman, 1949; Halling, 1958). Some nota-
ble mechanisms include surface roughness, shape effects, viscoelastic
dissipation, hysteresis effects, interfacial slip, molecular adhesion, and
capillary action. Section VI discusses some of the mechanisms in detail.
As will be discussed in Sec. II, for hard spheres rolling on a hard sur-
face, surface roughness is the most likely source of rolling resistance
under the experimental conditions discussed in the present study.

The relationship between surface roughness and rolling resistance
has been explored by many authors for spheres and cylinders under
varied conditions. Bikerman (1949) investigated the minimum tilt
angle required by ball bearings to roll down stainless steel panels with
varied surface finishes. Their results showed an approximate correlation
between the predicted height of asperities with the measured surface
asperities, assuming that rolling resistance is due to the sphere having to
overcome these asperities. Better agreement was obtained for rougher
surface finishes, while the surfaces with a smoother finish diverged from
predictions. Halling (1958) investigated the dependence of rolling resis-
tance on surface texture for unloaded and loaded steel rollers on
machined steel plates. An increasing coefficient of rolling resistance lr
with increasing centerline average roughness was observed.

Cross (2015) investigated the effects of surface roughness on lr
of hard steel spheres rolling on hard surfaces in the air by varying the
surface roughness of the panel using emery paper. Cross (2015) discov-
ered that lr increases with sphere velocity and panel roughness and
decreases with sphere diameter. Based on these results, Cross (2016)
developed an analytical model relating lr to the height of roughness
asperities (r), velocity (U), and sphere diameter (D) by considering the
energy loss during a collision between a surface asperity and the wall,
with coefficient of restitution (ey),
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lr ¼
ð1� e2yÞNU2r

0:7pgD2
; (1)

where N is the number of collisions per revolution. Experimentally,
Cross (2016) found that lr / U , indicating that N may be inversely
proportional to U. Additionally, Cross (2016) also found that
lr / 1=D1�1:7, indicating that N and ey also vary with D. Therefore,
Eq. (1) is not perfectly able to capture the dependence of lr on U and
D. Dimensional analysis suggests that the coefficient of rolling resis-
tance takes the following form:

lr ¼ a
r
D

� �b Uffiffiffiffiffiffi
gD

p
� �c

; (2)

with coefficients a, b, and c to be determined experimentally. Note that
we expect these coefficients to differ from the experiments of Cross
(2016) since they consider vastly different experimental conditions
(steel spheres in air vs acrylic spheres in water).

Wilson et al. (2017) also proposed a model for the rolling resis-
tance coefficient of a rough sphere rolling on a plane wall. They con-
sidered the viscoelastic energy loss due to the deformation of surface
asperities as the sphere rolls and obtained the following expression for
the resistive torque applied to the sphere:

sdecel ¼ 2n̂gnd
2
t n2p

U
D=2

; (3)

where n̂ is a parameter to be determined empirically, gn is the damp-
ing coefficient that characterizes incomplete restitution of the velocity
during normal contact, dt is the tangential distance from each contact
point to the center of mass, and n2p is the number of expected contacts
over one revolution. We note, however, that the parameter n̂ may vary
with respect to some of the other parameters, which requires empirical
fitting of the model to experimental results. Therefore, the present
study assumes the rolling resistance coefficient is of the form shown in
Eq. (2), and the coefficients a, b, and c are obtained experimentally.

In this study, we will experimentally investigate the relationship
between surface roughness and the combined effects of hydrodynamic
drag coefficient (CD;f ) and coefficient of rolling resistance (lr) of
spheres freely rolling without slipping on an inclined rough plane. We
propose a model similar to those of Cross (2016) and Wilson et al.
(2017), with a power-law dependence on surface roughness and sphere
velocity. The hydrodynamic drag coefficient is estimated using the
relationship between surface roughness and gap height required by
lubrication theory as described in Nanayakkara et al. (2024b). A new
model that describes lr in terms of the root mean square roughness
(Rq) and non-dimensional down-slope velocity (U�) is proposed, with
constants of proportionality to be determined empirically.

This paper is organized as follows. Section II describes the prob-
lem and the analytical–numerical solutions that describe the hydrody-
namic drag. Section III presents the new empirical model that
describes the coefficient of rolling resistance of a sphere. Section IV
presents a description of the experimental setup and method. Section
V presents detailed experimental results of the investigation together
with a discussion of the results. Section VI briefly discusses additional
sources of rolling resistance, while Sec. VII presents flow visualizations
highlighting the influence of surface roughness on the wake of a rolling
sphere. Concluding remarks are given Sec. VIII.

II. PROBLEM DESCRIPTION

This investigation focuses on the motion of a sphere with diame-
ter D immersed in an initially stationary fluid and which rolls without
slipping down a rough plane inclined at an angle ðhÞ relative to the
horizontal, as depicted in Fig. 1. The sphere has a density qs, while the
fluid has a density qf ; typically, the sphere is denser than the fluid
(qs > qf , negatively buoyant). We consider a Cartesian coordinate sys-
tem ðx; y; zÞ fixed to the sphere’s center.

The sphere travels down the inclined plane with instantaneous
translational and rotational velocitiesUx ¼ U andxy ¼ x, respectively.
The forces and torques acting on the sphere include the buoyant weight
WB ¼ pgD3ðqs � qf Þ=6, the hydrodynamic drag (FD;f ), lift (FL;f ) and
torque (Ty;f ), and the normal (FN;eff ) and tangential contact forces
(FT;eff ). The total force resisting the motion includes both the hydrody-
namic drag and the tangential contact force, FD;Total ¼ FD;f þ FT;eff .

The rolling sphere reaches a quasi-steady state, with time-mean
velocity U and angular velocity x. The time-mean Reynolds number
is given by Re¼UD=�. Time-averaged forces are expressed as
FD;f ; FL;f ;Ty;f ; FN;eff ; FT;eff , and FD;Total. Force balance parallel to the
plane gives:

FD;Total ¼ FD;f þ FT;eff ¼ WBg sin h: (4)

As such, we obtain the following expression for the time-averaged total
drag coefficient:

CD; exp ¼ FD;Total

1
8
pD2qf U

2
¼ WBg sin h

1
8
pD2qf U

2
¼ 4g sinðhÞDðb� 1Þ

3U
2 : (5)

We assume that the sphere makes contact with the plane via surface
asperities with an unknown number of contact points and correspond-
ing reaction forces as shown in Fig. 1. Due to uneven contact pressure
distribution across the contact area, the effective time-averaged normal
contact force FN;eff is offset from the sphere’s center of mass by a dis-
tance d. Then, the balance of time-averaged torques about the sphere is

TY ;f þ FN;effd � FT;effD=2 ¼ 0: (6)

FIG. 1. Schematic free body diagram of the forces acting on a sphere rolling down
an inclined plane under the influence of gravity, in a stationary fluid.
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The total time-averaged resistance force parallel to the plane can
be expressed as

FD;Total ¼ FD;f þ FT;eff ; (7)

and substituting (6) in Eq. (7) yields

FD;Total ¼ FD;f þ TY ;f

D=2
þ FN;effd

D=2
: (8)

The term FD;f is the fluid drag contribution to the total drag, while the
term TY ;f=ðD=2Þ describes the tangential contact force required to
oppose the fluid torque and maintain the no-slip condition. Finally,
the term FN;effd=ðD=2Þ represents the effects of rolling resistance.

The first two terms in Eq. (8) are combined into an effective fluid
drag force,

FD;f ;eff ¼ FD;f þ TY ;f

D=2
; (9)

which is the drag force obtained in the absence of rolling resistance.
This effective drag includes the part of the tangential contact force
required to oppose the fluid torque, in addition to the fluid drag.

Houdroge et al. (2023) obtain the following expression for the
effective drag coefficient, assuming both a smooth sphere and a
smooth wall and assuming a small gap G exists between the sphere
and the wall:

CD;f ;eff ¼ 1
Re

�44:2log10ðG=DÞ þ 34:0
� �

þ 1:70� 0:136ðlog10ReÞ � 0:0716ðlog10ReÞ2
h i

: (10)

This expression was obtained by combining the predictions of
lubrication theory with numerical simulations. The total drag was
assumed to include both a gap-drag term and a gap-independent
wake-drag term. The gap-drag was determined analytically, using the
theory of lubrication (Goldman et al., 1967), while the wake drag was
obtained using numerical simulations. Equation (10) was then
obtained by empirically fitting the numerical data over the range
5 < Re < 300 (Houdroge et al., 2023).

A recent experimental investigation conducted by Nanayakkara
et al. (2024b) found excellent agreement between experimental results
and Eq. (10) when G was assumed to be the same order as the com-
bined Rq roughness of the sphere and panel. Physically, it is assumed
that surface roughness introduces an effective hydrodynamic gap
between the sphere and the wall, approximately equal to Rq. Note that
(10) is obtained under the assumption d ¼ 0 and therefore does not
include any rolling resistance. This was found to be accurate for the
generally smooth glass panels discussed in Nanayakkara et al. (2024b).

The third term in Eq. (8), FN;effd=ðD=2Þ, describes the resistive
torque that opposes the sphere’s motion, due to the normal reaction
force being offset ahead of the sphere’s center of mass (Cross, 2016;
Sharma and Reid, 1999; Wilson et al., 2017; and Halling, 1958). This
results in an effective rolling resistance force,

F rr ¼ d
D=2

FN;eff ¼ lrFN;eff ; (11)

where FN;eff ¼ WBg cosðhÞ � FL from Fig. 1 and lr ¼ d=ðD=2Þ is the
coefficient of rolling resistance that is commonly used in the literature
(Wilson et al., 2017; Cross, 2016).

Houdroge et al. (2023) predicted numerically the lift coefficient
of a freely rolling sphere to be in the range�0:7 � CL � 0:2 for Re in
the range 0:1 � Re � 200, which is small compared to the normal
component of the buoyant weight, 10 � WBg cosðhÞ= 1

8pD
2qf U

2

� 165; as such, FL can be assumed to be negligible.
Then, the contribution of rolling resistance to the drag coefficient

is defined as

CD;rr ¼ d
D=2

WBg cosðhÞ
1
8
pD2qf U

2
¼ lr

4Dðb� 1Þg cosðhÞ
3U

2 : (12)

Equation (12) describes the contribution of rolling resistance to
the total drag coefficient, in terms of lr . We propose that lr will
depend on surface roughness and sphere velocity. Sections III and VC
will elaborate further on this proposed relationship.

Finally, combining (10) and (12), we obtain the following expres-
sion for the total predicted time-mean drag coefficient of a freely roll-
ing sphere:

CD;pred ¼ CD;f ;eff þ CD;rr; (13)

where the coefficient of rolling resistance lr is the only unknown
parameter.

III. ROLLING RESISTANCE MODEL

A primary aim of the present investigation is to establish the rela-
tionship between lr to be used in Eq. (12) and various surface rough-
ness parameters. In Nanayakkara et al. (2024b), it was shown that Rq

was a good approximation for G. Similarly, it is proposed that Rq is a
suitable roughness parameter that can be used to describe lr .
Additionally, the experimental and numerical investigations conducted
by Cross (2016) and Wilson et al. (2017), respectively, have deter-
mined that lr is a function of the sphere velocity and diameter. To
incorporate this velocity and diameter dependence of lr , we will intro-
duce a new non-dimensional velocity as follows:

U� ¼ U=
ffiffiffiffiffiffi
Dg

p
: (14)

This non-dimensional velocity was obtained by applying dimensional
analysis to the model of Cross (2016) for the rolling resistance of a
rough sphere. Furthermore, the relationship between U� and Re can
be expressed as

Re ¼ U�D1:5g0:5=�: (15)

As such, we propose the following relationship between lr with
U� and non-dimensional roughness nq:

lr ¼ a� ðnqÞb � ðU�Þc: (16)

Here, a, b, and c are constants to be determined empirically.
We can also rewrite (12) in terms of U� as

CD;rr ¼ lr
4ðb� 1Þ cos h

3ðU�Þ2 : (17)

It should be noted that the proposed simple empirical model in
Eq. (16) is only first-order accurate. Given that the roughness charac-
teristics of real surfaces are complex and display many scales in both
amplitude and spacing, the use of a simple parameter such as Rq will
not effectively capture all aspects of the surface. Furthermore, a sphere
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moving down an inclined plane exhibits a cross-slope velocity compo-
nent [see Nanayakkara et al. (2024b) for further details], which is also
likely to influence lr . However, (16) provides an approximate solution
to the complex problem of estimating the rolling resistance of a sphere
using simple parameters that will be useful when predicting the drag
on a freely rolling sphere.

IV. EXPERIMENTAL SETUP AND METHODOLOGY

The experiments using rolling spheres were conducted in the
Fluids Laboratory for Aeronautical and Industrial Research (FLAIR) at
Monash University. A detailed explanation of the experimental setup
and methodology used in this study can be found in Nanayakkara
et al. (2024b). A brief summary is given below.

A. Summary of experimental setup and methodology

The experiments were carried out in a water tank with a glass
panel mounted on an adjustable stainless steel frame. The inclination
angle was varied from 4� to 23�. Additionally, various test panels with
different surface roughness levels were used. Before the experiments,
the spheres were presoaked underwater, with air bubbles removed
through vibration and stirring. Subsequently, the spheres were gently
released onto a collection port on the plane to minimize water surface
disturbances. A waiting period of at least 2min followed any water
perturbation before measurements were taken, ensuring minimum
disturbance of the water surface.

The rolling spheres’ velocity was determined by measuring the
time it took to travel a fixed distance, with a minimum rolling distance
of 20D. This ensured that the spheres reached their time-mean termi-
nal velocity prior to measurements. Initially, a stopwatch measured the
time for a 200mm distance on the removable panel (constituting 50%
of data). Later, a system with three laser-based object detectors was
introduced for improved accuracy and efficiency (50% of data). The
results presented in this study incorporate both datasets and an uncer-
tainty analysis presented in Nanayakkara et al. (2024b) addresses mea-
surement errors from both methods. Sphere specifications are detailed
in Table I. Data in Sec. V represent average measurements from eight
separate runs using spheres of similar diameter and density.

Occasional checks were conducted for randomly selected experimental
parameters to confirm data consistency, even with variations in fluid
temperature. Table I indicates that the uncertainty regarding sphere
diameter was generally below 1%.

To prevent water absorption distortion, spheres and panels were
regularly removed from the water tank outside measurement intervals
and dried. Table I presents the uncertainty of sphere diameter for each
set of spheres, measured by obtaining three distinct measurements of
each of the ten spheres in a set. The uncertainty of sphere diameter
was typically less than 1%. The uncertainty in sphere diameter was
used to estimate deviations in sphericity. Given that the uncertainties
in sphere diameter were generally below 1%, deviations in the spheric-
ity of spheres were considered negligible. Preliminary experiments
were conducted with a selection of spheres at various inclination angles
ranging from 4� to 20� to examine potential sphere slippage in our
experiments. A marker was placed on the surface of the sphere, and
the sphere’s rolling motion was recorded using a digital camera. The
calculated rotational speed was compared to the measured linear
down-slope velocity, revealing no significant difference between the
two velocities (less than 1%). Therefore, any slippage between the
sphere and the surface was deemed negligible.

To assess panel flatness, the surface height variation of the panel
was measured at specific points, revealing that the panel’s non-flatness
was negligible (below 0.5%) compared to its downward slope (greater
than 7%). Regular cleaning of the water tank prevented dust or fiber
deposition on the panel surface.

Nanayakkara et al. (2024b) presented an uncertainty analysis of
their experimental measurements. Since the same experimental setup
was used for the results presented here, the same uncertainty values
are applicable. As shown in Nanayakkara et al. (2024b), the bias error
of measurements is approximately 1–2% for both Re and CD.

B. Surface roughness measurements

The surface roughness measurements of the panels were acquired
using a KLA-Tencor D600 profiler located at the Australian Surface
Metrology Lab (ASML) in Warrnambool, Victoria, Australia. ASML
obtained these measurements on our behalf. The composite three-
dimensional images shown in Fig. 2 were obtained by stitching
together a minimum of 100 profile scans.

Many parameters are used to describe surface roughness, and
they vary depending on the application. Amplitude parameters such as
mean, root mean square (r.m.s.), or peak roughness that describe the
vertical or amplitude characteristics of surface deviations are the most
commonly used. Gadelmawla et al. (2002) discuss the analytical
expressions that describe these parameters including some
applications.

The measured panel roughness values are detailed in Table II.
Three roughness parameters are shown in the table. Rq is the root
mean square (r.m.s.) amplitude parameter. Additionally, we have indi-
cated the skewness (Rsk) and kurtosis (Rku) of each panel in Table II.
Skewness measures the asymmetry of the surface profile: large positive
skewness (Rsk > 0:5) indicates a higher percentage of peaks compared
to valleys, large negative skewness (Rsk < �0:5) indicates a higher per-
centage of valleys compared to peaks and zero skewness indicates a
symmetric distribution. Kurtosis measures the sharpness of the surface
profile: high kurtosis (Rku > 3) suggests sharp peaks and deep valleys
(rougher texture), while low kurtosis (Rku < 3) suggests a smoother

TABLE I. Specifications of spheres used in this study. Each entry corresponds to a
set of 8 individual spheres, with three measurements taken for each sphere. These
spheres were also used in our previous study (Nanayakkara et al., 2024b).

Sphere material
Sphere density
qsðg=cm3Þ

Sphere
diameter (mm)

Cellulose acetate 1.3

6:356 0:03 ð0:5%Þ
5:866 0:02 ð0:3%Þ
4:876 0:03 ð0:7%Þ
4:426 0:02 ð0:5%Þ
3:946 0:02 ð0:6%Þ
3:446 0:03 ð0:8%Þ

Acrylic 1.2

7:856 0:03 ð0:4%Þ
6:336 0:03 ð0:4%Þ
4:716 0:02 ð0:4%Þ
3:956 0:07 ð1:7%Þ
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texture with more rounded features. For the rough panels used in this
study, we measured low kurtosis factors (Rku < 3). This indicates that
all four panels have an approximately symmetric distribution with
rounded features with small Rsk for three of the four panels.

V. RESULTS AND DISCUSSION

This section presents the experimental results of the measured
time-mean drag coefficients (CD) of spheres freely rolling on rough
inclined panels. The drag coefficients for experimental measurements
are determined using (5) and compared against the predicted drag
coefficient as per (13). This section is structured as follows. First, we
present the observed variations of CD with Re for spheres rolling on
the four rough panels in Sec. VA. Subsequently, the influence of the
non-dimensional height of roughness (nq) on CD is discussed in Sec.
VB. Furthermore, Sec. VC discusses the observed relationship
between the coefficient of rolling resistance (lr) and surface roughness.
In Sec. VD, the new model is proposed and in Sec. VE, measured
drag values are compared against predicted values.

A. Measured CD vs Re data

Using the experimental setup and methods detailed in Sec. IV, we
acquired measurements of CD vs Re within the range 30 < Re < 800.
This involved testing 10 different diameter spheres on four distinct
rough panels. Figure 3 displays all the collected data points, where the
legend illustrates the marker shapes representing different sphere
diameters and marker colors corresponding to the panel. The results
of the same spheres tested on smoother panels presented in
Nanayakkara et al. (2024b) are also shown in the same figure using
light gray markers, for comparison.

FIG. 2. Surface profiles of the rough panels. No waviness filtering was used.

TABLE II. Surface roughness measurements of the four rough panels used in the
present study. No waviness filtering was used. The measurement area was
100mm2.

Panel type RqðlmÞ Rsk Rku

Rough ceramic 19.06 �0.26 2.55
Rough glass 1 39.36 0.10 2.24
Rough glass 2 97.05 �0.28 2.26
Rough glass 3 165.70 0.80 2.28

FIG. 3. CD vs Re results of spheres rolling on rough panels. Smooth panel data
from Nanayakkara et al. (2024b) are also shown for comparison.
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Comparing the CD values of the present study against those dis-
cussed in Nanayakkara et al. (2024b), we see a clear increase in the
measured values of CD for the rougher panels. This trend is observed
across all Re investigated. This observation implies that the increase in
panel roughness induces a higher drag on the spheres, which we attri-
bute to the added effects of rolling resistance due to the larger surface
roughness of rough panels. Note that Nanayakkara et al. (2024b)
found that the drag coefficient decreased as nq was increased, consis-
tent with the predicted lubrication fluid drag (10). The present study
considers significantly rougher (10–100 times) surfaces than those
investigated in Nanayakkara et al. (2024b).

Figure 4(a) highlights the increase in total drag with increasing
panel roughness for a sphere with D ¼ 4:87 mm, consistent with the

present proposal. However, in Fig. 4(b), for a fixed panel roughness
with sphere D varied, we observe an increase in drag with decreasing
nq (or increasing D). A similar observation was made in Nanayakkara
et al. (2024b) for the fluid drag. However, given that nq values for these
rough panels are large, the lubrication drag is expected to be small. As
such, this observed increase in the value of CD with an increase in D
for a fixed panel roughness is unlikely to be due to an increase in fluid
drag. Therefore, Fig. 4 highlights that nq and Re are insufficient to
describe the contribution of rolling resistance to the total drag coeffi-
cient. In Sec. VD, it will be shown that this increase in drag with
increasing D is likely due to an increase in non-dimensional velocity
U�, for a fixed Re.

B. Measured CD vs nq data

Figure 5 shows the variation of CD with nq for the 4 rough panels
considered at Re ¼ 70; 100, and 150. A linear interpolation technique
was used to estimate the CD values corresponding to each Re. Error
bars indicate the uncertainty of both Rq (�5%) and interpolated CD

(�2%) measurements. A degree of scatter is observed at each Re; how-
ever, CD is observed to generally increase with increasing nq.

The results using the smooth panels presented by Nanayakkara
et al. (2024b) are also shown in Fig. 5 to indicate the general trend.
Combined analytical and numerical predictions of fluid drag from Eq.
(10) are also shown in the figure as solid lines. The smooth panel data
indicate that the measured and predicted drag coefficients decrease
with increasing nq up to nq � 0:001. As the roughness is increased fur-
ther (nq � 0:001), we observe an increase in CD corresponding to the
rough panels.

For a fixed Re, increasing nq by increasing the panel roughness
corresponds to an increase in the drag coefficient. However, CD

decreases when nq is increased by decreasing D for a fixed panel (i.e.,

FIG. 4. Variation of CD with Re. Least squares lines of the form aþ b=Re have been
fitted through data that correspond to the individual diameters of the spheres used. The
coefficient of determination R2 is typically 	0:9. In Fig. 4(b), the arrow indicates the
decrease in nq and U� corresponding to increasing D, at a fixed value of Re.

FIG. 5. Variation of CD with nq at three fixed Re. CD values at specific Re values
were calculated using linear interpolation of nearest neighbors. Gray dashed boxes
are used to approximately indicate the data corresponding to each of the four pan-
els. Results from smooth panels from Nanayakkara et al. (2024b) are also shown in
the figure for comparison. CD predictions from Eq. (10) are also plotted as solid
lines for comparison with experimental results.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 103340 (2024); doi: 10.1063/5.0232995 36, 103340-7

VC Author(s) 2024

 15 O
ctober 2024 06:34:02

pubs.aip.org/aip/phf


within each gray box). Therefore, increasing nq by decreasing the sphere
diameter results in a reduction in the drag coefficient while increasing
nq by increasing the panel roughness increases CD. A similar observa-
tion was made in Fig. 4. Therefore, we highlight that nq alone is insuffi-
cient to explain the observed variation in the total drag coefficient.
Figures 4 and 5 highlight that the drag due to rolling resistance does not
scale with Re, and a new non-dimensional velocity U� is required to
describe the velocity dependence of the coefficient of rolling resistance.

The observed increase in CD for a fixed panel with decreasing nq
by increasing D, at a fixed Re, is likely due to a variation of U�. For
example, at Re ¼ 100, varying D from D ¼ 3:44 mm to D ¼ 4:87
mm results in an approximate change of U� between 0.16 and 0.09,
respectively, which is an approximately 44% reduction of U�.

Furthermore, Re has a decreasing effect on CD. As Re is increased
from 70 to 150, we observed a significant reduction in measured CD,
from CD � 7 to CD � 3, an approximate 60% reduction in mean
value across all D.

To establish the effects of the roughness on the drag caused by
rolling resistance, Fig. 6 investigates the dependence of CD;rr on U�

and nq. CD;rr was calculated using the following equation:

CD;rr ¼ CD; exp � CD;f ;eff : (18)

Figure 6(a) compares the CD;rr variation with U� for a sphere of
D ¼ 4:87 mm rolling on the four panels. Here, the effects of increasing
nq by increasing panel roughness on CD;rr is highlighted, as D is fixed.
Figure 6(b) indicates the CD;rr vs U� relationship for the panel Rough
glass 3, with the sphere D varied. Again, we observed that CD;rr

increases with increasing nq created by a smaller D. Least squares lines
of the form aðU�Þb have been fitted through the data for a fixed nq in
both figures with R2 values typically 	0:9. The figures clearly show
the increase in CD;rr with increasing panel roughness Rq or decreasing
D. Therefore, Fig. 6 shows that the behavior of CD;rr is captured well
with nq and U�. Figure 6 also highlights the decreasing behavior of
CD;rr with increasing U� for a fixed value of nq.

C. Relationship between lr and surface roughness

In Sec. III, we proposed a new model to describe the coefficient of
rolling resistance, which takes the form lr ¼ a� ðnqÞb � ðU�Þc,
where a, b, and c are constants to be determined empirically. In this
section, we will determine suitable values for the constants, which cap-
ture the relative contribution of each variable to effectively describe lr .

First, we will define lr;eff as the effective lr required to match the
predictions of Eq. (13) with the experimental measurements. Here, we
have used Rq of the panels as an approximation for the gap height G
required for Eq. (10). lr;eff is calculated as follows:

lr;eff ¼
CD; exp � CD;f ;eff

4Dðb� 1Þg cosðhÞ=3U 2 : (19)

We note that the data points for Re > 300 were excluded from
this analysis, since (10) is only valid in the range 5 < Re < 300. lr;eff
will be used to calculate the constants in Eq. (16).

D. New empirical model for the coefficient of rolling
resistance

Least squares regression analysis was conducted on the derived
lr;eff values for all the data for the four panels, and an equation of the

form lr;pred ¼ aðnqÞbðU�Þc has been fitted through the data. Based on
this regression analysis, coefficients that minimize the residuals were
derived and the following equation was obtained:

lr;pred ¼ 5� ðnqÞ0:7ðU�Þ0:6: (20)

In Fig. 7, we compare the calculated lr;eff against values predicted
using the proposed model (20). The new model demonstrates a strong
predictive capability, as evidenced by the coefficient of determination
(R2) value of approximately 0.9. This high R2 value indicates that
approximately 90% of the variance in the measured values is explained
by the model, suggesting good alignment between the predicted and
actual data points. The scatterplot in Fig. 7, which compares measured
values against the model’s predictions, shows that the predictions
closely follow the ideal fit line (solid black line), reinforcing the model’s
accuracy, with a minor divergence as noted at large values lr;eff . Such
performance highlights the model’s robustness and reliability in pre-
dicting lr;eff .

FIG. 6. Variation of CD;rr with U�. Least squares lines of the form aðU�Þb have
been plotted through the data corresponding to each panel with R2 values
typically 0.9.
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Equation (20) suggests the non-linear power-law dependence on
both nq and U�. This is in general agreement with non-linear depen-
dence on roughness and velocity observed by previous investigations
(Cross, 2015, 2016).

Furthermore, Eq. (17) can be re-written using the new model for
lr;pred as

CD;rr ¼
20� ðnqÞ0:7 � ðb� 1Þ cos h

3ðU�Þ1:4 : (21)

In Fig. 4(b), we observed an increase in total drag with decreasing
nq and U

� for a fixed Re. This observation can be explained using (21).
Increasing D has a twofold effect on CD;rr. First, the decrease in nq
decreases CD;rr with a n0:7q dependence. Second, however, the decrease
in U� causes an increase in CD;rr with a ðU�Þ1:4. Therefore, U� has a
stronger effect on CD;rr, which leads to the observed increase in total
drag in Fig. 4, at a fixed Re.

E. Comparison of measured CD vs Re data against new
rolling resistance model

In Fig. 8, we compare the measured CD with the CD;pred given in
Eq. (13), including the contribution of rolling resistance characterized
by Eq. (20). The fluid drag predictions from Eq. (10) are also plotted in
the figures as a cyan dashed line for comparison. The sphere diameter
was kept constant (D ¼ 4:87 mm) to enable effective comparison of
the influence of panel roughness on CD. The figure shows that Eq. (13)
provides a good approximation of the measured total drag for all four
panels. The combined drag coefficient follows the same trend and
matches the varying roughness between the panels. The figure shows
that the proposed model has captured the general trend in behavior
with good accuracy.

Figure 9 shows the CD vs nq plots with sphere D � 4 mm at three
values of Re (70, 100, and 150). The combined drag coefficient includ-
ing rolling resistance is also shown in the figure. We observe that the
new model captures the increasing CD for rougher panels, in good
agreement with experimental data.

Therefore, Figs. 8 and 9 together with Fig. 7 support our proposal
that rolling resistance is dependent on nq and the sphere non-
dimensional velocity U�. The coefficients calculated using the regres-
sion approach give consistent predictions of the coefficient of rolling
resistance, which compares well when considered as a drag coefficient.
The increase in panel roughness induces a larger resistive force, which
scales nq to the power of 0.7.

Increasing panel roughness affects the drag coefficient in two
main ways. First, as Rq increases, the fluid drag decreases because the
imposed gap grows, reducing lubrication drag in the gap region.
However, higher panel roughness also leads to greater drag from roll-
ing resistance, which also depends on Rq. Rougher panels increase the
coefficient of rolling resistance, resulting in higher drag forces.
Notably, when the surface roughness is sufficiently large, the rise in
rolling resistance outweighs the reduction in fluid drag for a given
roughness, leading to an overall increase in total drag with increasing
panel roughness.

In the present study, we have obtained a lr / 1=D dependence,
in general agreement with the experimental observations made by
Cross (2016). However, our analysis suggests a lr / U0:6, in disagree-
ment with the results of Cross (2016). This difference in the velocity
dependence between the two studies is likely due to the exclusion of
aerodynamic drag by Cross (2016) in their derivation of lr . Wilson
et al. (2017) proposed a rolling resistance model with lr / U2=D.
Although the same D dependence was observed here, we observed a
U0:6 as opposed to the proposed U2 behavior. As such, it is likely that
either n̂; gn; andn2p or a combination of these parameters is dependent
on U.

1. Model limitations

We note that this model is only valid for the range of experimen-
tal parameters investigated in this study. That is, 0:002 < nq < 0:05
and 0:03 < U� < 0:3.

Nanayakkara et al. (2024b) discuss the influence of the distribu-
tion of asperities, which has a significant impact on the imposed gap
height between a sphere and the plane. Similarly, we expect that the
surface finish will significantly affect the rolling resistance on a rolling
sphere. As discussed in Sec. IVB, the four panels used in this study
had an approximately symmetric distribution of asperities with
rounded features (small skewness with a small <3 kurtosis factor).
When the surface texture deviates from this, and possibly for highly
skewed surfaces with sharp features or highly structured surfaces, the
rolling resistance may behave differently. The development of a resis-
tance model that is valid for all types of roughness is challenging as the
mode of energy loss through contact will differ with varying surface
characteristics. One example is as roughness is increased further, con-
tact with a large asperity leads to sphere liftoff. Then, the sphere is air-
borne and makes contact with the surface again due to gravity. In this
scenario, rolling resistance does not act on the sphere while airborne
and the effective drag will not be described effectively from the model
we have presented here. Development of a rolling resistance model
that includes larger scales of roughness will require the collection of
data from a broader range of surfaces, which is beyond the scope of
the present investigation. However, we expect that for different surface
textures, the dependence on roughness and velocity will remain consis-
tent with different power-law behaviors.

FIG. 7. Comparison of lr ;eff with lr ;pred based on least squares regression analysis.
R2 ¼ 0:90 indicates a good fit between measured and predicted values.
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We acknowledge that it is possible that other measures of rough-
ness can be used instead of Rq that may also capture the distribution of
asperities. Since many roughness statistics are available, the investiga-
tion of other parameters was considered beyond the scope of this
investigation. We aimed to demonstrate that surface roughness is a
likely source of rolling resistance for hard spheres rolling on hard sur-
faces, which we have shown using the simple Rq parameter. We rec-
ommend the investigation of other roughness parameters in future
work.

VI. OTHER SOURCES OF ROLLING RESISTANCE

Rolling resistance is a complex phenomenon that may involve
many mechanisms as introduced in Sec. I. We have proposed that sur-
face roughness is a primary parameter that determines the rolling
resistance of hard spheres on a hard surface. However, additional
mechanisms of rolling resistance have been presented in previous
investigations. We shall discuss some of these mechanisms here in
more detail.

One mechanism responsible for the rolling resistance of spheres
is bulk deformation. Brilliantov and P€oschel (1998) presented a

first-principles expression for the rolling friction coefficient of a visco-
elastic sphere rolling on a hard plane. They assumed that surface
effects are negligible and attributed deformation due to viscous dissipa-
tion in the material as the primary source of rolling friction. Their
expressions use material and viscous constants to predict a frictional
torque. Brilliantov and P€oschel (1999) used this approach to calculate
the rolling resistance of a rolling sphere, assuming the resistance is due
to energy losses associated with continuous viscoelastic collisions.
They found that the coefficient of rolling friction is proportional to the
sphere velocity and a material constant that depends on the coefficient
of restitution, and presented the following relationship:

lroll ¼
Uð1� eÞ

2:28ðq=mÞ2=5g 1=5
; (22)

where e is the coefficient of restitution, q ¼ Y
ffiffiffiffi
D

p
=ð3ð1� �ÞÞ where

Y is the Young modulus and � the Poisson ratio, and m is the mass of
the sphere. g is the initial relative sphere velocity. We note that lroll in
Eq. (22) is similar to d with dimension of length. To compare with our
results, it was non-dimensionalized as lroll=ðD=2Þ. The predicted
lroll=ðD=2Þ values using the Brilliantov and P€oschel (1999) model for

FIG. 8. Comparison of measured drag coefficient against model predictions for a CA sphere with D ¼ 4:87 mm rolling on the four rough panels. The solid blue line shows the
CD;pred. Cyan dashed line indicates the CD;f given by Eq. (10).
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our spheres with e ¼ 0:9 and g ¼ U are smaller (�10�5 times) com-
pared to the measured leff values of the present study. This suggests
that viscoelastic collisions make negligible contribution to our spheres.
However, for soft spheres rolling on a hard surface, the viscoelastic
effects may be significant.

Contact plasticity or plastic deformation is another mechanism
that is generally applicable to soft materials that are easily deformed.
The rolling sphere or surface is permanently deformed, which leads to
an additional resistive torque. Eldredge and Tabor (1955) have
observed that repeated rolls of a steel ball over the same surface of a
softer metal lead to a reduction in the measured coefficient of rolling
resistance. For the hard spheres (acrylic and cellulose acetate) rolling
on hard surfaces (glass and ceramic), we can assume that contact plas-
ticity does not affect the rolling motion in the present investigation.

Particle shape has also been found to influence the rolling resis-
tance of spheres (Wensrich and Katterfeld, 2012). Deviations from
sphericity may introduce additional resistivity to rotational motion,
which may be further emphasized by an increase in asymmetric con-
tact. Similarly, d’Ambrosio et al. (2023), investigating the rheology of
suspensions, found an increase in the coefficient of rolling resistance
for particles with flat surfaces (large regions of the surface are non-
spherical) compared to spherical particles. Since the deviations from
sphericity for the spheres used in the present study are small, particle
shape effects are also assumed to be negligible.

Interfacial slip was proposed by Reynolds (1876) as another
source of rolling resistance, by conducting experiments using rubber
rollers. The work of Sharma and Reid (1999) presents a thorough
review of the history of interfacial slip while also providing a discussion
on the role of interfacial slip on the rolling resistance of spheres. They
propose a state of motion of the sphere termed quasi-rolling, where
the velocity of the contact point becomes zero while sliding slowly at
varying speeds. The equilibrium condition under which quasi-rolling
occurs is given by Eq. (11), where the normal contact force is shifted to

the forward direction from the midpoint, denoted as d. They propose
that to maintain zero velocity at the point of contact, a rolling friction
force must exist, to maintain the no-slip boundary condition.
However, since the value of d is unknown, their model is incomplete.

Finally, particle adhesion is another mechanism that has been
proposed to lead to rolling resistance. The energy dissipation associ-
ated with the breaking of adhesive bonds as the particle leaves contact
leads to a resistance to rolling (Dominik and Tielens, 1995; Wilson
et al., 2017). However, adhesive forces are significant in particles with
small diameters such as fine powders. Therefore, we expect adhesive
forces to be negligible for our spheres.

For a sphere rolling without slipping on a given surface, the
mechanism that dominates the rolling resistance will be a function of
sphere and panel properties. However, it is likely that a combination of
mechanisms discussed above will act on the sphere, while some mech-
anisms may dominate over others. For hard spheres rolling on a hard
surface, we expect surface roughness to be the primary mechanism
that leads to rolling resistance. Since all mechanisms act through the
contact area between the sphere and the plane, and contact occurs
through surface roughness, the contribution of other mechanisms will
also indirectly depend on surface roughness.

VII. INFLUENCE OF PANEL ROUGHNESS ON SPHERE
WAKE

The wake of a freely rolling sphere is complex and dependent on
Re. Nanayakkara et al. (2024b) discuss the influence of Re on sphere
wake shedding and vortex-induced vibrations (VIVs). At low Re, the
wake is steady and with increasing Re, the frequency of shedding
increases, and the wake becomes highly chaotic at larger Re. For the
relatively smooth surfaces investigated by Nanayakkara et al. (2024b),
no direct influence of surface roughness on the sphere wake character-
istics was observed. However, the influence of large roughness on the
sphere wake has not been investigated previously.

To establish the effects of surface roughness on the sphere
wake, visualizations of a sphere with the same diameter rolling on
panels with different surface roughnesses were obtained at a similar
Re. Figure 10 shows the wake of a sphere rolling on two relatively
smooth Nanayakkara et al. (2024b) and three rough panels. The cor-
responding nq values of the panels as well as Re and measured
Strouhal number, St ¼ fD=U , where f is the vortex shedding fre-
quency, are indicated in the caption of each figure. The Re values of
the rolling spheres are approximately the same to enable effective
comparison of the effects of surface roughness on the spheres’ wake
dynamics.

As observed in Fig. 10, the wake of spheres rolling on the glass
and frosted glass panels displays a high degree of similarity, and the St
values are also nearly identical. The sphere rolls down in a straight line
with some minor fluctuations in the cross-slope displacement caused
by the shedding of hairpin vortices. Nanayakkara et al. (2024b)
presents a detailed investigation of the influence of vortex shedding on
the sphere displacement and cross-slope velocity.

However, for the rough ceramic panel, a marginal increase in
wake unsteadiness is observed characterized by increase in the fre-
quency of vortex shedding and the corresponding St. When the panel
roughness is increased further, this unsteadiness amplifies, leading to
an increased frequency of vortex shedding and significant cross-slope
oscillations. The increased panel roughness has led to the wake being
significantly chaotic, at a lower Re compared to the smoother panels.

FIG. 9. Variation of CD with nq at three fixed Re for D � 4 mm spheres. CD values
at specific Re values were calculated using linear interpolation of nearest neighbors.
Results from smooth panels from Nanayakkara et al. (2024b) are also shown. CD
predictions from Eq. (10) are also plotted as dashed lines. The new model proposed
in Eq. (13) is represented by solid lines.
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A level of unsteadiness similar to that shown in Fig. 10(e) was observed
at Re � 700 by Nanayakkara et al. (2024b). Therefore, based on the
flow visualizations presented here, surface roughness acts to accelerate
the onset of unsteadiness of the wake of the rolling sphere. This rough-
ness effect appears to be independent of Re and increases with increas-
ing panel roughness.

One possibility is that this increase in unsteadiness is caused by
collisions with surface asperities when the sphere is rolling down the
plane, which leads to instantaneous change in the rolling directions.

However, to quantify this effect, it is necessary to measure the change
in sphere motion caused by collisions with large asperities. It is a chal-
lenging task to obtain such measurements due to scale separations
between the two geometries; roughness in the micrometer length scale
while wake shedding occurs in a millimeter length scale. Additionally,
there are difficulties in effectively capturing the contact region of a
moving sphere. Such an analysis is beyond the scope of the present
investigation and we propose this as future work. Here, we have quali-
tatively shown the influence of surface roughness on the wake

FIG. 10. Plan view of a sphere of D ¼ 6:35 mm rolling on different panels at similar Re. The effects of increasing surface roughness on the wake of a rolling sphere are
highlighted in this figure. The sphere is rolling from right to left.
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shedding of a freely rolling sphere, with a significant increase in wake
unsteadiness observed for larger roughness.

VIII. CONCLUSION

This study examines the drag coefficient (CD) of a sphere rolling
freely without slipping down a rough inclined plane. The effects of
sphere time-mean Reynolds number (Re) on the measured time-mean
drag coefficient (CD) are discussed with respect to panel roughness.
Lubrication theory (Goldman et al., 1967; Houdroge et al., 2023) pre-
dicts a decreasing CD with increasing gap height or surface roughness.
However, the findings of this study indicate that the CD for a sphere
increases with increasing roughness, in contradiction to lubrication
theory. We suggest that this increase in CD is due to the added effects
of rolling resistance, which increases with roughness.

Due to the lack of an analytical or numerical model that effec-
tively describes the relationship between the coefficient of rolling resis-
tance (lr) with surface roughness, an empirical approach is used. A
new model for the coefficient of rolling resistance lr ¼ aðnqÞbðU�Þc is
proposed. nq is the non-dimensional r.m.s. roughness, U� is the non-
dimensional down-slope velocity, and a, b, and c are constants to be
determined empirically. Analysis of the lr;eff data collected suggests
that the equation lr;pred ¼ 5ðnqÞ0:7ðU�Þ0:6 provides accurate predic-
tions of the total drag on a rolling sphere. The lr;pred values were com-
pared against lr;eff data, with R2 ’ 0:9 suggesting that the proposed
model effectively explains the variance of the measured data.

The increasing panel roughness nq has a twofold effect on the
drag coefficient. First, the fluid drag decreases due to increasing gap
height. However, the drag due to rolling resistance increases. The
increase in rolling resistance drag is larger than the decrease in fluid
drag, for a given roughness, and we observed an increase in total drag
with increasing panel roughness.

These findings may be useful in optimizing the performance and
efficiency of small ball and roller bearings. The total resistance or drag
can be minimized by selecting the appropriate surface finish for the
bearings and the wall while also effectively understanding the effects of
wear over time.

Experimental flow visualizations indicate that a higher panel
roughness leads to a more chaotic wake compared to smoother panels
at similar Re. The Strouhal numbers St at similar Re were similar for
the smoother panels, and they increased significantly for the rougher
panels, highlighting this trend.

The relationship between rolling resistance and surface roughness
is complex and is not yet fully understood. The present analysis provides
an approximate model that requires the determination of parameters
empirically based on experimental measurements. Measurement of the
contact dynamics of spheres and roughness elements will be required to
gain further insight into this problem. The combination of surface
roughness with other sources of rolling resistance is likely to produce a
more completemodel that describes the dynamics of rolling spheres.
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