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Abstract

A numerical study of magnetohydrodynamic flows and heat transfer past a cir-

cular cylinder in a duct under a strong magnetic field parallel to the cylinder

axis is presented. In this configuration, the flow is quasi-two-dimensional and

the modified Navier–Stokes equations are solved in a two–dimensional domain.

The numerical simulations have been performed over a range of parameters in-

cluding the Reynolds number 50 ≤ Re ≤ 3000, modified Hartmann number

50 ≤ Ha⋆ . 500, blockage ratio 0.1 ≤ β ≤ 0.5, offset ratio 0.25 ≤ γ ≤ 1, velocity

amplitude 0 ≤ A ≤ 3 and forcing frequency 0 ≤ Ste ≤ 10. The primary aim of

this study is to understand the fundamental mechanism that governs transition

to unsteady flow in this system and exploit this for further improvements in heat

transfer for MHD cooling duct flows.

With this aim in mind, a spectral-element method is employed to compute the

MHD flow and heat transfer past a confined circular cylinder in a rectangular duct.

Meshes have been constructed to deal with the significant number of geometric

flow parameters combinations. Thorough validation and grid resolution studies

have been performed to ensure adequate domain sizes, and spatial and temporal

resolutions to accurately resolve all flow and thermal features for the reported flow

variable ranges. Studies show that the reported flow parameters are converged to

better than 0.3% in terms of spatial and temporal accuracy and 1% with respect

to the domain size. For the optimal growth studies, the dependence of energy

growth on upstream domain length is also considered through the calculation of

the energy growth over a fixed time span. This verifies that the effect of truncating

the upstream length from 32d to 8d causes an error of less than 3% in the growth

rate prediction.

The critical Reynolds number Rec for the transition from steady to periodic

flow is determined as a function of Ha⋆ and β, and this is found to increase

with increasing Ha⋆ and β. In addition, the variation of the wake recirculation

length in the steady flow regime is determined as a function of Reynolds number,

Hartman number and blockage ratio, and a universal expression is proposed.
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The characteristics of heat transfer depend strongly on the proximity of the

cylinder to the heated wall. For small blockage ratios, it increases significantly

as the gap ratio decreases from 1 to 0.25. However, there is a substantial drop in

heat transfer for high blockage ratio. Downstream cross-stream mixing induced

by the cylinder wake is found to increase the heat transfer augmentation by more

than a factor of two in some cases. The maximum gain in heat transfer generated

by placing the cylinder in the channel near to the wall with that at the centerline

was obtained for the lowest blockage ratio β = 0.1, as the cylinder is further

approached the heated wall.

For all β, a very significant transient energy growth is found in the subcritical

regime below the onset of vortex shedding. This suggests a potential for the

design of an actuation mechanism to invoke vortex shedding and then enhance

heat transfer in these ducts. The energy amplification of the disturbances is

found to decrease significantly with increasing Hartmann number and the peak

growth shifts towards smaller times while it increases significantly with increasing

blockage ratio.

The structure of the optimal initial disturbance is found to be consistent

across the all blockage ratios being tested. In line with similar problems, it

convects along the separating region being amplified to the peak growth state

downstream of the recirculation bubble. The maximum time for maximum energy

growth τmax is found to increase significantly as recirculation length increases

which demonstrates the amplifying nature of the separated shear layers in the

wake.

The critical Reynolds number for the onset of positive growth at different

Hartmann numbers and blockage ratios is determined. It is found that it increases

rapidly with increasing Hartmann number and blockage ratio. For all β, the peak

energy amplification grows exponentially with Re from low Hartmann numbers.

Direct numerical simulation studies in which the inflow is perturbed by ran-

dom white noise confirms the predictions arising from the transient growth anal-

ysis: that is, the perturbation excites and feeds energy into the global mode.

A considerable increase in heat transfer from the heated channel wall occurs

from rotational oscillation of the cylinder, with a maximum enhancement of ap-

proximately 22% observed at higher amplitude over that for steady flow. The

oscillation frequency range for effective enhancement is widened in both direc-

tions, while the frequency at which the peak of the Nusselt number occurs is

shifted slightly to a lower frequency as A is increased. It is found that as the

amplitude was reduced, the forcing frequency approaches the global frequency
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mode.
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Nomenclature

A list of nomenclature used throughout the thesis is included here. Mathematical

symbols are presented, followed by Greek alphabet nomenclature and English

alphabet nomenclature.

Symbol Description

§ Thesis section∫
Integral∮
Line integral

log10 Logarithm to the base-10

loge Natural logarithm

∇ Vector gradient operator (grad)

∇⊥ Vector gradient operator projected onto (x,y) plane (grad)

∇2 Del squared (or div grad) operator

∇2
⊥ Del squared (or div grad) operator projected onto (x,y) plane∑b
i=a Sum of arguments with i incrementing from a to b

αd Thermal diffusivity of the fluid

αq Third-order backwards-multistep coefficients

β Blockage ratio

βq Third-order backwards-multistep coefficients

ψ0 Scalar gradient of the z-averaged current

∆ Minimum distance between the surface of the cylinder and the
heated wall

∆t Time step

δH Hartmann boundary layer thickness

δS Shercliff boundary layer thickness

η Duct aspect ratio

Continued on the next page.
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Continued from previous page.

Symbol Description

ηeff Efficiency index

ϕ Electrical potential

γ Offset ratio from the duct cenreline

γq Third-order backwards-multistep coefficients

λj Eigenvalue of operator A (τ)A ∗(τ)

λn Constant

θ Temperature field

θ̇cyl Surface velocity of the cylinder

θf Bulk fluid temperature

µ Complex eigenvalue

µm Magnetic permeability

ν Kinematic viscosity

ρ Mass density

σ Growth rate of linear instability mode over nth period in linear
stability analysis

σe Electrical conductivity

σn Linear growth rate in the Landau equation

σw Electrical conductivity of the channel walls perpendicular to the
magnetic field

Ω Computational domain

ω Angular velocity

ω Vorticity field

ωpeak Peak vorticity

τw Wall shear stress

A Non-dimensional angular velocity amplitude

An Complex amplitude in Landau equation

a Characteristic length scale, duct height

A (τ) Linear evolution operator over a time τ

Continued on the next page.
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Continued from previous page.

Symbol Description

A ∗(τ) Adjoint of linear evolution operator over a time τ

B Magnetic field strength

B Magnetic field vector

Bi Induced Magnetic field

bn Fourier mode of induced magnetic field

c Wall conductance ratio

C Constant

cn Landau constant

CD Cylinder drag coefficient

CD,p Pressure component of drag coefficient

CD,visc Viscous component of drag coefficient

CL Cylinder lift coefficient

CL,max Maximum lift coefficient

CM Cylinder moment coefficient

CM,max Maximum Moment coefficient

Cp Specific heat at constant pressure

d Cylinder diameter

DNu′ Linearized advection term of perturbation field

DN∗u∗ Adjoint advection operator

E Electrical field vector

F ′
d Lift force per unit span of the cylinder

F ′
l Drag force per unit span of the cylinder

Fp Pressure force per unit span of the cylinder

Fw Viscous force per unit span of the cylinder

FT Total force per unit span of the cylinder

fe Forcing frequency (dimensional)

fs Wake oscillation frequency

f(z) Time-dependent function (employed in quasi-two–dimensional
model)

Continued on the next page.
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Continued from previous page.

Symbol Description

G Energy growth

Gmax Global maximum of energy growth

i Imaginary number (i =
√
−1)

h Duct height

hc Convective heat transfer coefficient

Ha Hartmann number

Ha⋆ Modified Hartmann number

HI Percentage heat transfer increment when the cylinder placed sym-
metrically in the duct

HIasym Percentage heat transfer increment when the cylinder placed
asymmetrically in the duct

HP Pressure penalty ratio

HR Heat transfer enhancement ratio

H Forward equations of field q operator

H ∗ Adjoint equations of field q∗ operator

J Current density vector

J̄ z-averaged current density vector

Jw Current density vector injected at the wall

J̄⊥ z-averaged current density vector projected onto (x,y) plane

k Thermal conductivity

kn Constant

Kp Pressure gradient

L Length along heated bottom wall

LR Recirculation bubble length

M Moment exerted by the fluid on the cylinder

Mmax Peak moment exerted by the fluid on the cylinder

M ′ Moment exerted by the fluid per unit span of the cylinder

N Stuart number (Interaction parameter)

Continued on the next page.
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Continued from previous page.

Symbol Description

Nel Number of elements employed in computations

Np Element polynomial degree employed in computations

nH Number of Hartmann walls

n Surface normal unit vector

Nu Time-averaged Nusselt number

Nuasym Time-averaged Nusselt number for the cylinder placed asymmet-
rically in the duct

Nusym Time-averaged Nusselt number for the cylinder placed symmet-
rically in the duct

Numax Peak time-averaged Nusselt number

Nus Time-averaged Nusselt number for zero-oscillation

Nuw Local Nusselt number

∆pcyl Pressure drop due to the inclusion of a circular cylinder

∆p Overall pressure across the channel for a circular cylinder placed
asymmetrically from the channel centerline

∆p0 Overall pressure across the channel without the cylinder

P Scalar pressure

Pavg Time-averaged power

Pmax Maximum power

P∆p Pumping power

p Kinematic pressure field

p̂ Complex perturbation pressure field amplitude for linear stability
analysis

p̃ Dimensional pressure kinematic field

Pm Legendre polynomial of order m

pn Constant

Pe Péclet number

Qv Flow rate

Pr Prandtl number

Continued on the next page.
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Symbol Description

r Moment arm vector

Re Reynolds number

Rec Critical Reynolds number for the onset of vortex shedding

Rec1 Critical Reynolds number for positive energy growth of optimal
disturbances

Rem Magnetic Reynolds number

St Strouhal number

St c Strouhal number at Rec

Ste Forcing Strouhal frequency

Ste,max Maximum forcing Strouhal frequency

t time

tH Hartmann braking time

tw Thickness of the channel walls perpendicular to the magnetic field

∆T Temperature difference between channel side walls

T Period of an oscillating flow

Te Period of an oscillating flow at fe

τ Time interval

τmax Maximum time for the maximum energy growth

T0 Temperature of fluid entering channel

Tw Temperature of hot channel side-wall

U Steady two–dimensional base flow velocity

u x-direction velocity component

û Amplitude of the streawise velocity component of the perturba-
tion field

ũ x-direction dimensional velocity component

uc Core velocity

u Velocity vector

û Complex perturbation velocity field amplitude for linear stability
analysis

Continued on the next page.
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Symbol Description

ú Perturbation field velocity vector for linear stability and transient
growth analysis

uf Driving force arising from current injection at boundaries

ū z-averaged velocity

u⊥ Velocity projected onto (x,y) plane

ū⊥ z-averaged velocity projected onto (x,y) plane

ú⊥ Velocity deviation from the averaged velocity

u∗ Velocity field at first substep

u∗∗ Velocity field at second substep

u0 Peak inlet velocity

un Fourier mode of velocity

v y-direction velocity component

vj Normalized eigenfunctio of operator A (τ)A ∗(τ)

ṽ y-direction dimensional velocity component

v̂ Amplitude of the transverse velocity component of the perturba-
tion field

ω z-direction velocity component

x Streamwise coordinate

x̃ Dimensional streamwise coordinate

x̂ Unit vector in x direction

xu Length of upstream flow region

xd Length of downstream flow region

xj jth Gauss-Legendre-Lobatto quadrature points

wj jth Gauss-Legendre-Lobatto weighting coefficient

y Transverse coordinate

ỹ Dimensional transverse coordinate

ŷ Unit vector y direction

z Spanwise coordinate

Continued on the next page.
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Symbol Description

ẑ Unit vector z direction
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Chapter 1

Introduction

A numerical study of the flow and heat transfer of an electrically conducting

fluid (e.g. a liquid metal) past a circular cylinder confined in a duct under an

axial magnetic field is studied. In this introduction, initially, some fundamental

concepts and parameters pertaining to magnetohydrodynamics are introduced.

This is followed by an overview and a description of the problem. The aims of

the study are stated, and finally the structure of thesis is outlined.

1.1 Fundamental Magnetohdyrodynamics Con-

cepts

Magnetohydrodynamics (MHD) is the branch of continuum fluid mechanics which

deals with the motion of electrically conducting fluids such as liquid metals, elec-

trolytes and plasma in the presence of a magnetic field. Magnetohydrodynamics

studies were initiated by the pioneering works of Hartmann (1937) and Hartmann

& Lazarus (1937), who conducted a theoretical and experimental analysis of the

laminar flow of mercury placed in a magnetic field.

MHD includes phenomena in electrically conducting fluids, where the velocity

field and the magnetic field mutually interact. The movement of a conducting

fluid in a magnetic field generates electric currents, which in turn induce a mag-

netic field. The resulting magnetic field interacts with the induced current density

to produce a Lorentz force.
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1.2 Governing Parameters in MHD

There are four non-dimensional groups which are regularly used to characterize

MHD flows. The first is the Reynolds number,

Re = ua/ν, (1.1)

where a is a characteristic length scale of the motion, u is a typical flow velocity,

and ν is the kinematic viscosity of the fluid. As in conventional fluid mechanics,

the Reynolds number represents the ratio of inertia to viscous forces. The second

and the third dimensionless groups are the Hartmann number and the interaction

parameter. These characterize the square root of the ratio of electromagnetic to

viscous forces, and the ratio of electromagnetic to inertia forces, respectively.

They are defined as

Ha = aB

√
σe
ρν
,

and

N =
σeB

2a

ρu
,

where B, ρ, and σe are the magnetic field strength, mass density, and the electrical

conductivity, respectively. The interaction parameter can also be expressed in

terms of Ha and Re as N = Ha2/Re. The final dimensionless group is the

magnetic Reynolds number, which represents the ratio of the induced and applied

magnetic fields. It is defined as

Rem = µmσeua,

where µm represents the magnetic permeability. When this number is very small,

u has only a small influence on B, and thus the induced magnetic field is negligible

when compared with the imposed field.

1.3 MHD Flow in Ducts

The study of magnetohydrodynamic flow in ducts in the presence of a transverse

magnetic field is important because of its practical applications in magnetohydro-

dynamic generators, pumps, and metallurgical processing (e.g. Davidson (2001);
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Branover (1978)). The primary application motivating this fundamental study

is magnetic confinement fusion reactors, where liquid metal (such as lithium or

eutectic lithium–lead alloys PbLi) may be used as a coolant and as a breeder

material (Münevver 1987). In most fusion reactor blankets, the liquid metal cir-

culates within an electrically insulated duct and is exposed to a strong magnetic

field. The blankets are designed to absorb the energy released from the fusion re-

action and utilize the heat generated by the reaction to produce steam and drive

a turbine to generate electricity as shown in Fig. 1.1. The Lorentz force arising

from the interaction of the fluid with the strong magnetic field has a significant

effect on the velocity distribution and the turbulence characteristics, and exerts

a retarding force on the flow.

Under a strong magnetic field the flow is characterized by a laminar struc-

ture as velocity fluctuations in the direction of the magnetic field are strongly

damped. Therefore, the heat transfer in the ducts of the blanket, where a large

amount of heat must be removed, is dramatically decreased (Kirillov et al. 1995).

The heat transfer problem under these conditions is schematically illustrated in

Fig. 1.2. However, two–dimensional unsteady flow that consists of vortices with

axes parallel to the magnetic field are not significantly damped (Lielausis 1975).

An hypothesis motivating this study is that unsteady flow could be used to en-

hance the heat and mass transfer in these flows, if turbulence promoters such as

a circular cylinder placed inside the duct of a blanket were used.

For the liquid metals used in the fusion blanket, the Hartmann number, Ha,

and the interaction parameter, N , are very high (i.e. Ha ≫ 1, N ≫ 1). This

implies that the electromagnetic forces dominate over the viscous forces, and

following Molokov et al. (2007), the flow in a rectangular duct can be split into

one or more quasi-inviscid core flows, separated by thin boundary or shear layers

of two types, as shown in Fig. 1.3. The core occupies almost the entire duct cross

section. In the core, there is a balance between pressure gradient and Lorentz

force. Viscous effects are confined to the Hartmann layers where the viscosity

and Lorentz force come into balance to satisfy the no-slip boundary condition

at the walls (Shercliff 1975). The velocity in the core varies only slightly along
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Figure 1.1: Schematic diagram of a fusion reactor for electrical power generation.

The deuterium and tritium fuel burns at very high temperature in the reaction cham-

ber where the fuels are ionized and form plasma confined by a strong magnetic field.

The energy is released as neutrons and radiation is absorbed in the lithium blanket

surrounding the reaction chamber. This image is reproduced from McCracken &

Stott (2005).

the magnetic field lines, while in the vicinity of the walls perpendicular to the

magnetic field it exhibits an exponential variation. The boundary layer on the

walls perpendicular to the magnetic field is known as the Hartmann layer with

a thickness that scales as δH ∼ Ha−1, while the boundary layer along the walls

parallel to the magnetic field is known as the Shercliff layer (or side layer), with

a thickness that scales as δS ∼ Ha−1/2.
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Figure 1.2: The heat transfer in a channel in the presence of a strong magnetic

field, from Burr et al. (2000).

1.3.1 Vorticity

Vorticity is a fundamental concept relating the structural and dynamical prop-

erties of a flow field and is applied in this thesis to understand and characterise

several features of the computed flow. Throughout this thesis, vorticity fields are

used to visualize the fluid structures in the wake of the obstacles placed within the

channel. It is mathematically defined as the curl of the velocity vector (Massey

2005),

ω = curl u = ∇× u, (1.2)

and in magnitude is equal to twice the local angular velocity. Expanding equation

(1.2) into its components in Cartesian coordinates gives

ωx =
∂ω

∂y
− ∂υ

∂z
, (1.3)

ωy =
∂u

∂z
− ∂w

∂x
, (1.4)

ωz =
∂υ

∂x
− ∂u

∂y
, (1.5)
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Figure 1.3: Subregions of the flow in a rectangular duct for Hartmann number

Ha ≫ 1. Left: A section of duct is viewed from side; Right: The duct is viewed in

cross-section. The direction of the flow and magnetic field are indicated by arrows,

and the Shercliff and Hartmann layers are also shown.

where in the context of this study (see Fig. 1.4), ωx, ωy and ωz are refereed as

streamwise, transverse and spanwise vorticity, respectively. In the case where the

flow field is two–dimensional, only ωz is non-zero, and therefore the rotational

state of the flow is completely described by the z-vorticity component.

1.3.2 Prandtl Number, Péclet Number and Nusselt Num-
ber

Prandtl number provides a measure of the relative effectiveness of transport by

diffusion of momentum and energy in the velocity and thermal boundary layers,

respectively. It is the ratio of the momentum diffusivity to thermal diffusivity,

and is defined as (Incropera et al. 2011)

Pr =
ν

αd

,

where αd thermal diffusivity of the fluid. The value of Pr significantly influences

the relative growth of the velocity and thermal boundary layers. Liquid metals

are characterized by a small Prandtl number of the order 10−3 to 10−2, which

means that the energy diffusion rate greatly exceeds the momentum diffusion

rate.

The contribution of heat transfer due to advection and diffusion is described

by the Péclet number, which is defined as (Incropera et al. 2011)

Pe =
ua

αd

=
1

Re Pr
.
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If the Péclet number is small, then the heat transfer is diffusion dominated, and

it is advection dominated for large Péclet number. For fusion applications, Pe

varies between 1 and 103 (Barleon et al. 2001).

The heat transfer at the surface boundary within a fluid is determined by

the Nusselt number, which represent the ratio of convective to conductive heat

transfer across the boundary (Incropera et al. 2011)

Nu =
hca

k
,

where hc is the convective heat transfer coefficient and k is the thermal conduc-

tivity. A Nusselt number close to unity means that convection and conduction

are comparable, which is a characteristic of laminar flow. Small Nusselt num-

bers correspond to heat transfer dominated by conduction, whereas large Nusselt

numbers correspond to heat transfer dominated by convection.

1.4 Overview of the Study

The present study considers the fluid flow and heat transfer of an electrically

conducting, viscous and incompressible fluid (e.g. the eutectic alloy GaInSn)

past a circular cylinder confined in a duct. The physical properties of GaInSn

are density ρ = 6360 kg m−3, kinematic viscosity ν = 3.4×10−7 m2 s−1, electrical

conductivity σe = 3.46× 106 Ω−1 m−1, thermal conductivity k = 39 W m−1 K−1

and specific heat Cp = 320 J kg−1 K−1. The general configuration of the system

investigated in this thesis is shown schematically in Fig. 1.4. It consists of a

rectangular duct of constant aspect ratio with a cross section (a × h) with a

circular cylinder of diameter (d) placed at variable distances from the centreline

of the duct, aligned parallel to the magnetic field and perpendicular to the flow

direction. The duct walls and the cylinder are assumed to be electrically insulated.

A strong homogenous magnetic field is imposed along the cylinder axis. One

of the walls located parallel to the magnetic field is heated to a constant wall

temperature Tw whereas the other surfaces are kept at constant temperature T0.

A special case is also considered where a rotational oscillation is imposed on the

cylinder to study the effect that has on the heat transfer into the fluid.
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Figure 1.4: Schematic diagram and coordinates for the system under investigation

in this study.

The control parameters in this study are the Hartmann number (Ha), Reynolds

number (Re), blockage ratio (β), offset ratio from the duct centreline for the

cylinder (γ), as well as the frequency of oscillation of the cylinder (fe) and the

angular amplitude (A) for the oscillating motion of the cylinder. The blockage

ratio is defined as the ratio between the cylinder diameter and the duct height

(i.e. β = d/h). The offset ratio specifies the separation between the body and

the heated wall (i.e. γ = ∆/(h/2−d/2)), where ∆ is the minimum distance from

the surface of the cylinder to the nearest wall. The other dimensionless param-

eter used in this study is the Strouhal number (St = fsd/u), where fs is the

shedding or wake frequency. The effect of varying these parameters on the flow

characteristics and heat transfer enhancement is the major focus of this study.

1.5 Aims of the Study

The study aims to investigate the dynamics and heat transfer characteristics

of a quasi–two–dimensional magnetohydrodynamic flow past a confined circular

cylinder in a rectangular duct under a strong magnetic field. A parametric study is

performed by changing the flow control parameters with a view to understanding
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and characterizing the flows and the downstream cross-stream mixing induced

by the cylinder wake. Furthermore, the study aims to determine the values of

the critical Reynolds number for the transition from steady to unsteady flow,

Strouhal number, drag and lift coefficients, and heat transfer from the heated

wall as a function of the control parameters.

A linear stability analysis and a transient growth analysis are to be applied to

flows in the subcritical regime before the onset of vortex shedding, to determine

the roles of global modes and optimal disturbances in the development of wake

instabilities. The effects of Reynolds number, Hartmann number, and blockage

ratio on the transient energy growth of disturbances in these flows will be consid-

ered. From this, it is hoped that a better understanding may be gained as to the

fundamental mechanisms that govern transition to unsteady flow in this system.

In fusion blanket applications, Hartmann numbers are of the order of 104,

which is beyond the range considered in this thesis. The work contained in this

thesis is a fundamental study motivated by this application; the results should

not be taken as being directly relevant to that specific application. The potential

outcomes or benefits that may arise from this work include, for example, informing

efforts to improve heat transfer and therefore efficiency in MHD cooling devices,

and enhancing our understanding of flow transition in these systems.

1.6 Structure of the Thesis

The thesis is divided into eight chapters. Following the present introduction,

chapter 2 provides a review of previous work from the literature relevant to the

work undertaken in this thesis. This is followed in chapter 3 by a description of the

numerical methodologies and their validation. Results are presented in chapters

4 to 7. Chapter 4 covers a numerical investigation of the flow and heat transfer

past a circular cylinder in a rectangular duct. Chapter 5 details the investigation

of fluid flow and heat transfer past a circular cylinder positioned offset from the

duct centreline. Chapter 6 considers the optimal transient disturbances leading to

vortex shedding. The details of heat transfer enhancement induced by rotationally

oscillating the cylinder are presented in chapter 7. Conclusions are drawn in
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chapter 8, along with some suggested areas of future research relating to this

thesis.
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Chapter 2

A Review of the Literature

In this chapter, a review of the literature pertaining the work in this study is

presented. Firstly, previous studies of the flow past a circular cylinder for the

case without magnetic field are considered. This is followed by the magneto-

hydrodynamic flow past a circular cylinder exposed to a uniform magnetic field.

Following these, studies into heat transfer enhancement in a channel for both

hydrodynamic and magnetohydrodynamic cases are reviewed. Finally, studies of

the transient growth analysis relating to these flows are discussed.

2.1 Flow past a Circular Cylinder

The flow past a circular cylinder in the absence of a magnetic field depends

on the Reynolds number and whether the flow is bounded or unbounded by a

plane channel. In a two–dimensional sense the flow can be classified into three

configurations: unbounded flow past a cylinder, flow past cylinder near a wall,

and the flow past a cylinder between two parallel walls. In the unbounded domain,

the flow can be completely described by Reynolds number Re. However, when

the circular cylinder is confined in a plane channel, the characteristics and the

stability of the resulting flow changes significantly due to the blockage effect

caused by the stationary walls of the plane channel. Therefore, the flow depends

on Reynolds number and blockage ratio β = d/h as the control parameters, where

d is the cylinder diameter and h is the duct height.
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2.1.1 Unbounded Circular Cylinder

As the Reynolds number is increased, the flow exhibits a sequence of three distinict

two–dimensional regimes until the flow becomes three–dimensional beyond Re

≈ 180. These regimes include creeping flow, separated flow, unsteady flow, and fi-

nally three–dimensional flow. Comprehensive reviews of experimental and numer-

ical work pertaining to this flow are given in Williamson (1996) and Zdravkovich

(1997, 2003).

2.1.1.1 Steady Flow

At very low Reynolds numbers the flow around a circular cylinder is dominated by

viscous forces. The flow is steady and completely attached to the cylinder. The

creeping flow persists without boundary layer separation up to Re ≃ 5 (Taneda

1956).

The characteristics of this flow were investigated experimentally by Taneda

(1956), who used a glass water tank with aluminium dust suspended in the water

to visualize the flow. The results demonstrated that the flow streaklines appear

symmetrical upstream and downstream of the cylinder, and the flow has the

property of being reversible as Re → 0. An example of such a flow is shown in

Fig. 2.1.

Figure 2.1: Creeping flow past a circular cylinder visualized by streaklines at Re =

0.16; from Van Dyke (1982). Flow is left to right, but nearly perfect reversibility

makes this difficult to determine from photograph.

With increasing Re, the magnitude of viscous forces decreases until a topolog-
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ical change in the flow occurs with the separation of the flow at the downstream

end of the cylinder, which results in the formation of a wake comprising of a

pair of recirculating bubble zones. An example of this separated flow is shown in

Fig. 2.2. The precise Re at which the flow separates is difficult to determine, due

to the small size of the near-wake region and the low velocities in the vicinity of

separation. In general, the onset of separated flow was predicted to occur some-

where within 5 < Re < 7 (Taneda 1956; Takami & Keller 1969; Dennis & Chang

1970; Collins & Dennis 1973; Noack & Eckelmann 1994).

Figure 2.2: Separated flow past a circular cylinder at Re = 13.1; from Van Dyke

(1982).

As Reynolds number is further increased, the steady symmetrical recirculation

bubble observed in the wake, which comprises of a counter-rotating vortex pair,

was found to grow approximately linearly with Re (Taneda 1956; Coutanceau &

Bouard 1977a; Gerrard 1978). The recirculation bubble remains two–dimension-

al, steady and symmetrical about the cylinder centreline until Re ≈ 40 where

a transition to asymmetrical flow is observed. As the steady recirculation zones

elongates, small oscillations were observed in the downstream region of the wake

at Re ≈ 45 (Taneda 1956). These oscillations precede the onset of unsteady flow,

where vortices are shed alternately from the shear layer on the either side of the

cylinder.
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2.1.1.2 Unsteady Flow

The evolution of unsteady flow transients in the wake of a circular cylinder in-

duced by an impulsive initiation of motion was investigated experimentally by

Coutanceau & Bouard (1977b). They noticed a more rapid decay of transients at

smaller Reynolds numbers. The vortex positions and separation angle were mon-

itored and it was demonstrated that the transverse flow features evolved more

rapidly than longitudinal flow features.

The stability of a two–dimensional steady flow past a flat plate and circular

cylinder was considered experimentally and theoretically by Taneda (1963). The

experiments were conducted in a water tank for a range of Reynolds numbers:

10 < Re < 600 for a flat plate and 0.8 < Re < 60 for a circular cylinder. From the

measurements of wake oscillations, the critical Reynolds number below which all

disturbances are damped out was Re ≈ 1 for the flow past a circular cylinder. A

theoretical analysis performed assuming parallel flow proposed a critical Reynolds

number Re ≈ 3.2 for all shapes of bluff body. However, oscillations were observed

in the far-wake at Re ≈ 30.

The detection of oscillations below the critical Reynolds number for unsteady

flow can be explained by the nature of instability responsible for the evolution

of the unsteady flow past a circular cylinder. The concepts of absolute and

convective instability have been introduced by Provansal et al. (1987); Monkewitz

(1988). In an absolutely unstable flow, a localized impulsive disturbance spreads

in all directions and destabilizes the entire flow, whereas in a convectively unstable

flow disturbances are convected away from their original position. While the

disturbance grows as it convects downstream, it decays at its original position.

The term local and global are also used depending on whether the instabilities

develops on a local velocity profile or the whole flow field.

The stability of wake profiles for a circular cylinder at low Reynolds number

was investigated by Monkewitz (1988). Stability calculations using these profiles

predicted that at a Reynolds number of Re ≈ 2 there was a transition from

stability to the onset of convective instability, and at a critical Reynolds number of

Re ≈ 25 transition from convective to absolute local instability. These predictions
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agree with the measurements of unsteady transients downstream of the cylinder

at Re ≈ 1, and those of oscillations in the near-wake behind a circular cylinder

at Re ≈ 25 by Taneda (1963, 1956), respectively.

The critical Reynolds number for the transition from steady to unsteady

flow past a circular cylinder have been found numerically to lie between 46.2 <

Re < 54. The critical Reynolds number was predicted using a low dimensional

Galerkin method to be Re ≈ 54 by Noack & Eckelmann (1994), Re ≈ 46.2 from

finite-element computations using Richardson extrapolation (Jackson 1987), and

Re ≈ 47.1 through application of the Landau model by Dušek et al. (1994).

Recently, Morzyński et al. (1999) performed a highly accurate linear stability

analysis computation that employed an eigensolution method for the flow past

a circular cylinder, and a critical Re = 47 was predicted. Experimentally, the

critical Reynolds number for the transition to unsteady flow past a circular cylin-

der has been found to vary between 47 and 49 (Williamson 1988; Norberg 1994;

Williamson 1996).

Thus, at a Reynolds number of Re ≈ 47, the flow becomes unsteady (Taneda

1956; Provansal et al. 1987; Jackson 1987; Henderson 1997; Dušek et al. 1994;

Williamson 1996). The oscillation at the end of the near-wake starts to initiate

a sinuous wave which propagates along the boundary of the wake recirculation

in the downstream direction. The transition from steady two–dimensional flow

to time dependent flow is often refereed as the primary instability due to an

absolute instability which develops in the near-wake region (Henderson 1997). In

mathematical terms, the flow is found to undergo a supercritical Hopf bifurcation

that takes place without hysteresis (Provansal et al. 1987; Noack & Eckelmann

1994), and the wake in this regime takes the form of two–dimensional period

oscillatory flow.

As the Reynolds number is increased beyond the Hopf bifurcation, the wake

shear layers roll up and vortices are shed downstream from the rear of the cylin-

der to form the classical Bénard-von Kármán vortex street. An example of the

Kármán vortex street is shown in Fig. 2.3. The vortex street is comprised of a

double row of vortices that shed alternatively and regularly from both sides of
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the cylinder. For the range of Reynolds number 49 . Re . 150, the wake flow

field is purely two–dimensional in nature and the vortex shedding is refereed as

laminar shedding.

 

Figure 2.3: Kármán vortex street behind a circular cylinder at Re = 105; from Van

Dyke (1982).

2.1.1.3 Instabilities of the Vortex Street

For the laminar shedding regime in the wake behind a circular cylinder, there

have been a number of efforts to obtain the relationship between Strouhal number

and Reynolds number. Roshko (1954) measured the vortex shedding frequencies

past circular cylinders of different diameters in a wind-tunnel. He obtained a

continuous curve describing the variation of Strouhal versus Reynolds number

over the range 50 ≤ Re ≤ 150 in the form

St = 0.212− 4.5

Re

However, later measurements by Tritton (1959) found a discontinuity in the

Strouhal–Reynolds number curve resulting in a drop in the Strouhal number of

around 5% for Reynolds number above the discontinuity, suggesting that a tran-

sition in the vortex street occurred at Re ≈ 90. He proposed that this transition

was due to a shift between the vortex street axis and that of the cylinder. From

the flow visualization images provided in that study, it was proposed that the

there was a low-speed mode that developed from an instability of the wake, and

a high speed-mode that developed as a result of the interaction between the flow

and the cylinder surface. Tritton (1971) repeated his experiment in a wind tunnel
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to verify the existence of the transition at Re ≈ 90. A transition was found at

Re = 110, and it was proposed that this discrepancy in the transition Reynolds

number was caused by the different experimental conditions.

The experimental results performed by Gaster (1971) on the flow past a ta-

pered cylinder found a discontinuity in the Strouhal–Reynolds number profile at

Re ≈ 100. It was suggested that the non-uniform flow along the cylinder span

can produce a vortex street consisting of a number of cells with different frequen-

cies in each cell, and the cell positions moved along the span with changes of

velocity. The results suggested that the Strouhal–Reynolds number discontinu-

ities reported by Tritton (1959, 1971) were due to the formation and movement

of cells in non-uniform flow.

Later, the discontinuity in the Strouhal–Reynolds number profile was found

to be caused by the development of oblique shedding in the wake (Williamson

1988, 1989; Hammache & Gharib 1991). The oblique vortices formed a periodic

chevron pattern at an angle to the spanwise direction observed in this regime. It

was found that the boundary conditions at the spanwise ends of the cylinder affect

the angle of shedding even for a long cylinder. Williamson (1988, 1996) showed

that the inclination of the vortex shedding to the axis of the cylinder caused

a reduction in the Strouhal number of shedding, and if the Strouhal number

was corrected according to the angle of oblique shedding, a continuous Strouhal–

Reynolds number curve was obtained.

Further, it was demonstrated that the transition from parallel to oblique vor-

tex shedding street in the wake of the circular cylinder is sensitive to the end

conditions of the cylinder such as end plates or base suction (Triantafyllou 1992;

Albarède & Monkewitz 1992; Williamson & Miller 1994; Leweke & Provansal

1995), which was proposed to decrease the local stability of the near-wake at the

ends of the cylinders (Monkewitz 1996). As will be described in the next chapter,

the flows are modelled as quasi–two–dimensional by averaging the equations of

motion along the magnetic field direction for MHD flows modelled in this thesis,

and hence features such as oblique shedding and vortex dislocations (Williamson

& Miller 1994) will not be considered in this thesis.
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2.1.2 Three–Dimensional Flow

The transition from the laminar vortex shedding to three–dimensional shedding

can be observed through measurements of Strouhal number as a function of

Reynolds number as shown Fig. 2.4, where the Strouhal number can be seen to

drop rapidly at Re ≈ 180. This rapid transition is referred as the secondary insta-

bility of the steady flow past a circular cylinder. Roshko (1993) and Williamson

(1996) observed that the upper limit of Reynolds number for this transition was

found to vary considerably over the range Re = 140− 190. It was proposed that

factors such as cylinder roughness, free-stream turbulence amplitude, blockage

and end effects shift the transition of the laminar two–dimensional wake to a

lower Reynolds number (Williamson 1996).

Williamson (1988) observed that the transition to three-dimensionality begins

with the formation of a regular three–dimensional flow structure known as mode

A. This is characterized by a wavy deformation of the primary vortex cores during

the process of shedding. Three–dimensional disturbances are suppressed in the

system considered in this thesis, so they will not be discussed further here. The

interested reader is directed to the excellent review by Williamson (1996) for more

information.

2.1.3 Higher Reynolds Number Flow: Shear Layer Insta-
bilities

For a high Reynolds number, the distortion of the wake increases due to the pres-

ence a shear flow instabilities. The shear flow instabilities develop by the action

of the Kelvin–Helmholtz mechanism that causes the shear layer to be wavy. It

was demonstrated that the turbulent flow emerges increasingly in the wake to

form small scale vortical structures for Re & 300 (Bloor 1964; Unal & Rockwell

1988; Williamson 1996; Henderson 1997; Prasad & Williamson 1997). The de-

velopment of turbulence in the wake of a circular cylinder was well described by

Bloor (1964), who found that the transition point from laminar to turbulent flow

in the shear layer moved upstream towards the cylinder with increasing Reynolds

number.
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Figure 2.4: Strouhal–Reynolds number profile over laminar and three–dimension-

al transition regimes, reproduced from Barkley & Henderson (1996). Two distinct

discontinuities in the Strouhal frequency are clearly shown as Reynolds number is

increased. Shown are experimental results: ◦, Williamson (1989); • Hammache &

Gharib (1991) and numerical results: +, Barkley & Henderson (1996).

At Re ≥ 2 × 105, a dramatic drop in both the base pressure and drag coeffi-

cients are observed as the critical transition in the wake occurs. This is due to

formation of a separation-reattachment bubble in the shear layer. The flow past

a circular cylinder at the critical transition was described by Roshko (1993) to

experience a separation followed by reattachment, which finally allowed a sepa-

ration at approximately 140◦ from the front of the cylinder. This resulted in a

narrow wake, which in turn reduced significantly the drag and base pressure co-

efficients. The sharp drop in the base pressure is illustrated in Fig. 2.5. The flow

below this critical transition is referred as subcritical flow where neither separa-

tion nor reattachment occurs, while the flow beyond this transition is referred as
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supercritical flow, where the separation-reattachment bubble is formed. However,

periodic fluctuations in the wake were still detected.

 

Figure 2.5: The base suction pressure coefficients as a function of Reynolds number;

from Williamson (1996).

2.1.4 Circular Cylinder near a Wall

When a cylinder is placed adjacent to a plane wall, though the wall induces

an irrotational effect on the flow, the resemblance with the unbounded case re-

mains pertinent. The flow characteristics in the wake of a circular cylinder placed

near the plane wall at different gap ratio γ has been investigated by Bearman &

Zdravkovich (1978); Taniguchi & Miyakoshi (1990); Lei et al. (1999); Price et al.

(2002); Wang & Tan (2008). The results showed when a cylinder approached near

the wall, the forces on the cylinder and the shedding frequency were changed. The

vortex shedding was suppressed for small gap ratio γ ≤ 0.3. For a large gap ratio,

the flow parameter such as Strouhal number remained remarkably constant and

independent of the gap ratio. For intermediate gap ratios 0.3 ≤ γ ≤ 0.6, the

effect of the wall was found to be substantial, resulting in the flow developing a
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distinguishable asymmetry around the cylinder centerline. A review of further

experimental and numerical works are given by Lei et al. (2000).

2.1.5 Confined Circular Cylinder

In contrast to the previous cases, the flow past a circular cylinder confined in a

plane channel has received much less attention. In the case of a cylinder confined

between parallel walls, two additional parameters control the dynamics of the

wake, the blockage ratio (β = d/h) and the gap ratio (γ = ∆/(h/2−d/2)), where

h and ∆ are the distance separating the two walls and the minimum distance

between the cylinder and the nearest wall, respectively. It has been demonstrated

that the presence of the walls significantly affect hydrodynamic forces, Strouhal

number, wake structure, and the first and second instabilities of vortex shedding

(Taneda 1965; Coutanceau & Bouard 1977a,b; Sahin & Owens 2004; Rehimi et al.

2008; Camarri & Giannetti 2010; Rehimi & Aloui 2011).

2.1.5.1 Steady Flow

For a steady flow past a confined circular cylinder, the critical Reynolds number at

which twin vortices appear in the wake has been found to occur at higher Reynolds

numbers than that of unbounded cylinder (Coutanceau & Bouard 1977a; Anag-

nostopoulos et al. 1996). The flow downstream of the cylinder is comprised of

two fixed counter-rotating vortices located behind the cylinder with opposite-sign

vorticity at the adjacent walls.

The development of the wake bubble with Reynolds number at different block-

age ratios has been investigated experimentally by Grove et al. (1964); Acrivos

et al. (1968); Coutanceau & Bouard (1977a). The results by Grove et al. (1964),

which were carried out in a tunnels of rectangular cross section over a range

of blockage ratio 0.025 ≤ β ≤ 0.2, indicated that the wake bubble length var-

ied approximately linearly with Reynolds number with a slope depending on the

blockage ratio. It was proposed that the slopes of the wake bubble length ver-

sus Reynolds number increased as blockage ratio was increased. In contrast, the

results by Coutanceau & Bouard (1977a), which were performed in a tunnel of
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circular cross section over a range of blockage ratios 0.024 ≤ β ≤ 0.12 proposed

that there was a constant slope with different blockage ratios.

The length of the wake-bubble and the separation angle were found to decrease

considerately as blockage ratio was increased, while the drag force was increased

with increasing the blockage ratio (Grove et al. 1964; Chakraborty et al. 2004;

Chen et al. 1995; Anagnostopoulos et al. 1996). Furthermore, for the case of a

cylinder offset from the centreline, the growth rate of the recirculation zone was

found to depend on the blockage and the gap ratios, it grew more slowly as the

cylinder approaches one wall (Zovatto & Pedrizzetti 2001; Hsieh & Chen 2006).

2.1.5.2 Unsteady Flow

The effects of wall confinement on the vortex street behind a circular cylinder

was investigated experimentally for a range of blockage ratios 0.33 ≤ β ≤ 0.66

by Taneda (1965), who used a water tank with aluminium dust suspended in

the water to visualize the flow. The results showed that the presence of walls

acts to increase the instability of the wake and to squeeze the vortex street. The

critical Reynolds number Rec at which vortex shedding appears (i.e. the primary

instability) was found to increase with increasing the blockage ratio. However, it

was stated that the critical Reynolds number for this transition was difficult to

determine precisely.

Behr et al. (1995) investigated numerically the influence of the location of the

walls on the vortex shedding for the flow past a circular cylinder. The case of Re =

100 was chosen as a benchmark. The computations were performed with a space-

time velocity-pressure formulation and a velocity-pressure-stress formulation. It

was found that the distance between the cylinder and the lateral boundaries have

a significant effect on Strouhal number and the hydrodynamic force coefficients

CD and CL. They proposed that the minimum distance at which this influence

vanished was 8 cylinder diameters.

Chen et al. (1995) studied numerically the bifurcation for the flow past a

circular cylinder between parallel plates. The study focused on the mechanism

by which the steady flow past a cylinder at small Reynolds loses stability as
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the Reynolds number was increased over a range of blockage 0.1 ≤ β ≤ 0.7.

The resulting time-dependent motions were examined to determine the critical

Reynolds number in which perturbation was amplified leading to unsteady flow.

The numerical results revealed that steady flow past a confined cylinder loses

stability with increasing Reynolds number through a symmetry-breaking Hopf

bifurcation with the value of critical Reynolds number at bifurcation depending

on the blockage ratio. The critical Reynolds number characterizing the primary

instability was found to increase with increasing blockage ratio until β = 0.5,

thereafter decreasing.

The effect of the blockage ratio on the vortex street structure and flow param-

eters behind a circular cylinder placed between a plane channel was investigated

numerically by Anagnostopoulos et al. (1996) for Re = 160 and blockage ratios

0.05 ≤ β ≤ 0.25. The results demonstrated that the spacing of the vortices de-

creased in both the longitudinal and lateral directions as the blockage ratio was

increased. In addition, they found that for a fixed Reynolds number, hydrody-

namic forces and Strouhal number increased as blockage ratio increased. The

effects were more pronounced at higher blockage ratio: an increment of 90% in

the amplitude of lift force was reported as β was changed from 0.05 to 0.25.

The inversion of the Kármán vortex street was firstly reported by Zovatto

& Pedrizzetti (2001), who used a finite-element method based on the vorticity–

streamfunction formulation to analyse the flow past a circular cylinder placed

inside a channel at different distance from the walls. The blockage ratio was kept

constant at β = 0.2, and the range of Reynolds number was below the appear-

ance of three–dimensional instabilities. The results showed that the transition

from steady to unsteady flow was significantly delayed, and the critical Reynolds

number for this transition was found to occur at higher Reynolds number as the

cylinder approached one wall. This was due to the interaction of the Kármán

vortices with the wall boundary layer, which presents an obstacle impeding their

motion. Suppression of vortices was observed for a sufficiently small gap ratio. It

was proposed that for a distances smaller than the cylinder diameter, the Kármán

street changed to a single row of same sign vortices. This was due to the fact that
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the negative and positive vortices separated from the cylinder and from the wall

formed a pair vortex sheet, which was dissipated during the induced stretching.

Sahin & Owens (2004) performed a stability analysis of a confined cylinder

placed symmetrically between two parallel walls over a wide range of blockage

ratios 0.1 < β ≤ 0.9 and Reynolds number Re ≤ 280. The effects of the lateral

wall proximity on stability, Strouhal number, hydrodynamic forces, and the wake

structure were investigated. The curves of neutral stability β − Re computed

using a Krylov subspace method reproduced in Fig. 2.6. For β . 0.85, a criti-

cal Reynolds number was predicted at which a supercritical Hopf-bifurcation of

a symmetric state was occurred. At Reynolds number beyond the first critical

Reynolds number and β & 0.69, a second curve of pitchfork bifurcation was ob-

served. For β & 0.82, the steady asymmetric flow lost its stability through Hopf-

bifurcation. A transition from symmetric vortex shedding to asymmetric vortex

shedding was reported to occur as blockage ratio was increased. Very strong vor-

tices shed from the cylinder were observed, and the Strouhal frequency of the

shedding was found to increase with increasing Reynolds number and blockage

ratio.

The momentum and heat transfer from an asymmetrically confined circu-

lar cylinder in a plane channel was investigated numerically using FLUENT by

Mettu et al. (2006) for a range of Reynolds number 10 ≤ Re ≤ 500, blockage ratio

0.1 ≤ β ≤ 0.4, and gap ratio 0.125 ≤ γ ≤ 1. The critical Reynolds number for the

transition from steady to unsteady flow was predicted as a function of blockage

and gap ratio. For all the blockages tested, it was found that the critical Reynolds

number increased as the cylinder approached one wall. However, the drag coeffi-

cient and Strouhal number were found to increase with decreasing the separating

distance between the cylinder and the wall. The amplitude of oscillation of the

lift coefficient was found to increase in the negative direction as this distance was

increased, while it was completely suppressed when the cylinder approached one

wall. The effect of separation distance between the cylinder and the wall on the

Nusselt number around the cylinder was found to be negligible for all blockage

ratios.
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Figure 2.6: Neutral stability curve β − Re along with the change of the base flow

with Reynolds number and blockage ratio; from Sahin & Owens (2004).

2.1.5.3 Three–Dimensional Flow

Studies investigating three–dimensional effects in the flow behind a confined cir-

cular cylinder are relatively scarce. Only a few studies quite recently focused on

the development of three–dimensional effects for the flow past a circular cylinder

placed symmetrically in a plane channel at blockage ratio β ≤ 0.5. Similar insta-

bilities are found to what is seen behind an unbounded cylinder, and the wake

inversion has no significant effect on the stability since the core of the instability

modes were located in the near-wake region (Camarri & Giannetti 2010; Griffith

et al. 2011; Rehimi et al. 2008; Rehimi & Aloui 2011). The differences between

the confined and unconfined case is shown together with the spanwise vorticity

of the base flow in Fig. 2.7.

2.2 MHD Flow past a Circular Cylinder

The characteristics of magnetohydrodynamic flow past a circular cylinder exposed

to a uniform external magnetic field where the magnetic Reynolds number is much

25



(a)

 

(b)

 

Figure 2.7: The spanwise vorticity of the base flow along with the streamwise vor-

ticity of mode A in confined (a) and unconfined (b); from Camarri & Giannetti

(2010).

smaller than unity (Rem ≪ 1) is reviewed. Depending on the direction of the ap-

plied field, different kinds of flow configurations and transition mechanisms exist.

The orientation of the magnetic field in MHD cylinder wakes can be streamwise,

transverse or spanwise. In all configurations, the magnetic field tends to enhance

the flow stability, shifts the critical Reynolds numbers for flow separation and the

transition to unsteadiness to higher values, and to invoke the vortices along the

magnetic field direction. Furthermore, the location of the Hartmann and Shercliff

layers depends on the orientation of the magnetic field.

2.2.1 Streamwise Magnetic Field

The case where the direction of the magnetic field is parallel to the streamwise

direction has been investigated numerically by Shatrov et al. (1997); Mutschke

et al. (1997, 1998, 2001); Yoon et al. (2004); Sekhar et al. (2005, 2007); Grigoriadis

et al. (2010) and experimentally by Lahjomri et al. (1993); Josserand et al. (1993).

The evolution of the pressure coefficient Cpb around a circular cylinder in

an MHD flow aligned with a magnetic field was investigated experimentally by

Josserand et al. (1993) for a range of interaction parameter 0 ≤ N . 8 and

Reynolds number up to 34000. A non-monotonic behaviour of Cpb against N was
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observed. For N . 1, the base pressure was found to increase compared to the

non-MHD case, while it decreased due to the dominance of Joule dissipation for

higher values of N . They found that this decreasing was scaled with
√
N .

The effect of a magnetic field on unsteady and two–dimensional MHD flow

past a circular cylinder was investigated by Shatrov et al. (1997), who used a fi-

nite difference method based on a stream function vorticity formulation to analyse

the flow over a range of Re < 2000 and magnetic interaction parameter N < 10.

Two cases of a magnetic field aligned both with and transverse to the flow were

considered. Their results demonstrated that the vortex street was damped, the

recirculation bubble length and the separation angle were decreased as the mag-

netic field strength was increased. The influence of the transverse field was found

to be more pronounced than with the streamwise alignment. The recirculation

length was completely suppressed and the flow approached a potential flow for a

high transverse magnetic field, while the recirculation did not disappear for the

parallel magnetic field case. A stability curve for the streamwise and transverse

fields in Re − N space for the transition from steady to unsteady flow was pro-

posed. A similar remark is to be found in Lahjomri et al. (1993), who investigated

experimentally the wake of a circular cylinder subjected to an external streamwise

magnetic field.

Mutschke et al. (1997, 1998) numerically investigated the effect of a magnetic

field on the two–dimensional and three–dimensional instabilities in the wake of

a circular cylinder. The cylinder was placed in an electrically conducting fluid

and exposed to a uniform magnetic field. The range of Reynolds number and

interaction parameter were 100 < Re < 250 and N ≤ 10, respectively. Both

streamwise and transverse magnetic field directions were considered. A strong

magnetic field was found to stabilize the two–dimensional flow and to suppress

the vortex shedding of the wake. Furthermore, a linear stability analysis were

performed for both the steady and periodic base flow to investigate the influence

of the magnetic field on the three–dimensional instabilities of the MHD cylinder

wake. A reversal of the order of instabilities was reported in which three–dimen-

sional instability was predicted to occur at lower Reynolds number than that of
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two–dimensional instabilities.

Later, Mutschke et al. (2001) extended their previous results of the linear

stability analysis (Mutschke et al. 1997, 1998). Their study focused on the mech-

anism of three–dimensional transition in the magnetohydrodynamic cylinder wake

when the oncoming flow and the magnetic field were parallel. A non-monotonic

behaviour of three–dimensional disturbance versus the interaction parameter was

observed. It was found that for small values of the interaction parameter the

instability was either damped or amplified, and was dependant on the Reynolds

number. For a strong magnetic field, three–dimensional instability was amplified

and the cylinder wake was found to exhibit three–dimensional steady flow. The

critical Reynolds number for this transition was predicted to occur at Re ≈ 150,

which was lower than the critical Reynolds number for the onset of mode A

instability in the hydrodynamic cylinder flow.

The characteristics of two–dimensional MHD flow and heat transfer past a

circular cylinder in an aligned magnetic field were investigated numerically by

Yoon et al. (2004) using a spectral element method for Reynolds numbers of 100

and 200 and Prandtl numbers of 0.7 and 7 in the range of interaction parameter

0 ≤ N ≤ 10. The details of flow and thermal parameters on the cylinder surface

was reported. The influence of magnetic field was found to damp the oscillation

of the vortex shedding behind the cylinder and to decrease the amplitude of

oscillation of lift and drag coefficients. The temperature field and thus Nusselt

number that characterise the heat transfer from the cylinder surface were found

to vary significantly with the intensity of the magnetic field.

Using a finite difference method, Sekhar et al. (2005, 2007) studied numerically

the flow of a steady and unsteady two–dimensional conducting fluid around a

circular cylinder with a magnetic field oriented parallel to the flow direction for

Reynolds numbers 40 ≤ Re ≤ 500 and interaction parameters 0 ≤ N ≤ 15. It

was found that the separation bubble length and separation angle was decreased

as the magnetic field strength was increased. The pressure drag coefficient, total

drag coefficients, and the pressure at the rear stagnation point were found to vary

with
√
N for Re ≤ 40. For small values of the interaction parameter N . 0.1, the

28



upstream and downstream pressures on the surface of the cylinder was observed

to increase. For 100 ≤ Re ≤ 500, the upstream pressure increased slightly with

increasing of N whereas downstream it decreased.

Grigoriadis et al. (2010) performed a three–dimensional numerical simulation

using an immersed boundary method (IB) for the flow of a conducting fluid past

a circular cylinder under a streamwise and transverse magnetic field. The range

of Reynolds number was up to Re ≤ 200 with a magnetic interaction parameter

0 ≤ N ≤ 5. The study was focused on the performance of the IB method for the

computation of MHD flows in complex geometries. A non-monotonic variation of

the drag coefficient and recirculation bubble length was reported, and the drag

coefficient was found to be smaller than the corresponding hydrodynamic value.

Their results for the critical interaction parameter, Strouhal frequency, the drag

and lift coefficients and the recirculation length were in a good agreement with

the results by Mutschke et al. (1997). The reversal of stability order detected by

Mutschke et al. (2001) was also verified in this study. In the case with a transverse

magnetic field, the damping effect on the vortex street was found to be stronger

than that of streamwise case.

2.2.1.1 Transverse Magnetic Field

The number of studies dedicated to investigate the effect of a perpendicular mag-

netic field on the flow around circular cylinder are small. It has been investi-

gated experimentally by Kolesnikov & Tsinober (1971, 1976) and numerically

by Mutschke et al. (1998, 2001); Grigoriadis et al. (2010). These results indicate

that the effect of magnetic forces on the flow parameters in this configuration were

much stronger than that of the streamwise case. Therefore, the vortex shedding

is damped faster and the recirculation length is completely suppressed.

2.2.2 Spanwise Magnetic Field

The focus of present study is the case where the magnetic field is aligned parallel

to the cylinder axis. This case has received little attention to date. This case

has been investigated experimentally by Kit et al. (1969, 1970); Kolesnikov &
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Tsinober (1972b); Andreev & Kolesnikov (1997b,a); Frank et al. (2001) and nu-

merically by Muck et al. (2000); Ueno et al. (2001); Dousset & Pothérat (2008);

Hussam et al. (2011).

The measurements of velocity fluctuations with a conduction anemometer

conducted by Kit et al. (1969, 1970) for the wake behind a cylinder placed in a

channel in the presence of a magnetic field parallel to the cylinder axis reported

that the magnetic field significantly affected the instability behind the cylinder in

different ways. The experiments were carried out with mercury in a channel with

height of 0.04 m and the cylinder diameter was 10 mm. The Reynolds number

was up to Re ≈ 17500 with a magnetic interaction parameter 0.009 ≤ N ≤

1.33. It was found that the magnetic field considerably amplified the intensity of

the disturbances whose axis was parallel to the field, while the intensity of the

disturbances whose axis was perpendicular to the field was predicted to be less

than the noise of the flow. The intensification of disturbances was reported to

occur at Ha ≃ 0.97Re1/2.

The characteristics of a turbulent flow in the wake behind a circular cylin-

der with the axis parallel to a strong magnetic field was studied experimentally

by Kolesnikov & Tsinober (1972a). Their experiments were carried out in a

horizontal mercury channel similar to that described in Kit et al. (1969, 1970).

A conduction anemometer and a thermoanemometer were used for the velocity

measurements. It was demonstrated that under a strong magnetic field the flow

acquired the characteristics of two–dimensional turbulent flow with an energy

transfer from small to large scale structures.

Andreev & Kolesnikov (1997a,b) investigated experimentally the flow of an

eutectic alloy GaInSn around a conducting cylinder placed in a rectangular non-

conducting channel in the presence a homogeneous magnetic field parallel to

the cylinder axis. The velocity and spectrum measurements were used to de-

termine the instability around the cylinder. The cylinder diameter was 10 mm

and the cross section of the duct was 40 × 40 mm, which yielded a blockage ra-

tio of β = 0.25. The range of Reynolds number and Hartmann number were

0 ≤ Re ≤ 6000 and 0 ≤ Ha ≤ 2160, respectively. Their measurements indicated
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that the critical Reynolds number for the onset of vortex shedding in a strong

magnetic field was found to increase fortyfold compared to the case without mag-

netic field, and the drag coefficient around the cylinder decreased threefold as

the intensity of the magnetic field was increased. The results also demonstrated

that the presence of a Hartmann friction on the walls perpendicular to the field

influenced significantly the characteristics of the flow around the cylinder. The

separation of the attached vortices around the cylinder was observed to be de-

layed. However, the instability developed in the shear layer parallel to the field

which envelops the cylinder and thus was not affected considerably.

Using an array of potential probes in the Hartmann walls to visualize the flow,

Frank et al. (2001) investigated experimentally a wake behind circular cylinder of

quasi two-dimensional eutectic alloy GaInSn in rectangular duct for the condition

of high Reynolds and Hartmann numbers. The blockage ratio was kept constant at

β = 0.1 for a range of Reynolds number100 ≤ Re ≤ 10000 and Hartmann number

500 ≤ Ha ≤ 1200, which gave an interaction parameter between 10 ≤ N ≤ 576.

The test section was comprised of an insulated circular cylinder of diameter d = 6

mmwhich was inserted between an electrically insulated Hartmann walls as shown

in Fig. 2.8.

 

Figure 2.8: The geometry of the quasi-two–dimensional cylinder wake; from Frank

et al. (2001).
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They proposed a linear dependence of critical Reynolds number on Hartmann

number, Rec/Ha ≈ 0.94, for the onset of time-dependent vortex shedding. From

the visualization of the vortex street behind the cylinder, a breakup of the two-

dimensional vortex street was observed to occur at Re = 5000, and the value

of critical Reynolds number was increased as Ha was increased. The authors

conclude that the dissipation of vortex energy was not achieved by a cascade

towards smaller structures, but instead by the typically quasi–two–dimensional

(Q2D) linear damping term, which led to a continuous decrease in vortex intensity.

For a fixed Reynolds number, a minimal decrease (−0.02) of the Strouhal number

was measured when the Hartmann number was doubled. A stability diagram for

the onset of vortex shedding was also determined in this study as shown in Fig. 2.9

 

Rec 

Ha 

Figure 2.9: The stability curve Rec − Ha of the quasi–two–dimensional cylinder

wake for β = 0.1. The dotted line is for N = 10 curve. This image is reproduced

from Frank et al. (2001).

For the same configuration, Muck et al. (2000) performed a three dimensional

DNS for a liquid metal flow around a square cylinder placed in a rectangular

channel. Current sheets with infinitesimal thickness were used to represent the

Hartmann layers. The interaction parameter and Hartmann number were var-
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ied in the range 0 ≤ N ≤ 36 and 0 ≤ Ha ≤ 85, respectively. The numerical

simulations were carried out for two fixed values of Reynolds number Re = 200

and 250 with a constant blockage ratio β = 0.1. A transition from a time depen-

dent three–dimensional flow to a time dependent quasi–two–dimensional flow was

found to occur for N & 1, which confirms the experimental finding of Kolesnikov

& Tsinober (1972a). A complete damping of vortex shedding was observed at

a high value of the interaction parameter as shown in Fig. 2.10 , which was in

a good agreement with the experimental finding by Frank et al. (2001). The

features of quasi–two–dimensional predicted by Sommeria & Moreau (1982) in

which the vortices have their ends perpendicular to the Hartmann walls was also

confirmed by three–dimensional visualization in this study.

A similar problem was studied by Ueno et al. (2001), who performed a three

dimensional direct numerical simulation of magnetohydrodynamic flow past a

rectangular column placed in a channel to investigate the spatial development of

vortex shedding between insulated Hartmann walls for Reynolds number Re =

250 and 500 for a range of Hartmann number 10 ≤ Ha ≤ 30. Their results

reported that three–dimensional vortices was reduced to quasi–two–dimensional

vortices downstream by magnetohydrodynamic diffusion under a strong magnetic

field.

More recently, Dousset & Pothérat (2008) studied numerically the wake be-

hind a circular cylinder of quasi two-dimensional liquid metal flow placed in a

square duct under a strong magnetic field parallel to the cylinder axis. The duct

walls and the cylinder were insulated. The blockage ratio was kept constant at

β = 0.25. The simulations were carried out over a range of Reynolds number

0 ≤ Re ≤ 6000 and Hartmann number in the range 0 ≤ Ha ≤ 2160. The re-

sulting flow was found to exhibit a sequence of four regimes and the transitions

between these regimes were controlled by friction parameter Re/Ha. The first

three regimes were found to be similar to those of two dimensional cylinder wakes

without magnetic field. The last regime was characterized by an irregular Kármán

vortex street where the vortices generated with the Shercliff layers separated from

the side walls and interacted with the flow regime of the regular Kármán vortex
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(a)

 

(b)

Figure 2.10: Iso-surface visualization of vorticity of cylinder wake for β = 0.1 (a)

Re = 200 and Ha = 100, and (b) Re = 200 and Ha ≈ 265; from Muck et al. (2000).

The alignment of the shed vortices in the magnetic field direction can be clearly

noticed and the diameter vortices decreases rapidly as they convected downstream.

street. In addition, a breakup of the two-dimensional vortex street was predicted

to occur at Re around 5000. For the first three regions of the flow, the results

reported that the drag coefficient and the length of circulation were controlled by

the parameter Re/Ha0.8, and for Re = 30000 and Ha = 1120, Kelvin–Helmholtz

instability was observed.
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2.3 Heat Transfer Enhancement in a Channel

Many techniques have been proposed to enhance the heat transfer rate in a chan-

nel for engineering applications such as the cooling of electronic components,

cooling of turbine blades, and heat exchangers. One of these methods is to use a

bluff body placed in the channel as a vortex generator. The disturbances result-

ing from these promoters increase the fluid mixing and disrupt the development

of the thermal boundary layer resulting in a remarkable enhancement in heat

transfer (Valencia 1995; B.Celik & Beskok 2009).

2.3.1 Heat Transfer Enhancement in a Channel Using a
Fixed Bluff Body

Oyakawa & Mabuchi (1981) studied experimentally the heat transfer enhance-

ment in a duct with a fixed circular cylinder placed perpendicular to the flow

direction over a range of blockage ratios β = 0.4 ∼ 0.8 and Reynolds number

Re ≤ 2.2 × 105. Their results demonstrated that the side wall vortices which

were generated by inducing the Kármán vortex street effectively increased the

heat transfer rate along the heated wall in the duct. Heat transfer correlations

were proposed to calculate the local heat transfer variations with respect to the

maximum heat transfer position for different values of blockage ratios.

The heat transfer and pressure drop generated in a channel with a built-in

rectangular cylinder placed at the channel centre plane was investigated numeri-

cally by Valencia (1995). The computations were performed for Reynolds number

Re = 200 − 400 at blockage ratios β = 0.25 and 0.5. The results showed that

the oscillatory flow structure and the crisscross motion of the vortices resulted

in a significant heat transfer enhancement but also in a significant pressure drop

increase. The maximum augmentation in the heat transfer was about 45% in the

computing range.

Yao et al. (1995) investigated experimentally a turbulent channel flow ob-

structed with a square rod placed at different distances from the lower wall in

a range of Reynolds number Re ≥ 6000 and constant blockage ratio β = 0.2.

Dye injection and hydrogen bubble methods were used to track the motion of
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the Kármán vortex and to visualize the near-wall flow. The study focused on the

effect of the resulting flow downstream of the inserted body on the heat transfer

enhancement. A noticeable heat transfer enhancement was achieved on the wall

located closer to the rod. This was due to the formation of discrete vortices near

the channel wall which induced a rotational fluid motion around it. Therefore,

the cooler fluid was entrained toward the hot region of the channel and the hot

fluid near the wall was circulated to mix with the cold fluid.

The effect of an oblique plate on the heat transfer enhancement of mixed

convection in a horizontal block heated channel was investigated numerically using

a finite element method by Wu & Perng (1999). The oblique angle of the plate

was varied between 30◦ and 90◦ in the range of Reynolds number Re = 260− 530

and constant Prandtl number Pr = 0.7. Their results demonstrated that the

vortex shedding induced by the oblique plate could effectively enhance the heat

transfer performance of mixed convection in the horizontal channel. The heat

transfer was enhanced up to approximately 40%.

The oscillatory behaviour of the flow and heat transfer was investigated by

Valencia (1998), who performed numerical computations for a horizontal channel

flow obstructed with two rectangular cylinders placed perpendicular to the flow

direction in the channel centreline for Reynolds numbers 100 ≤ Re ≤ 400 and

cylinder separation distances 1 ≤ S/H ≤ 4. The predicted heat transfer im-

provement on the channel walls was about 78% for S/H = 2, 3 and 4 at Reynolds

number Re = 400. For S/H = 1, only an 8% heat transfer augmentation was

reported. However, for Re = 100, the cylinder separation distance was found not

to affect the heat transfer, only changing the flow losses.

Tsui et al. (2000) developed a three–dimensional computational method to

investigate the flow and heat transfer from multilobe vortex generators inserted

in a circular tube for Reynolds numbers Re = 1000–2000. The irregular shape of

the lobe was treated using curvilinear non-staggered grids. Their results indicated

that the multilobe invoked secondary vortices that resulted in a significant en-

hancement in the heat transfer and the wall friction. The maximum heat transfer

enhancement was approximately 60%.
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Using transient liquid crystal thermography, Liou et al. (2000) reported the

details of the flow and heat transfer in a square duct with different shaped vortex

generators for a constant Reynolds number Re = 1.2×104. The results found that

the fluid dynamics factors such as the direction and the strength of the secondary

flow tend to affect the heat transfer enhancement along the channel wall. This is

followed by the convective velocity and the turbulent kinetic energy.

The effects of blockage and offset ratios on the heat transfer enhancement

and flow behaviour in a horizontal duct obstructed with a blunt body studied

experimentally by Oyakawa et al. (2005). These were carried out over the range

of offset ratio 0.5 ≤ γ ≤ 0.275, blockage ratio (0.3 ≤ β ≤ 0.5) and Reynolds

number 6300 ≤ Re ≤ 21800. A dye visualization method was used to visualize

the changed in flow patterns and a T-type thermocouple was used to measure the

wall temperature of the heated surface. The characteristics of heat transfer were

found to depend on the effect of the reattachment shear layer separated from the

body at offset ratio (0.05 ≤ γ ≤ 0.1) and the effects of both the reattachment

flow and the separation vortex at offset ratio (0.15 ≤ β ≤ 0.2). Furthermore, it

was depended on the effect of sidewall vortices induced by Kármán vortices at

offset ratio (0.25 − 0.275). It was also found that at low Reynolds number the

heat transfer enhancement was due to the reattachment flow, while it was due

the sweeping of the heating surface by the side vortex induced by Kármán vortex

at large Reynolds number. A power law relationship between the Nusselt number

and Reynolds number at different blockage and offset ratios was suggested.

More recently, Farhadi et al. (2010) studied numerically the effect of wall prox-

imity of a triangular bluff body on the fluid flow and heat transfer enhancement

in a plane channel. The computations were performed for a constant blockage

ratio β = 0.25 at Reynolds number 100 ≤ Re ≤ 450 and gap width range of

(0.5− 1). Their results demonstrated that the vortex formation downstream the

bluff body were significantly increased the heat transfer rate along the heated

surface in the duct. It was found that increasing the distance between the body

and the wall resulted in suppression of the vortex shedding and consequently the

heat transfer rate was decreased at low Reynolds number. The maximum heat
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transfer enhancement was about 100% in the computing range.

2.3.2 Heat Transfer Enhancement in a Channel Using an
Oscillating Bluff Body

There has been a limited number of studies dedicated to investigate the vortex

dynamics of an oscillating cylinder in a straight channel (Beskok & Warburton

2001; Celik et al. 2008; B.Celik & Beskok 2009), and the studies relevant to heat

transfer enhancement in a straight channel using an oscillating obstacle are very

rare.

Employing a Galerkin finite element formulation with moving meshes to solve

the governing flow equation, Yang (2003) investigated heat transfer enhancement

in a channel under the effect of a transversely oscillating square cylinder. An

arbitrary Lagrangian–Eulerian kinematic method was used to depict the flow

and thermal fields. The computations were carried out for a constant blockage

ratio β = 0.25 and constant Prandtl number Pr = 0.71 in the range of Reynolds

number varying from 100 to 800. The oscillation frequency, oscillation amplitude,

and maximum speed of the bar were examined to analyse the flow structures and

the heat transfer enhancement. A remarkable heat transfer enhancement with

increasing oscillation amplitude was reported. This was due to the formation of

transverse vortices downstream of the bar, which transported the low temperature

and high speed flow in the center of the duct toward the heated region of the

channel. Consequently, the high temperature fluid was convected away from the

heated regions of the channel to mix with the low temperature core flow. The

heat transfer was enhanced approximately 205% in some cases.

Using a moving boundary formulation and the arbitrary Lagrangian method

modified by Yang (2003), Fu & Tong (2004) performed a numerical simulation

to study the effect of the flow passing an transversely oscillating circular cylinder

on the heat transfer enhancement in a horizontal blocked heated channel. The

blockage ratio was kept constant at β = 0.25 and the Reynolds number was varied

between 100 and 500. The influences of the oscillating amplitude and oscillating

frequency on the resulted flow and heat transfer characteristics were investigated.
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Their results indicated that the heat transfer rate was improved substantially

in the lock-in regime. It was also found that the influence of the oscillating

amplitude of the cylinder on the heat transfer rate was remarkable when it was

larger than 0.1. The maximum heat transfer enhancement was about 116% in

the computational range.

More recently, the heat transfer enhancement in a heated slot channel due to

vortices shed from a transversely oscillating circular cylinder was investigated by

Celik et al. (2010), who performed numerical simulations using a spectral element

discretization of the governing flow equations in a moving domain based on an

arbitrary Lagrangian-Eulerian formulation. The computations were performed

for a constant blockage ratio β = 0.3 at Reynolds number Re = 100 in the range

of Prandtl number 0.1 ≤ Pr ≤ 10. The cylinder oscillation amplitude were kept

constant, while the frequency of the oscillation was varied from 0.75 to 1.25 of the

Strouhal frequency of a fixed circular cylinder. Their results demonstrated that

the transverse oscillations of a cylinder significantly enhanced heat transfer, and

the maximum augmentation was observed to occur at the frequency fe = 0.75.

This was due to the presence of high intensity vortices near the channel walls,

which has significant effect on the heat transfer enhancement from the walls.

2.3.3 MHD Heat Transfer Enhancement in a Channel

The motion of electrically conducting fluid in a strong magnetic field induces elec-

tric currents, which interact with the applied magnetic field and produce electro-

magnetic forces that affect the velocity distribution, turbulence characteristics,

and exerts a retarding force on the flow. Therefore, magnetohydrodynamic duct

flows is characterized by laminar flow structures because velocity fluctuations are

significantly damped Joule dissipation. This laminarization results in a consid-

erable decrease in heat transfer from the heated wall in such flow, and hence an

intense enhancement of a convective heat is required in order to keep the wall tem-

perature below the acceptable limit. However, the strong anisotropic feature of

the electromagnetic forces leads to the formation of extended vortex tubes located

parallel to the magnetic field (Sommeria & Moreau 1982; Moreau & Sommeria
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1988). These vortices are suppressed only weakly and can form quasi–two–di-

mensional structures in the plane perpendicular to the magnetic field, which can

be invoked to enhance the heat transfer.

Although the number of studies dedicated to investigate the vortex dynam-

ics in a straight channel under a strong magnetic field are limited, the studies

pertaining to heat transfer enhancement in a straight channel under these condi-

tions are very scarce. Two approaches are proposed to enhance the heat transfer

for this flow: the first includes conducting strips mounted on the channel walls

perpendicular to the magnetic field (i.e. non-uniform electrical wall conductiv-

ity), and the second includes turbulence promoters such a circular or rectangular

cylinder placed between these walls. For the both approaches, the Nusselt num-

ber is several times larger than that in the empty channel (Barleon et al. 2001).

The concept of using the conducting insertions and turbulent promoters in the

channel walls are shown in Fig. 2.11.

2.3.4 Heat Transfer Enhancement by Electromagnetic and
Mechanical Promoters

Using a number of conducting spots arranged in the main flow direction near

the heated wall, Andreev & Kolesnikov (1993) reported an intense transverse

convective exchange of fluid in their experiments which were conducted in a cir-

cular closed channel under the influence of uniform axial magnetic field. The

averaged and fluctuating velocities as well as the temperature distributions were

measured with conduction and thermocouple probes. Their results indicated the

time-dependent vortices increased the heat transfer by a factor of between 5 and

7 and the wall temperature was decreased by 45% compared with the insulating

wall duct.

The possibility of generating a vortex type flow for heat transfer improvement

without significant increase in magnetohydrodynamic pressure drop by the in-

clusion of conducting strips in the Hartmann walls was investigated by Bühler

(1996), who performed a numerical simulation of magnetohydrodynamic flows be-

tween parallel walls for Ha ≫ 1 and N ≫ 1. Due to the unstable mean velocity
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(a)

(b)

 

Figure 2.11: Vortex generation for the heat transfer enhancement in a channel in

the presence of a strong magnetic field using different methods. (a) non-uniform

conductivity of the channel walls, and (b) mechanical turbulent promoters. Images

(a) and (b) are reproduced from Bühler (1996) and Barleon et al. (2001), respectively.
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profile, regular vortices similar to those in the Kármán vortex street behind bluff

bodies were observed. The use of longitudinal conducting strips as a heat transfer

promoter were also considered by Smolentsev & Dazhi (1996), who carried out

numerical calculations of heat transfer in a fully developed laminar MHD flow in a

rectangular duct with a conducting inclusion in one of the Hartmann walls. Their

results suggested that depending on the strip location and their width, the heat

transfer could be increased by more than a factor of two compared to the case

without strips, though the MHD pressure drop was not increased considerably.

This idea is not new and has been previously applied by Moreau & Sommeria

(1988) to study the MHD decay of vortex patterns in insulated ducts.

The heat transfer intensification using electrically conductive obstacles in an

annular insulated channel of a rectangular cross section in the presence of a strong

axial magnetic field was studied experimentally by Kolesnikov & Andreev (1997).

They used eutectic alloys InGaSn as a working fluid. In this experiment, an in-

tensive flow of vorticity was generated on the boundaries of conducting cylinders

which were placed downstream on the heated wall parallel to the magnetic field.

The cylinders were mounted with different steps on the azimuthal direction on

the inner heated wall to ensure more effective heat transfer. Their results demon-

strated that the heat transfer between the hot and cold walls was increased six

times compared with an empty channel and the hot wall temperature was de-

creased by more than three times. This was due to the effect of electromagnetic

vortices generated in the flow by the conducting cylinders, resulting in formation

of stagnant zones above and below the cylinders that was stretched along the

magnetic field.

Experiments on magnetohydrodynamic heat transfer improvement under fu-

sion relevant conditions in thin-walled and electrically insulated ducts were con-

ducted by Barleon et al. (1995, 2000, 2001). The experiments were focused

on the enhancement of heat transfer using a bluff body as a turbulence pro-

moter in the range of Hartmann number 0 ≤ Ha ≤ 5 × 103, Reynolds number

0 ≤ Re ≤ 1.3 × 105 and Péclet Number 0 ≤ Pe ≤ 2.9 × 103. The working

fluid was sodium potassium eutectic alloy NaK. Their results indicated that the
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heat transfer under these conditions was improved by turbulent transport by a

factor of about 2 compared to slug flow, and the corresponding pressure drop was

kept almost constant although the flow was changed from laminar to turbulent.

The turbulence was generated due to the effect of shear flow of the side wall jets

which are a characteristic of the MHD duct flow. Using electromagnetic promot-

ers which were installed close to the heated wall, no measurable enhancement of

heat transfer was observed within the range of Re = 103 − 105. An increment of

the pressure drops up to 20% was reported for this case. The results of this case

is reproduced in Fig. 2.12.

A circular cylinder which was placed near the heated wall of the insulated

duct improved the heat transfer up to 7 times compared to slug flow, but the

corresponding pressure drop increases within the measured range of Reynolds

number up to 300%. The results of this case is presented in Fig. 2.13.

2.4 Transient Growth Analysis

Although global stability analysis has been highly successful in predicting the on-

set of the Hopf bifurcation and three–dimensional transitions for many different

types of flow problems, there are a number of other flows in which the stability

predictions do not describe the experimental behaviour. Examples are two–di-

mensional Poiseuille and Couette flow which undergo turbulent transition despite

the fact that flow is linearly stable. Therefore, an extension of stability analysis

has received renewed interest recently, which is known as a non-modal stabil-

ity analysis or transient growth analysis (Schmid & Henningson 2001; Blackburn

et al. 2008a). In a transient growth, the linear growth of infinitesimal pertur-

bations over a time span are tested without assuming eigenmodal growth of the

linearized operator. Non-modal interaction between leading eigenmodes of the

linearized evolution operator of the governing equations can create very large

short-term amplifications of a perturbation.
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(a)

(b)

(c)

Figure 2.12: Measured (a) velocity, (b) turbulence intensity and (c) temperature in

the electrically conducting duct for Ha = 4.8× 103, Re = 5.8× 104 in the mid plane

y = 0 (�, no promotor; �, with promoter) plotted against z, where z is perpendicular

to the magnetic field direction (see Fig. 2.11b). The symbols ▽ and H represent

without and with promoter, respectively for the case of Ha = 0. Reproduced from

Barleon et al. (2001).
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(a)

(b)

(c)

Figure 2.13: Measured (a) velocity, (b) turbulence intensity and (c) temperature

in the insulated duct for Ha = 5 × 103, Re = 7.2 × 104 in the mid plane y = 0 (�,

no promotor; �, with promoter) plotted against z, where z is perpendicular to the

magnetic field direction (see Fig. 2.11b). The symbols ▽ and H represent without

and with promoter, respectively for the case of Ha = 0. Reproduced from Barleon

et al. (2001).
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2.4.1 Optimal Growth in non-MHD Flow

Stable flow may be sensitive to transient growth of disturbances for some time

before decaying to zero (Schmid & Henningson 2001). In purely hydrodynamic

parallel shear flows, transient growth has been reported for the plane channel

(Reddy et al. 1998), pipe (Zikanov 1996), rectangular duct (Biau et al. 2008), and

abrupt geometrical expansion flows (Blackburn et al. 2008a,b; Cantwell & Barkley

2010). This growth can be attributed to the non-normality of the eigenmodes

associated with many shear flows (Schmid & Henningson 2001; Chomaz 2005).

For free stream cylinder wakes without magnetic field, the adjoint and direct

eigenmodes in the region of primary instability have been investigated numerically

by Chomaz (2005); Giannetti & Luchini (2007) to understand the sensitivity of the

flow to external disturbances. Recently, the transient response of the subcritical

and supercritical flow of the circular cylinder wake in an open flow has been

investigated by Marquet et al. (2008); Cantwell & Barkley (2010). Abdessemed

et al. (2009a) also studied the transient growth in supercritical and subcritical

flow of the circular cylinder wake in an open flow. Their analysis showed that the

optimal growth modes were concentrated in the near wake of the cylinder, and

that the energy of these modes were amplified up to three orders of magnitude

over a time span horizon of τ = 30.

More recently, Marais et al. (2011) investigated experimentally the impulse

response of a freestream cylinder wake below the critical Reynolds number of

the vortex shedding instability using two–dimensional particle image velocimetry

PIV. The measured values of transient growth were considerably less than those

reported by Abdessemed et al. (2009a); Cantwell & Barkley (2010).

2.4.2 Optimal Growth in MHD Flow

The effect of an applied magnetic field on the transient growth for the case of

steady Hartmann flow (channel flow of an electrically conducting fluid in the

presence of a uniform magnetic field) has been analysed by Gerard-Varet (2002);

Airiau & Castets (2004); Krasnov et al. (2004). The optimal modes were found

to have the form of streamwise rolls confined to the Hartmann layers. In addition
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it was found that the energy gain of the optimal perturbations is proportional to

(Re/Ha)2, and the critical Reynolds number was much higher than for Poiseuille

flow.

More recently, Boeck et al. (2009); Krasnov et al. (2010) analysed the optimal

linear growth of perturbations in a rectangular duct with different aspect ratio

subjected to a uniform transverse magnetic field. The disturbances of optimal

growth are confined to the Shercliff layers. The optimal perturbations are signif-

icantly damped by the magnetic field irrespective of the duct aspect ratio. They

conclude that the Hartmann boundary layers perpendicular to the magnetic field

do not contribute to the transient growth.

2.5 Review Summary

The previous studies into the hydrodynamic and magnetohydrodynamic flow past

a circular cylinder, heat transfer enhancement in a channel using a bluff body and

transient growth analysis have been extensively reviewed. The preceding review

of the literature reveals that much emphasis has been placed on the flow past a

circular cylinder where no magnetic field is presented, and the case of a confined

cylinder has received less attention. For the magnetohydrodynamic flow past a

confined circular cylinder, there is a clear deficiency in our understanding of the

case where the magnetic field direction is parallel to the cylinder axis. The studies

of heat transfer enhancement in a straight channel using a bluff body under these

conditions are very scarce, as are investigations into the augmentation of heat

transfer in this type of flow.

Furthermore, it is unknown how the addition of a cylinder into an magnetohy-

drodynamic duct flow will affect the transient response of the flow, and whether

this may be exploited to further improve heat transfer. Therefore, further stud-

ies are required to better understand the flow characteristics and heat transfer

enhancement of this flow. These quantities will be addressed in this thesis.

In the next chapter, methodologies for numerical and analytical aspects of

the study are discussed, and the validation tests of the numerical system are

performed.
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Chapter 3

Theoretical Framework,
Numerical Methodology and
Validations

This chapter presents the numerical techniques applied for the simulations con-

ducted for this thesis. A spectral-element method is employed to compute the

magnetohydrodynamic flow and temperature fields under investigation.

The equations governing three-dimensional magnetohydrodynamic, boundary

conditions, magnetohydrodynamic flow are presented in § 3.1, § 3.1.1 and § 3.2,

respectively. The quasi-two-dimensional (Q2D) magnetohydrodynmic flow model

formulation is described in § 3.2.3. The equations governing the flow and heat

transfer in the present project are given in § 3.3. Spatial and temporal discretisa-

tion methods are presented in § 3.4.1 and § 3.4.2, respectively. A linear stability

analysis and transient growth technique applied for the Q2D model are described

in § 3.5 and § 3.6, respectively. The reliability and accuracy of the numerical

approach is presented in § 3.7.

3.1 Equations of Magnetohydrodynmic Flows

The complete set of three-dimensional magnetohydrodynamic (MHD) equations

for incompressible, Newtonian, homogeneous fluids includes the Navier–Stokes

equations of motion, equation of mass continuity, Ohm’s law and Maxwell’s equa-

tions (Davidson 2001; Moreau 1990; Roberts 1967)
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∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+

J×B

ρ
(3.1)

∇ · u = 0 (3.2)

J = σe(E+ u×B) (3.3)

∇× E = −∂B
∂t

(3.4)

∇×B = µmJ (3.5)

∇ · J = 0 (3.6)

∇ ·B = 0. (3.7)

Here u,J,E,B and p are, respectively, the velocity vector, current density,

electrical field, magnetic field and pressure. The symbols ρ, ν, σe, and µm, are the

mass density, kinematic viscosity, the electrical conductivity and the magnetic

permeability of the liquid metal. The magnetic induction equation is obtained by

taking the curl of both sides of equation (3.3). Substituting equations (3.4) and

(3.5) gives

∇× J

σe
= ∇× E+∇× (u×B) (3.8)

∴ ∇× (∇×B)

µmσe
= −∂B

∂t
+∇× (u×B). (3.9)

Using the vector identity

∇× (∇×B) = ∇(∇ ·B)−∇2B,

along with equation 3.7 leads to

∂B

∂t
= ∇× (u×B) +

1

µmσe
∇2B. (3.10)

Equation (3.10) indicates that the motion of a conducting fluid in an applied

magnetic field induces a magnetic field in the fluid. The total field is the sum of

the applied and the subsequently induced field. The strength of the induced field

is characterized by the magnetic Reynolds number, Rem, which represents the

ratio between the induced and the applied magnetic field. When the magnetic

Reynolds number Rem ≪ 1, the magnetic field induced by the flow is negligible
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compared to the externally applied field, i.e. the effect of velocity on the magnetic

field is negligible (Branover 1978; Moreau 1990). Thus the total magnetic field is

effectively equal to the applied magnetic field only. Using u0, ρu0
2, σuoB, u0BL

as respective velocity, pressure, current density and electric potential scaling, the

inductionless magnetohydrodynamic equations (in non-dimensional form) reduces

to (Müller & Bühler 2001)

∇ · u = 0, (3.11)

∂u

∂t
+ (u · ∇)u = −∇p+ 1

Re
∇2u+

Ha2

Re
(J×B), (3.12)

∇ · J = 0, (3.13)

E = −∇ϕ, (3.14)

J = −∇ϕ+ u×B, (3.15)

where ϕ is the electrical potential, Ha = LB
√
σ/(ρν) is the Hartmann number,

which is described shortly, and Re = u0L/ν is the Reynolds number.

3.1.1 Boundary Conditions

From the governing equations presented in previous section, physical solutions can

be obtained if reasonable initial conditions are defined. The initial conditions are

required to define all the flow variables at this initial instant over the whole domain

and the boundary conditions required at all boundaries of the flow domain. For

many engineering applications the fluid is confined in a finite domain bounded

by an interface, Γ, comprising of rigid walls.

Kinematic constraints must be applied at the interface between the fluid and

the rigid walls. For the case of a rigid non-moving boundary, due to viscosity,

the velocity is zero at the interface, Γ, between the fluid and the boundary. The

boundary condition is expressed as a no-slip condition e.g. , Müller & Bühler

(2001)

u = 0 at Γ. (3.16)

The kinematic boundary condition requires some modification in the cases of

moving walls or a free surface.
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The electromagnetic boundary conditions are controlled by the electrical con-

ductivity (σw) of the channel wall. For the case of insulating walls (σw = 0), no

current can enter into the wall from the fluid side, as a result, the component of

the current density normal to the interface vanishes at the wall

J · nn = 0 at Γ. (3.17)

For the case of perfectly conducting walls (σw → 0), the component of the current

density tangential to the interface vanishes at the wall

J · nt = 0 at Γ, (3.18)

where nn and nt represent a vector normal and tangential to the interface Γ.

For engineering and industrial applications such as piping systems, channel

walls often consists of metallic material with finite electrical conductivity (σw).

The boundary condition for the current density can be derived using equations

(3.3) and (3.4)

J · nn =
σ

σw
Jw · nn at Γ, (3.19)

but throughout this thesis the duct walls are assumed to be electrically insulated

so that the boundary condition relevant to the case of perfectly conducting walls

will not be described hereafter.

In the quasi-two-dimensional model for MHD duct flow considered in this

thesis, the electrical boundary conditions on the duct walls influence the velocity

field. Details of the relationship between the electrical boundary conditions and

the velocity-pressure formulation of the quasi-two-dimensional model are given in

§ 3.2.3.

3.2 Magnetohydrodynamic Flow in Channels and

Ducts

In this thesis, the magnetohydrodynamic flow and heat transfer past a circular

cylinder in a duct are considered. So, it is imperative to introduce the funda-

mentals of magnetohydrodynamic flow between two parallel infinite walls and in

a rectangular duct.
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3.2.1 Flow between Parallel Planes (Hartmann Flow)

The flow of an electrically conducting fluid between two parallel and insulated

plates is known as Hartmann flow. It is the purely hydromagnetic analogue of

Poiseuille flow in hydrodynamic (B = 0) flow. This problem was first solved

by Hartmann (1937) and Hartmann & Lazarus (1937). Consider the flow of an

electrically conducting fluid in a rectangular channel exposed to an externally

uniform magnetic field, which is transverse to the channel axis (i.e. B = Bẑ).

The flow is driven by a constant pressure gradient.

 

 

 

 

 

 

 

 

u
y
x

z
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Figure 3.1: Schematic diagram of magnetohydrodynamic flow between parallel in-

finite walls in the presence of a transverse magnetic field.

The configuration of this channel arrangement is depicted in Fig. 3.1. The

transverse direction here is defined as being perpendicular to the direction of the

channel flow, and the walls are located at z = ±a. The channel is assumed to

extended infinitely in the y-direction. Therefore, the flow variables depend only

the z–coordinate. The velocity has only one component parallel to the streamwise

direction. From the induction equation (3.10), since the flow is unidirectional and

perpendicular to the applied magnetic field, it follows that the induced magnetic

field is of the form Bi = Bi(z)ẑ.

The induced field is related to the current density by Ampere’s law (equation

(3.5)), so that the Lorentz force J×B in equation (3.12) can be expressed in terms

of Bi. For fully developed flows, the left-hand side of the both equations (3.5)

and (3.12) are neglected. Introducing a and a2(−∂P/∂x)
ρν

as respective characteristic
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length and velocity scales, then the magnitude of pressure gradient can be eval-

uated to unity. The non-dimensional equations representing the Hartmann flow

are the x–momentum equation (3.20), the x–induction equation (3.21) together

with the boundary conditions (3.22) (Müller & Bühler 2001), i.e.

Ha
∂Bi

∂z
+
∂2u

∂z2
= −1, (3.20)

Ha
∂Bi

∂z
+
∂2B

∂z2
= 0 for− 1 < z < 1, (3.21)

u = 0, ±∂Bi

∂z
+

1

c
Bi = 0 at z = ±1. (3.22)

Here c and Ha are respectively, the wall conductance ratio and Hartmann number.

The Hartmann number and wall conductance ratio are given respectively as

Ha = a B

√
σe
ρν
, (3.23)

c =
tw σw
a σe

, (3.24)

where Bi, a, σw and tw represent the induced magnetic field, characteristic length,

electrical conductivity of the channel walls perpendicular to the field, and the

thickness of the walls perpendicular to the field, respectively. For electrically

insulating walls and perfectly conducting walls, c→ 0 and c→ ∞, respectively.

The details of the solution of the above equations are given in Moreau (1990)

and Müller & Bühler (2001), with the final solution given as

u = uc

[
1− cosh (Ha z)

cosh (Ha)

]
, (3.25)

Bi = − z

Ha
+ uc

sinh (Ha z)

cosh (Ha)
, (3.26)

with

uc =
c+ 1

Ha (cHa + tanh (Ha))
. (3.27)

Fig. 3.2 plots the velocity profile obtained from equation (3.25) over the width

of the channel as a function of the Hartmann number. At Ha = 0 the famil-

iar quadratic profile for Poiseuille flow is obtained, and as Ha is increased, the

profile becomes fuller, flattening towards a “top-hat” profile as Ha → ∞. For

large Hartmann number (i.e. Ha ≫ 1), the hyperbolic functions asymptotically
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approach

sinh (Ha) → 1

2
eHa , cosh (Ha) → 1

2
eHa , tanh (Ha) → 1.

Substituting these expressions into equations (3.25) and (3.26), shows that for

Ha ≫ 1 these equations simplifies to

u = uc

{
1− eHa(|z|−1)

}
, (3.28)

Bi = − z

Ha
± uc e

Ha(|z|−1), (3.29)

with

uc →
1 + c

Ha (cHa + 1)
. (3.30)

Equations (3.28) and (3.29) demonstrate that for Ha ≫ 1, the velocity and the

induced magnetic field decrease exponentially in the vicinity of the Hartmann

layer whose thickness scales with Ha−1. The velocity profile for Hartmann flow

is dependent on Ha, but is independent of the conductivity of the wall. Also, it

can be seen from Fig. 3.2 that with increasing Hartmann number, a constant core

region in the interior of the channel is formed with Hartmann boundary layers

near the channel walls. For insulating and perfectly conducting channel walls the

core velocity (uc) at Ha ≫ 1 simplifies to

uc = Ha−1 for c = 0, (3.31)

uc = Ha−2 for c→ ∞. (3.32)

Integration of the velocity distribution across the channel cross section yields

the non-dimensional flow rate

Qv =

∫ 1

−1

u dz = 2uc

[
1− 1

Ha
tanh (Ha)

]
. (3.33)

This equation can be used to predict the non-dimensional pressure gradient (Kp)

as a function of the flow rate (Müller & Bühler 2001)

Kp =
2

Qv

=
1

uc

[
1− 1

Ha tanh (Ha)
] . (3.34)
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Figure 3.2: The velocity profile in Hartmann flow for different values of Hartmann

numbers as indicated.

3.2.2 Duct Flow

The flow of an electrically conducting fluid in a rectangular duct where all walls

are insulated in a presence of a transverse magnetic field is known as Shercliff

flow. This configuration was first solved by Shercliff (1953). Consider a fully

developed flow of an electrically conducting fluid in a rectangular duct exposed

to an externally homogeneous magnetic field, which is perpendicular to the duct

axis (i.e. B = Bẑ). The duct walls are assumed to be insulated and the flow is

driven by a constant pressure gradient. The configuration is shown in Fig. 3.3.

The walls perpendicular and parallel to the magnetic field are separated by

2a and 2b, respectively. The walls on which the magnetic field has a normal

component are called Hartmann walls, whereas the walls tangential to the field

are called Shercliff walls. In the centre of the duct (the core), the Lorentz force

tends to retard the flow as it acts in the direction opposite to the flow direction.

In this region, the Lorentz force balances the driving pressure gradient. In the

boundary layer region near the Hartmann walls, the velocity drops significantly

and the direction of the induced current in this region is opposite to that in the
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Figure 3.3: The configuration of the magnetohydrodynamic flow in rectangular duct

placed in a uniform magnetic field. The walls perpendicular and parallel to the

magnetic field are Hartmann and Shercliff walls, respectively.

core. Here there is a balance between the Lorentz and the viscous forces. For an

electrically insulated duct (i.e. σw = 0), no current can enter the walls. Therefore,

the currents induced in the core flow are closed in through the Hartmann layers,

where the current magnitude is small and the electric resistance is high. In the

configuration considered here, the current density is perpendicular and parallel

to the magnetic field in the Hartmann and Shercliff layers, respectively. The

thickness of the Hartman layers is smaller than that of the Shercliff layers (δH ∼

Ha−1 and δS ∼ Ha−1/2).

For a fully developed flow, the velocity and the induced magnetic field are

independent on the flow direction and have only one component such that u =

u(y, z)x̂ and Bi = Bi(y, z)x̂.

The non-dimensional momentum and induction equations representing this

problem for −η ≤ y ≤ η and −1 ≤ z ≤ 1 (Müller & Bühler 2001) are

∇2Bi + Ha
∂u

∂y
= 0, (3.35)

∇2u+ Ha
∂Bi

∂y
= −1, (3.36)

where η = b/a. Here y and z are non-dimensionlized by a. A no-slip boundary

condition is imposed at the walls for the velocity (i.e. u = 0 at z = ±1 and y =
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±η). The boundary condition for the induced magnetic field at z = ±1 and

y = ±η is derived from equation (3.5) as

J =
1

Ha
∇×Bix̂ =

1

Ha

(
∂Bi

∂z
ŷ +

∂Bi

∂y
ẑ

)
. (3.37)

Inspection of this equation reveals that (Bi/Ha) represents the stream function

for current density in the plane of the duct cross-section (i.e. lines of constant Bi

are the current streamlines). If the wall is insulating, then the duct perimeter

represents one of these streamlines. The value of this constant can arbitrarily be

set to zero, and the boundary condition for the induced magnetic field at z = ±1

and y = ±η as Bi = 0.

The governing flow equations can be separated using Elsasser variables A1 =

u+Bi and A2 = u−Bi, so that the solution of A1 is sufficient to determine A2,

u and Bi. Expanding the velocity and the induction field in the equations (3.35)

and (3.36) as a Fourier series on −1 ≤ z ≤ 1 and −η ≤ y ≤ η (Müller & Bühler

2001) gives

u(y, z) =
∞∑

n=1,3,5,...

un(z) cos (λny) (3.38)

Bi(y, z) =
∞∑

n=1,3,5,...

bn(z) cos (λny) (3.39)

with

un(z) =
kn

λn
2

[
1− sinh (pn2) cosh (pn1z)− sinh (pn1) cosh (pn2z)

sinh (pn2 − pn1)

]

bn(z) =
kn

λn
2

[
sinh (pn1) sinh (pn2z)− sinh (pn2) sinh (pn1z)

sinh (pn2 − pn1)

]
pn1,2 =

1

2

(
Ha ±

√
Ha2 + 4λn

2
)

kn = 2
sin (λnη)

λnη

λn =
nπ

2η

For the case of large Hartmann number Ha ≫ 1, equations (3.38) and (3.39) can

be further simplified (Müller & Bühler 2001; Moreau 1990).
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The integration of the velocity profile (i.e. equation (3.38)) over the duct cross

section yields the flow rate

Qv = 2η
∞∑

n=1,3,5,...

kn

∫ 1

0

un(z) dz, (3.40)

and the non-dimensional pressure drop

Kp =
4η

Qv

=
2∑∞

n=1,3,5 kn
∫ 1

0
un(z)dz

. (3.41)

For large Hartmann number Ha ≫ 1, the non-dimensional pressure drop can be

determined asymptotically (Shercliff 1953; Müller & Bühler 2001) as

Kp =
Ha

1− αw/ηHa
−1/2 − Ha−1

. (3.42)

Here αw represent a coefficient depending on the conductivity of the side walls.

For insulating side walls, it was evaluated by Shercliff (1953) to αw ≈ 0.825 and

for perfectly conducting side walls to αw ≈ 0.95598 (Hunt & Stewartson 1965).

Equation (3.42) distinguishes the three contributions to the pressure drop in the

denominator. The first term is caused by the core flow where there is a balance

between pressure gradient and the Lorentz force. The second and third terms are

due the Shercliff and Hartmann layers, respectively.

The distribution of the current and the velocity profile depends mainly on the

electric conductivity of the Hartmann wall. The core velocity scales with Ha−1

and Ha−2 if the walls are insulated and perfectly conducting, respectively (see

equations (3.31) and (3.32)), while the velocity in the Shercliff layers scales with

Ha−1 whether the walls are conducting or non-conducting (Hunt & Stewartson

1965). Therefore, for a perfectly conducting Hartmann wall and insulated Shercliff

walls, an M-shape velocity profile is obtained with a uniform velocity of order

Ha−2 in the core region and velocity of order Ha−1 in the Shercliff layers.

3.2.3 A Quasi–Two–Dimensional Magnetohydrodynamic
Model for Ha ≫ 1 and N ≫ 1 Flow in a Duct

For a high Hartmann number Ha ≫ 1, the velocity profile becomes flat in the

core region while it decreases exponentially in the vicinity of the Hartmann layer.
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Furthermore, the thickness of the Hartmann layer is very thin and the core flow

occupies a very large part of the cross-section. Resolving these boundary layers in

a full three–dimensional computation become very expensive, which motivates the

use of an approximation known as the quasi–two–dimensional (Q2D) approach.

With the quasi–two–dimensional approach, the problem is formulated in terms

of core variables, and the effect of the boundary layers is included through an

additional term in the momentum equation accounting for the wall friction. It

reduces the computational effort of solving a three–dimensional problem to a

two–dimensional flow formulation for the core flow variables.

For a strong magnetic field such that the Hartmann number Ha ≫ 1 and the

interaction parameter N ≫ 1, velocity components parallel to the field will be

suppressed significantly (Branover 1978). The energy of vortices perpendicular to

the magnetic field are removed by Joule dissipation and the vortices are strongly

damped. However, vortices aligned with the field are not affected by it and the

eddies are elongated as shown schematically in Fig. 3.4.

 

Figure 3.4: Magnetic damping of a parallel vortex at high Ha andN . The schematic

diagram shows the structure of the flow at large times, from Davidson (2001).

Therefore, a quasi–two–dimensional structure of convective rolls parallel to

the direction of the magnetic field will develop along the walls perpendicular to

the field direction (Burr et al. 2000; Davidson 1995). The quasi–two–dimension-

al eddies extending between the plane walls have their ends embedded in the
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Hartmann layers, i.e. the currents induced by the motion of these structures can

close in the Hartmann layers. As a result, the flow experiences some breaking as

shown in Fig. 3.5. This process is called Hartmann braking (Sommeria & Moreau

1982).

 Hartmann wall

B

u
f (z) 2a

 Flow core  

 Hartmann wall

 Hartmann layer

 Hartmann layer

y

x

z

Figure 3.5: Quasi-two-dimensional MHD geometry. The core velocity decay to zero

to satisfy the no-slip boundary condition on the walls

Consider the flow of incompressible, viscous, and electroconducting fluid be-

tween two parallel electrically insulating walls, which are perpendicular to the

applied magnetic field and spaced a distance 2a apart. The configuration is

similar to that shown in Fig. 3.1. Following Sommeria & Moreau (1982), the

interaction parameter and Hartmann number are assumed to be much greater

than unity (N ≫ 1 and Ha ≫ 1), and magnetic Reynolds number is assumed as

to be much less than unity (Rem ≪ 1).

The electromagnetic force in the momentum equation can be expressed as a

unidirectional diffusion term. By eliminating current density and including the

irrotational part of the (J×B) force in the pressure, the momentum equation

becomes (Sommeria & Moreau 1982)

∂u

∂t
+ (u·∇)u = −∇p∗ + ν∇⊥

2u− σB2

ρ
∇⊥

−2

(
∂2u

∂z2

)
, (3.43)

where p∗ is the augmented pressure and ∇−2 is the inverse of the Laplacian

operator. The subscript ⊥ refers to vector quantities projected in the direction
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of the magnetic field, i.e. the (x, y) plane. By taking the curl of this equation,

the parallel component of vorticity wz can be written as

∂wz

∂t
= ν∇⊥

2wz −
σB2

ρ
∇⊥

−2

(
∂2wz

∂z2

)
, (3.44)

The application of operator ∇−2 is equivalent to multiplication by the square of

the length scale perpendicular to the magnetic field (l⊥
2) in Fourier space. There-

fore, the electromagnetic force tends to damp the velocity components normal to

the magnetic field and stimulates a diffusion of vorticity along the direction of

the magnetic field. The length scale parallel to the magnetic field (l∥) evolves at

a rate

l∥ =
l⊥

(t/tJ)1/2
. (3.45)

From the above equation, an anisotropic state is reached during the typical

turnover time where (l∥/l⊥ ∼ N1/2) if l⊥N
1/2 is smaller than the spacing of

the walls perpendicular to the magnetic field. This anisotropic features leads to

the formation of extended vortex tubes located parallel to the magnetic field pro-

vided that the applied field is strong, i.e. the Joule dissipation time tJ is small

compared with the vorticity turnover time scale (ttu = l/u)

tJ =
ρ

σB2
≪ l

u
, (3.46)

where l and u are the characteristic length and characteristic velocity scales,

respectively, so that the interaction parameter is large compared to unity, i.e.

N = ttu/tJ ≫ 1. In contrast, if tJ ≫ ttu, i.e. N ≪ 1, inertial forces dominates the

Lorentz force , which is expected to have a negligible effect on the flow turbulence

(Moffatt 1967).

The three–dimensional flow velocity u can be expressed in the form (Bühler

1996)

u(x, y, z, t) =


u(x, y, t)
v(x, y, t)

0

 · f(z), (3.47)

with

f(z) = 1− eHa(|z|−1). (3.48)

For Ha ≫ 1, the function f(z) is equal to unity in the core region and must

satisfy non-lip conditions at the walls, i.e. f(∓1) = 0. Consequently, the flow
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can be split into a core region separated by thin boundary layers. In the core,

there is a balance between the pressure gradient and Lorentz force. The viscous

effects are confined to the Hartmann layers where the viscosity and Lorentz force

balance each other (Shercliff 1975). The velocity in the core presents only a very

slight variation along the magnetic field lines. However, in the vicinity of the

walls perpendicular to the magnetic field it exhibits an exponential profile (see

equation (3.28)).

This behavior led Sommeria &Moreau (1982) to derive a two–dimensional core

model for the flow bounded between insulating walls, based on the exponential

velocity profile by integrating the Navier–Stokes equations from one Hartmann

wall to the other (i.e. −1 ≤ z ≤ 1), and expressing an equation for the velocity

field projected in the perpendicular direction u⊥.

Rewrite the equations of motion (3.11, 3.12, 3.13 and 3.15) in terms of veloc-

ities and currents parallel and perpendicular to the magnetic field, i.e. (u⊥, w)

and (J⊥, Jz), then the non-dimensional equations of motion become (Pothérat

et al. 2000)

∇⊥ · u⊥ +
∂w

∂z
= 0, (3.49)

1

N

(
∂u⊥

∂t
+ u⊥ . ∇⊥u⊥ + w

∂u⊥

∂z
∇⊥p

)
− 1

Ha2∇
2
⊥u⊥ − 1

Ha2

∂2u⊥

∂z2
= J⊥ × ẑ,

(3.50)
1

N

(
∂w

∂t
+ u⊥ . ∇⊥w + w

∂w

∂z
+
∂p

∂z

)
− 1

Ha2∇
2
⊥w − 1

Ha2

∂2w

∂z2
= 0, (3.51)

∇⊥ · J⊥ +
∂Jz
∂z

= 0, (3.52)

J = −∇ϕ+ u× ẑ. (3.53)

The z– averaged of momentum equation can be expressed as

1

N

[
∂ū⊥

∂t
+ (ū⊥ · ∇⊥)ū⊥ + (ú⊥ · ∇⊥)ú⊥ +∇⊥p̄

]
=

1

Ha2∇
2
⊥ū⊥+

1

Ha2 τw+J̄⊥ × ẑ,

(3.54)

where a, u0, a/u0, ρu
2
0, (ρσu0/a)Ha and (σBu0/Ha) were used as respective

length, velocity, pressure, shear stress and electric current density. The overbar

represents z–averaging across the fluid depth and ú⊥ represents the deviation

from the averaged velocity ū (i.e. ú⊥ = u⊥ − ū⊥). The subscript ⊥ refers to
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vector quantities projected in the direction of the magnetic field, i.e. (x, y) plane.

Similarly, to turbulent flow, z–average of (u⊥ · ∇⊥)u⊥ does not reduce to (ū⊥ ·

∇⊥)ū⊥. Instead, a Reynolds stress (ú⊥ · ∇⊥)ú⊥ appears, which involves the

deviation of ú⊥ from the z-averaged velocity. τw denotes the sum of the viscous

stress at both walls

τw = −
[(

∂u⊥

∂z

)
z=−1

−
(
∂u⊥

∂z

)
z=1

]
.

Neglecting the higher order terms of order O(Ha−1, N−1), equation (3.54) gives

the SM82 model in which the inertial effects occurring inside the Hartmann layer

are neglected. When this model is applied to the Shercliff flow, the boundary

layers along the wall parallel to the magnetic field (Shercliff layers) are three-

dimensional in nature. Since this model assumes that diffusion along the magnetic

field lines occurs faster than lateral diffusion of the angular momentum, the error

using this model with the three–dimensional solution (e.g. Moreau (1990)) has

been shown to be in order of 10% (Pothérat et al. 2005). The SM82 model requires

electrically insulated walls perpendicular to the magnetic field, the assumption of

a quasi–two–dimensional flow fails if strong velocity jets at the Hartmann layers

are introduced. In addition, this model fails to describe the flow of inertially

driven recirculation (Ekmann pumping) in the Hartmann layers such as occurs

in rotating flows for instance. This defect can be corrected by including inertial

effects within Hartmann layers (i.e. , the term of order Ha−1) in equation (3.54),

which has been implemented by Pothérat et al. (2005).

Following Pothérat et al. (2000), τw can be calculated from the velocity profile

inside the Hartmann layer as τw = −nHHaū⊥, where nH denotes the number of

Hartmann walls: nH = 2 for a flow confined between two rigid walls, and nH = 1

for a free surface flow. The electromagnetic term J̄⊥ × ẑ can be determined using

the current density injected into the fluid through the walls. The z– averaged of

equation (3.52) gives

∇⊥ · J̄⊥ = Jw, (3.55)

and the z– averaged of equation (3.53) (using ∇⊥ · ū⊥ = 0) gives

∇⊥ × J̄⊥ = 0, (3.56)

64



where Jw represents the current injected at the walls. Therefore, the z–averaged

current can be expressed as the gradient of the scalar ψ0, which is defined as

J̄⊥ =
1

Ha
∇ψo, (3.57)

1

Ha
∇2

⊥ψo = −Jw (3.58)

Following Pothérat et al. (2005), the scalar potential ψ0 is determined from the

current source Jw through the solution of the Poisson equation (3.58), which is

unique for a given current flux J̄⊥ · n at the lateral boundaries. Defining the

velocity field associated with the stream function ψ0 as uf , the electromagnetic

force in equation (3.54) is found to depend on the electric current boundary

condition through J̄⊥ × ẑ = uf . The velocity uf thus represents a driving force

that arises from current injection at boundaries.

In order to model the case of an insulated duct, the vector field uf = 0.

However, in order to model current injection, a non-zero uf is required. For

example, Pothérat et al. (2005) describe (for the case of an electrode used to

inject current into a duct) the use of a Dirac-delta function with an integral equal

to the total injected current to approximate Jw, which in turn can be used to

determine uf .

Finally, the Reynolds stress term of order O(Ha−1 N−1) from equation (3.54)

is neglected, yielding (Pothérat et al. 2005)

∂u⊥

∂t
+ (u⊥ · ∇⊥)u⊥ +∇⊥p =

1

Re
∇2

⊥u⊥ +
1

tH
(uf − nHu⊥). (3.59)

Here tH = a2/νHa, is the Hartman braking time. The linear damping term

−u⊥/tH represents the effect of the Hartmann layers on the core flow with a

characteristic time tH . From equation (3.59), it can be seen that the effect of the

Lorentz force is contained within the last term.

This model has been modified by (Bühler 1996) to be more general by taking

into account walls with varying conductivity,

tH =
a2

ν Ha

[
1 + c Ha

1 + Ha

]
, (3.60)
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where c is the electrical conductivity of the walls given in equation (3.24). The

key feature of this model is that it provides a set of modified two–dimensional

Navier–Stokes equations with forcing and linear braking terms that represent the

electromagnetic force effects and the friction in the Hartmann layers.

In conclusion, the SM82 model is formally valid provided Ha≫ 1 and N ≫ 1.

The computational implementation of this model is effective and gives flow dy-

namics predictions of reasonable accuracy. It reduces the substantial computa-

tional efforts of solving a three-dimensional problem by reducing it to a two–di-

mensional flow form. Therefore, the required CPU cost is much lower compared

with that of three-dimensional DNS. The theoretical accuracy of this model is

(Ha−1, N−1) for the velocity and pressure. The quasi two-dimensional model

has been successfully used for different magnetohydrodynamic flows confined be-

tween parallel planes such parallel layers, for example (Moreau & Sommeria 1988;

Bühler 1996; Pothérat et al. 2000; Cuevas et al. 2006; Dousset & Pothérat 2008;

Smolentsev et al. 2012; Hussam et al. 2012). It gives good results when inertia

forces are small. The quasi–two–dimensional approach of integrating out a di-

mension of a flow is not new and has been used before to model the Hele-Shaw

flow of a viscous fluid between two parallel closely spaced plates. Quasi–two–di-

mensional flows occur in a number of other special cases. For example, the flow

of a soap film (Couder 1986), stratified flows (Voropayev et al. 1991), and the

flows of a rotating fluid (Zavala Sansón et al. 2001).

3.3 The Governing Flow Equations

The numerical scheme used in this project solves the viscous, incompressible

quasi-two–dimensional magnetohydrodynamic Navier–Stokes and energy equa-

tions. For a high Hartmann number the magnetic Reynolds number Rem is as-

sumed to be very small. Thus, the induced magnetic field is negligible and the

resulting magnetic field is imposed in the z–direction only. Under these conditions

the flow is quasi two–dimensional and consists of a core region, where the velocity

is invariant along the direction of the magnetic field, and a thin Hartmann layer

at the wall perpendicular to the magnetic field.
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In this case, for the configuration shown in Fig. 1.4 where the duct was elec-

trically insulated, the non-dimensional magnetohydrodynamic equations of con-

tinuity, momentum, and energy reduce to

∇·u = 0, (3.61)

∂u

∂t
+ (u·∇)u+∇p = 1

Re
∇2u− 2

(
d

a

)2
Ha

Re
u, (3.62)

∂θ

∂t
+ (u·∇)θ =

1

Pe
∇2θ, (3.63)

where u, p and θ are the velocity, pressure, and temperature fields, respectively,

projected onto the x-y plane. Lengths are scaled by the cylinder diameter d,

pressure by ρu20, where ρ is the density and u0 is the peak inlet velocity, time

by d/u0, and temperature by the imposed temperature difference between the

bottom and top walls, ∆T = Tw − T0 (Burr et al. 2000; Sheard & King 2011).

The non-dimensional variables are defined as follows

u =
ũ

u0
, v =

ṽ

u0
, x =

x̃

d
, y =

ỹ

d
, t =

t̃u0
d
, p =

p̃

ρu20
,

θ =
T − T0
Tw − T0

, Re =
u0 d

ν
, Ha = aB

√
σe
ρν
, Pe = Re Pr ,

where ν, σe and B are the kinematic viscosity, electrical conductivity, applied

magnetic field, respectively. Here a represents the distance between the Hartmann

walls as, per Sommeria & Moreau (1982), rather than the channel half-height used

earlier in the work of Frank et al. (2001). A Prandtal number of Pr = 0.022 is

used throughout, representative of the eutectic alloy GaInSn.

It also makes sense to define the modified Hartmann number

Ha⋆ =

(
d

a

)2

Ha, (3.64)

since this non-dimensional parameter defines the relative influence of the magnetic

damping term to the viscous diffusion term for quasi–two–dimensional flow. This

variable is important because throughout this thesis the effect of varying blockage

ratio β = d/h is examined, i.e. the cylinder diameter d is varied while keeping

the duct width h and depth a constant.
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It is noted that the energy equation is sometimes written to include terms

describing the effects of viscous dissipation and Joule heating (e.g., see (Hossain

1992)). However, here these terms are omitted (following (Burr et al. 2000; Yoon

et al. 2004) and others), after an order of magnitude calculation confirmed their

contributions were between 500 times and 107 times smaller than those of the

included terms for applications motivating this study, such as eutectic alloy flows.

The local Nusselt number along the lower heated wall of the channel is defined

as

Nuw(x, t) =
1

(θf − θw)

∂θ

∂y

∣∣∣∣
wall

. (3.65)

θf is the bulk fluid temperature, which is calculated using the velocity and tem-

perature distribution as

θf (x, t) =

∫ h

0
uθ dy∫ h

0
udy

, (3.66)

where h is the non-dimensional width of the duct and u is the streamwise com-

ponent of velocity.

A time-averaged Nusselt number for heat transfer through the heated wall

of the channel is calculated by first taking the time average of the local Nusselt

number (Nuw) at each x-station, and then integrating over the non-dimensional

length of the heated bottom wall, L, using

Nu =
1

L

∫ L

0

Nuw(x) dx. (3.67)

To characterize the effect on the heat transfer due to the addition of a cylinder

to the channel, the overall increment of heat transfer is defined as

HI =
Nu − Nu0

Nu0

× 100, (3.68)

where Nu0 is the time-averaged Nusselt number of the heated region of the duct

without the cylinder.

The lift, drag and moment coefficients (per unit span) are defined according

to

CL =
F ′
l

1
2
ρu20d

, (3.69)

CD =
F ′
d

1
2
ρu20d

, (3.70)
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CM =
M ′

1
4
ρu20d

2
, (3.71)

where F ′
l , F

′
d and M ′ are the lift, drag and moment exerted by the fluid per unit

length of the cylinder. The total force acting on the cylinder surface is due to

pressure and viscous components, which can be computed by direct integration

over the surface of the cylinder. The pressure and viscous forces per unit span

are respectively given as

Fp =

∮
pn ds, (3.72)

Fw =

∮
τw ds, (3.73)

FT = Fp + Fw, (3.74)

where n is the unit outward vector normal of the fluid domain. This leads to the

following moment contribution

M =

∮
r× (pn+ τw)ds, (3.75)

where r is a moment arm vector.

The wake oscillation frequency f is parameterized by the Strouhal number

St =
fd

u0
. (3.76)

3.4 Numerical Scheme

A nodal spectral-element method is used to discretise the governing flow and

energy equations (3.61-3.63) in space, and a third-order scheme based on back-

wards differentiation is employed for time integration (Karniadakis et al. 1991).

The spectral element method is similar to the finite element method, in that the

fluid domain is divided into a mesh of individual elements. However, instead of

employing a low-order (e.g. linear) basis over each element, a high-order poly-

nomial basis is instead used, permitting very rapid convergence with increasing

polynomial degree (Karniadakis et al. 1991). The spectral element technique uses

the tensor product of higher-order Lagrangian polynomials to interpolate the so-

lution variables in each direction within each element.
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Lagrange polynomials are defined as (Karniadakis & Sherwin 2005)

Li(ξ) =

p+1∏
g=1,g ̸=i

(ξ − ξg)

(ξi − ξg)
, (3.77)

where ξ is the spatial coordinate, i and g are the indices of data points, and p+1

is the number of data points.

The code is an in-house formulation, which has been validated against experi-

mental data (Sheard et al. 2007, 2009) and a separate implementation of a similar

algorithm (Blackburn & Sheard 2010), and has previously been employed to study

channel flows (Neild et al. 2010). The chosen scheme employs a Galerkin finite

element method in two dimensions, with high-order Lagrangian interpolants used

within each element. The nodes points within each element correspond to the

Gauss-Legendre-Lobatto quadrature integration points, producing diagonal mass

matrices. As the functions at the internal nodes only depend on the boundary

nodes, matrix manipulation allows the internal nodes to be eliminated from the

matrix subproblem of the pressure and diffusion substeps through static conden-

sation. This greatly improves the efficiency of the scheme.

3.4.1 Spatial Discretisation

The computational domain in the x − y plane is broken up into quadrilateral

elements. Within each element, Gauss-Lobatto-Legendre quadrature is employed

for integration, which leads to pleasing exponential spatial convergence for the

scheme. The Gauss-Lobatto-Legendre quadrature points are the roots of the

equation (Karniadakis & Sherwin 2005)

(1− ξ)P ′
m(ξ) = 0 with − 1 ≤ ξ ≤ 1. (3.78)

Using Rodriguez’s formula, the Legendre polynomial (Pm) can be written

Pm =
1

2mm!

dm

dξm
(ξ2 − 1)m where m = 0, 1, 2, .... (3.79)

The Galerkin weighted residual methods is used to form equations for the solution

variables at the nodal points. The flow equations are multiplied by the nodal

weight function and integrated over space. The resulting integrals only depend
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on the local and neighbouring elements as the weighting functions are non-zero

only within the element. The weighting coefficients of Gauss-Legendre-Lobatto

quadrature are given by

wj =
2

m(m+ 1

1

)
[Pm(xj)] with j = 0, 1, 2, ...,m. (3.80)

Then, an integral to be evaluated can be approximated in a standard domain

(which extends from -1 to 1)∫ 1

−1

f(ξ)dξ =

Q−1∑
j=0

wjf(ξj) +R(u), (3.81)

where ξj are the Q discrete quadrature points (or zeroes) at which the function

f(ξ) is evaluated and R(u) denotes the approximation error, which is equal to

zero if f(ξ) is a polynomial of degree 2Q − 1 or less. The weighting coefficients

and knowledge of the function at the quadrature points allows the solution to the

integral in the standard domain to be determined. A simple transformation is

then used to apply the solution to the physical domain. The weighting coefficients

and quadrature points allow the integral equation resulting from the application

of the weighted residual method to be determined using Gauss-Legendre-Lobatto

quadrature in two dimensions.

3.4.2 Temporal Discretisation

A three-step splitting scheme is used for temporal discretisation of Navier–Stokes

as described by Karniadakis et al. (1991). This method is known as an operator-

splitting or a fractional step method. It consists of separating the Navier–Stokes

equations into convection, pressure and diffusion terms, and integrating them in

three separate substeps.

In the first substep, an intermediate velocity field u∗ is calculated from the

non-linear convection term and Hartmann friction term of equation 3.62 as

u∗ −
∑J−1

q=0 αqu
n−q

∆t
= −

J−1∑
q=0

βq

{
(un−q · ∇)un−q + 2

(
d

a

)2
Ha

Re
un−q

}
, (3.82)

which is solved explicitly by a third-order backwards–multistep technique, which

are based on backwards differentiation (i.e. the solution is evaluated at time n+1,
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Coefficient Value

γ0 11/6

α0 3

α1 -3/2

α2 -1/3

β0 3

β1 -3

β2 1

Table 3.1: Third-order backwards-multistep scheme coefficients.

and the appropriate order backwards difference scheme dictates the combination

of u values at previous times required to approximate the right-hand-side terms

at the n+ 1 time).

In the second substep, a second intermediate velocity field u∗∗ is computed

from the pressure using
u∗∗ − u∗

∆t
= −∇pn+1. (3.83)

The divergence of equation (3.83) is taken and continuity is enforced for u∗∗ using

equation (3.61) resulting in a Poisson equation for the pressure,

∇2pn+1 − 1

∆t
∇ · u∗ = 0. (3.84)

In the third substep, the velocity field un+1 is calculated from

γ0u
n+1 − u∗∗

∆t
=

1

Re
∇2un+1. (3.85)

This step is solved as an implicit Helmholtz problem. The values of explicit and

implicit coefficients γ0, αq, and βq for the third-order scheme (i.e. J = 3) are

given in Table 3.1.

Overall, the splitting scheme achieves third-order time accuracy by enforcing a

Neumann condition on the pressure field on boundaries (Karniadakis et al. 1991).

For the energy equation, the same third-order backwards differentiation scheme

is used as for the velocity field

θ∗ −
∑J−1

q=0 αqθ
n−q

∆t
= −

J−1∑
q=0

βq
{
(un−q · ∇)θn−q

}
, (3.86)
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γ0θ
n+1 − θ∗

∆t
=

1

Pe
∇2θn+1. (3.87)

3.5 Linear Stability Analysis

The methods applied for examining linear stability of disturbances are based on

time integration of the linearized Navier–Stokes equations. It has been success-

fully applied in the wake of various bluff bodies to predict the flow transitions

including cylinders (Barkley & Henderson 1996; Blackburn et al. 2005; Sheard

et al. 2009), toroids (Sheard et al. 2003) and elliptical leading edge plates (Ryan

et al. 2005). These equations are derived by substituting velocity and pressure

fields decomposed into a two–dimensional base flow and infinitesimal fluctuating

components, such that the new velocity and pressure fields become

u(x, y, t) = U(x, y, t) + u′(x, y, t), (3.88)

p(x, y, t) = P (x, y, t) + p′(x, y, t), (3.89)

Here perturbations are restricted to be two–dimensional owing to the quasi–2D

treatment of the underlying flow (see § 3.2.3). Substituting the above equations

(3.88-3.89) into the Navier–Stokes equations, subtracting the base flow equations,

and neglecting the products of perturbation velocities yields the linearized quasi–

2D Navier–Stokes equations

∂u′

∂t
= −DNu′ −∇p′ + 1

Re
∇2u′ − 2

(
d

a

)2
Ha

Re
u′, (3.90)

∇·u′ = 0, (3.91)

which govern the perturbation field, the growth of which can be then monitored

over time. Therefore, the stability of a perturbation field u′ can be determined

as a function of Re and Ha. The linearized advection term is defined as

DNu′ = (U·∇)u′ + (u′ · ∇)U.

Let A (τ) denote the linear evolution operator over a time τ defined by equations

(3.91) and (3.90),

u′(t+ τ) = A (τ)u′(τ). (3.92)
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For flows with a time period T an eigenvalue problem in terms of operator A (T )

is obtained

A (τ)û = µû, (3.93)

µ ≡ e(σ+iω) T , (3.94)

where σ and ω are the growth rate and angular frequency of a linear instability

mode over the nth period and angular frequency, respectively. Note that µ is

the complex eigenvalue and û the eigenvector field. Eigenvector solutions can be

written as

û(x, y, t+ T ) = û(x, y, t)e(σ+iω) T , (3.95)

υ̂(x, y, t+ T ) = υ̂(x, y, t)e(σ+iω) T , (3.96)

p̂(x, y, t+ T ) = p̂(x, y, t)e(σ+iω) T . (3.97)

The stability analysis may be performed on either a steady or unsteady base flow.

For unsteady periodic flow, T corresponds a single flow period of the unsteady

base flow, while for steady base flows, T represents an arbitrary time interval over

which the growth of the mode is recorded. The stability of the base flow is then

determined from dominant eigenvalues µ with the largest modulus. If |µ| > 1,

then the flow is unstable, and if |µ| < 1, the flow is stable. Neutral stability

occurs when |µ| = 1, which represents a system in which the perturbation will

neither grow nor decay. The Reynolds number for the flow giving |µ| = 1 is the

critical Reynolds number for the onset of the instability.

To perform this technique numerically, the following steps are taken. An

initial perturbation field consisting of random noise is constructed. The pertur-

bation equations are integrated forward in time simultaneously with the base flow

equations. To obtain the Floquet multiplier µ, eigenmode solution approaches in-

cluding the power method or Krylov subspace methods described by Blackburn

& Lopez (2003) may be used. The present formulation of the stability analysis

technique adopts the implicitly restarted Arnoldi method (Sheard et al. 2003) to

determine the leading eigenvalues and corresponding eigenvectors.
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3.6 Transient Growth Analysis

In this section, a method for considering the transient growth of disturbances is

described. In this case, the base flow may be linearly stable, but the perturbation

fields may exhibit significant transient response due to the interaction between

non-normal eigenmodes (Schmid & Henningson 2001). The approach applied

for examining transient growth of disturbances are based on time integration

of the linearized Navier–Stokes equations (3.90-3.91) along with backwards time

integration of adjoint equations presented shortly.

Typically, transient growth is defined with respect to the energy norm of the

perturbation field, derived from the L2 inner product

2Ek(u
′) = (u′,u′) ≡

∫
u′ · u′ dV, (3.98)

where Ek is the kinetic energy per unit mass of the perturbation, integrated over

the full domain. Since the governing equations are linear it is sufficient to consider

the initial perturbation field u′(0) to have unit norm. The transient energy growth

over interval τ is (Blackburn et al. 2008b)

Ek(τ)

Ek(0)
= (u′(τ),u′(τ)). (3.99)

In terms of the operator A (τ) and its adjoint A ∗(τ) in the L2 inner product

Ek(τ)

Ek(0)
= (A (τ)u′(0),A (τ)u′(0)) = (u′(0),A ∗(τ)A (τ)u′(0)), (3.100)

where A ∗(τ) is obtained by integrating the adjoint linearized Navier–Stokes equa-

tions backwards over interval τ . The adjoint quasi two–dimensional Navier–Stokes

equations differ slightly from the form derived in Barkley et al. (2008a) due to

the addition of the Hartmann friction term. Adapting the nomenclature used

in their work to compactly present the adjoint problem, the perturbation and

adjoint fields are expressed as

q =

(
u′

p ′

)
, q∗ =

(
u∗

p ∗

)
, (3.101)

where Ω is the spatial domain, and τ is an arbitrary positive final time.
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The action of the forward and adjoint equations on fields q and q∗ are given

by the operators

H =

 −∂t −DN+ ν∇2 − 2

(
d

a

)2
Ha

Re
−∇

∇· 0

 (3.102)

and

H ∗ =

[
∂t −DN∗ + ν∇2 + αH −∇

∇· 0

]
, (3.103)

respectively, where αH is the form of the Hartmann friction term in the adjoint

equation which is to be determined. The adjoint advection operator is defined

such that DN∗u∗ = − (U · ∇)u∗ + (∇U)T · u∗.

For H ∗ to be the adjoint of H , the bilinear concomitant equation must be

satisfied for any fields q and q∗ with compact support (values and derivatives

zero on all boundaries), i.e.

⟨H q,q∗⟩ − ⟨q,H ∗q∗⟩ = 0. (3.104)

The contribution of all terms in the standard linearized and adjoint Navier–

Stokes equations have already been determined by Barkley et al. (2008b) so all

that remains is to solve for the contribution made by the additional Hartmann

friction term, ∫ τ

0

∫
Ω

H q · q∗dv dt−
∫ τ

0

∫
Ω

q · H ∗q∗dv dt = 0

∴
∫ τ

0

∫
Ω

−2
d2

a2
Ha

Re
u′ · u∗dv dt =

∫ τ

0

∫
Ω

u′ · αu∗dv dt,

which holds if α = −2

(
d

a

)2
Ha

Re
. Therefore, the adjoint equations can be ex-

pressed as

∂u∗

∂t
= −DN∗u∗ −∇p∗ + 1

Re
∇2u∗ − 2

(
d

a

)2
Ha

Re
u∗,

∇·u∗ = 0.

The transient growth of the system is determined by solving an eigenvalue prob-

lem. Let λj and vj denote eigenvalues and normalized eigenfunctions of the
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operator A ∗(τ)A (τ), then

A ∗(τ)A (τ)vj = λjvj.

The maximum possible energy growth, denoted G(τ), over a specified time τ , is

then given by the dominant eigenvalue of A ∗(τ)A (τ), i.e.

G(τ) = max(λj).

The global maximum for any time interval is denoted by

Gmax = max(G(τ)).

Aside from the additional Hartmann friction term in the forward and adjoint

equations, the direct transient growth technique applied here is identical to that

described in Blackburn et al. (2008a), and the linearized eigenmode solver em-

ployed here has been validated in Sheard et al. (2009) and Blackburn & Sheard

(2010).

3.7 Validation of the Numerical Approach

Validation was performed against published results to ensure the accuracy of the

present formulation and model. The literature review related to the work of this

thesis demonstrated that few works have been dedicated for the magnetohydro-

dynamic flow and heat transfer past a circular cylinder in the presence of a strong

magnetic field. Therefore, the numerical system was first tested for the case of

non-magnetohydrodynamic (non-MHD) flow and heat transfer, for which a large

number of studies are available. Then, a magnetohydrodynamic (MHD) case was

validated.

3.7.1 Non-MHD Validation Tests

The first test concerns the critical Reynolds number Rec and associated Strouhal

number St c at the transition from steady to unsteady flow in a zero-Ha flow (i.e.

no magnetic field) for different blockage ratios. Results are compared with the

published numerical results from linear stability analysis of Chen et al. (1995),
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Figure 3.6: (a) Rec and (b) Stc plotted against β. Symbols show the present data,

while blue and red lines show data published in (Sahin & Owens 2004) and (Chen

et al. 1995), respectively.
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and direct numerical simulation of Sahin & Owens (2004) in Fig. 3.6, and an

exceptionally close agreement can be observed. Critical Reynolds numbers were

determined using the linear stability analysis below transition, and direct numer-

ical simulation above transition, to extrapolate growth rates and mode ampli-

tudes, respectively, to zero. This gives two independent estimates of the critical

Reynolds number, which were found to be very close. The mean of the absolute

values of the percentage difference between the present and the published results

for Re and St were 0.25% and 0.15%, respectively.

Fig. 3.7 presents a comparison between the results of the present solver and

those predicted by Griffith et al. (2011) for Re = 188 at blockage ratios β = 0.3

and 0.5. The vortices forming on the walls of the channel are drawn inwards

and interact with the vortex street. Also, it can be noted in these cases the

inversion of the vortex street in which the vortices forming on one side of the

cylinder end up further downstream nearer the opposite wall of the channel. The

results reproduced from Griffith et al. (2011) and those computed using present

implementation are visually indistinguishable.

Next, the heat transfer capabilities of the solver were tested. Computed Nus-

selt numbers for heat transfer with Pr = 0.7441 at blockage ratios of 0.1 and 0.2

are compared against both a theoretical curve (Khan et al. 2004) and numeri-

cal results (Mettu et al. 2006) in Fig. 3.8. Again, a very good agreement with

published data is found, with the mean of the absolute values of the percentage

difference between the results found to be 0.75% and 1.0% for β = 0.1 and 0.2,

respectively.

The respective temperature contours for β = 0.1 and 0.2 at different Reynolds

numbers are shown in Fig. 3.9, which demonstrate the ability of the solver to

resolve the thermal boundary layer around the cylinder. It can be noted that the

isotherm contours are very close to the cylinder surface and far apart away from

it. This indicates that large temperature gradients exit near the cylinder surface

and small gradients far away.

Simulations for a rotating oscillating cylinder were also performed for com-

parison. Since the cylinder is rotated sinusoidally in time at forcing frequency
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β = 0.2

Figure 3.7: Contours of vorticity plotted at Re = 188 and different blockage ratios

as indicated. (a) and (c) represent the contours predicted by the present simulation.

(b) and (d) represent the corresponding results reproduced from Griffith et al. (2011).

Red and blue contours representing positive and negative vorticity, respectively.
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Figure 3.8: Comparison of average Nusselt number over the surface of the cylinder

with the results from other studies at different Reynolds numbers for the case without

a magnetic field for blockage ratios as indicated. Symbols show the present results,

while blue and red lines show data from Mettu et al. (2006) and Khan et al. (2004),

respectively.

81
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Figure 3.9: Instantaneous dimensionless temperature contours for β = 0.1 and 0.2

for different Reynolds numbers as indicated, obtained from the present algorithm.

Red and blue shading shows hot and cold fluid, respectively.
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Figure 3.10: Comparison of CL,max distribution in the lock-on range with the results

obtained from Baek & Sung (1998) and those predicted by present simulations at

different oscillating frequency for Re = 110 and three different values of the maximum

angular velocity as indicated. Symbols show the present results, while dashed lines

show data from Baek & Sung (1998).

Ste, the non-dimensional surface velocity of the cylinder can be expressed by

θ̇cyl = A sin(2πStet), (3.105)

where A is non-dimensionalized by u0/d and the forcing Strouhal frequency is

Ste = fed/u0. The present results for the maximum distribution of the lift coef-

ficient CL,max as a function of Ste at different A was compared with results from

Baek & Sung (1998), where the flow is within the lock-on range. As indicated

in Fig. 3.10, an excellent agreement was found, which strongly supports the ac-

curacy of the present rotary simulations to be described in chapter 7. The mean

percentage differences between the present and the published results for the range

of A and Ste tested were less than 1%. Furthermore, the mean moment coef-

ficient CM as a function of rotational velocity α at Re = 1000 is also compared

with the numerical results of Chew et al. (1995) in Fig. 3.11. Again a very good

83



α

C
M

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Figure 3.11: The variation of CM with α for Re = 1000. Symbols show the results

predicted by present simulations, while dashed lines show the results obtained from

Chew et al. (1995).

agreement was found. The mean percentage differences between the present and

the published results for the range of α tested were less than 2%.

In addition, the heat transfer from a rotating oscillating cylinder was tested.

Computed average Nusselt numbers Nu for heat transfer with Pr = 0.7 for A =

0.78 and 1.57 at Re = 100 and 200 were compared against the numerical results of

Mahfouz & Badr (2000). The results of this comparison are plotted in Fig. 3.12,

which compare well with the published data. The mean percentage of differences

between the Nu predicted by the present simulations and those of the previous

study was less than 1%. The highest heat transfer was found to occur when the

oscillation frequency was synchronized with the vortex shedding frequency. This

may be attributed to the strong fluid motion in the vicinity of the cylinder which

results in an increase in the rate of heat transfer.

The temperature contours patterns for the lock-on regime for A = 0.78 and

1.57 at Re = 100 and 200 for the forcing frequency Ste where the maximum Nus-
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Figure 3.12: Comparison of average Nusselt number over the surface of the cylinder

with the results from other studies at different oscillating frequency and Reynolds

number as indicated (a) A = 0.78 and (b) A = 1.57. Symbols show the present

results, while lines show data from Mahfouz & Badr (2000).
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Re = 100 Re = 200

A = 0.78

A = 1.57

Figure 3.13: Isotherm (above) and vorticity contours (below) for Re = 100 and 200

at different ωmax and Ste of the lock-on regimes. For isotherm contours, red and blue

ergions shows hot and cold fluid, respectively. For vorticity, red and blue contours

represent positive and negative vorticity, respectively.
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Figure 3.14: The Prediction of energy growth (G) plotted against τ , for the flow

past a circular cylinder in an open flow at Re = 45 and Re = 50 without a magnetic

field. Results using the present solver (⃝) and data from Ref (Abdessemed et al.

2009a) (×) are shown. The solid and dashed curve show a spline fit to the present

data for guidance.

selt number occurs are shown in Fig. 3.13. The location of the thermal structures

the thermal wake are precisely the same as in the vorticity contour plots.

Next, the reliability of the transient growth solver was tested. To this end,

the present transient growth analysis implementation is validated firstly for a

non-magnetohydrodynamic flow. The flow past a circular cylinder in an open

flow at sub and supercritical Reynolds numbers Re = 45 and 50 are considered

as a test case, which was investigated recently by Abdessemed et al. (2009a). A

comparison between the results of the present solver and the previous study is

shown in Fig. 3.14, where a pleasing agreement is seen.

The respective structure and the evolution of the optimal disturbance field

at Re = 50 is shown in Fig. 3.15(b-e). In Fig. 3.15(b), the vorticity of the base

flow around the circular cylinder at this Reynolds number is shown. Fig. 3.15(c)
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shows the initial perturbation associated with a time interval τ = 32. It is

observed that the optimal disturbance structures are concentrated around the

region of the boundary layer separation in the near wake. In Fig. 3.15(d), the

evolution from this optimal initial disturbance to time t = 32 is shown. The

optimal disturbance is shown to evolve to a flow structure comprising a series of

counter-rotating spanwise rollers. The disturbance structures reproduced from

Abdessemed et al. (2009a) are virtually indistinguishable from those computed

using our implementation. This, in addition to the excellent agreement found for

predicted energy growths G in Fig. 3.14 (within less than 1.0% mean difference),

verifies that our implementation is performing correctly.

The experimental investigations of transient growth in the subcritical flow

of circular cylinder wake in an open flow have demonstrated that these results

are very sensitive to domain size (Marais et al. 2011), but that domain size is

expected to be less important in high Ha quasi–two–dimensional flows due to the

rapid damping of disturbances brought by the effect of Hartmann damping on

the flow.

3.7.2 MHD Validation Tests

At this stage, the present numerical model correctly computes the flow and heat

transfer patterns of non-MHD cases. The respective Rec, Stc, Nu, CLmax and

G are accurately predicted and compare well with published data. Now, it is

important to verify that the present numerical formulation is also reliable for

MHD cases. To this end, the experimental setup of Frank et al. (2001) for β = 0.1

is considered. In their configuration both Ha and N are much greater than unity,

and therefore, the Q2D model is well suited to capture the flow dynamics. The

flow equations (3.61) and (3.62) are simulated using the present spectral element

code to determine the critical Reynolds number Rec under the influence of a

magnetic field. The present results are compared with experimental results from

Frank et al. (2001) in Fig. 3.16(a), which again exhibits a close agreement. The

close fit of the present data to that of Frank et al. (2001) confirms that the trend

is not in fact linear. The mean difference between the results was 3%.
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(a)

(b)

(c)

(d)

Figure 3.15: (a-d) Contours of vorticity plotted at Re = 50 for the case without

magnetic field. (b) The two–dimensional base flow. (b) The predicted optimal initial

condition. (c) The evolution of the optimal disturbance to time t = τ = 32. (d)

The corresponding result at τ = 32 and Re = 50 reprinted from (Abdessemed et al.

2009a). Contour levels over |ω| ≤ 1 and |ω| ≤ 0.01 are plotted in (a) and (b),

respectively.

Also, Frank et al. (2001) reported that no evidence of hysteresis was observed

for the transition from steady to unsteady flow. The theory of non-linear mode

evolution pertaining to the Landau model provides a means for studying the

non-linear behaviour near the transition Reynolds number. The Landau model

has been widely used in describing and classifying bluff body wake transitions

previously, including the Hopf bifurcation of a circular cylinder wake (Provansal

et al. 1987; Dušek et al. 1994; Zielinska & Wesfreid 1995), the three dimensional

Mode A and B instabilities in the wake of a circular cylinder (Henderson 1997),

and the transition of quasi–two–dimensional magnetohydrodynamic flow past a

cylinder in a duct (Hussam et al. 2011). Landau & Lifshitz (1976) proposed the
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Figure 3.16: (a) A plot of Rec against Ha⋆ at β = 0.1, where N and × show the

present data and experimental data from Frank et al. (2001), respectively, and the

dotted line is a linear fit proposed by Frank et al. (2001). (b) The time derivative of

mode amplitude logarithm plotted against the square of the amplitudes for Ha⋆ = 40

and β = 0.1, demonstrating supercritical behaviour.
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Landau model to describe the growth and saturation of a perturbation as

dAn

dt
= (σn + iω)An − l(1 + icn)|A2

n|An + ..., (3.106)

where An is a measure of the amplitude of the evolving instability as a function

of time, and the righthand side of the equation represents the first two terms of

a series expansion. According to Landau model theory, on a plot of d log |An|/dt

against |An|2 (Fig. 3.16b), the value at |An|2 = 0 corresponds to the linear growth

rate of the instability, and the sign of the gradient at this point determines the

non-linear evolution characteristics of the instability. A positive gradient indicates

a subcritical bifurcation, which permits hysteresis (bi-stability) in the vicinity of

the transition; a negative gradient indicates a supercritical bifurcation, which

does not exhibit hysteresis. Fig. 3.16(b) demonstrates that this transition is

supercritical. Frank et al. (2001) reported that no evidence of hysteresis was

observed, which is confirmed by the Landau modeling of the transition carried

out here. It is therefore concluded that the present numerical model is able

to recover the MHD flow past a circular cylinder for both high Hartmann and

Reynolds numbers.

Finally, a check of the transient growth analysis implementation incorporating

the Hartmann friction term is performed. For β = 0.1, Ha⋆ = 50, and Re = 580,

the predicted optimal initial disturbances were evolved using the linearized quasi-

two–dimensional Navier–Stokes solver, and energy time histories normalized by

the initial energy were recorded. Correct performance of the transient growth

solver is confirmed by the normalized energy time histories agreeing with the cor-

responding predicted energy growth factors (G). Of course, since the transient

growth solver depends on the linearized two–dimensional Navier–Stokes solver,

this test only validates the former implementation relative to the latter. The

results of this test are shown in Fig. 3.17, which demonstrates the accurate per-

formance of the current implementation of transient growth analysis technique

for quasi–two–dimensional magnetohydrodynamic flows.

91



t

E
k(

t)
/E

k(
0)

0 10 20 30 40
0

0.5

1

1.5

2

(x103)

Figure 3.17: Comparison between predicted energy amplifications (G, symbols)

computed at several time intervals (τ), and time histories of the normalized energy in

perturbations initiated from the corresponding optimal initial disturbances computed

for β = 0.1 and Re = 580 at Ha⋆ = 50 initialized with small perturbation of the ini-

tial optimal growth mode for different time intervals (solid curves). The correctness

of the adjoint quasi two–dimensional equation is verified by the alignment between

the computed energy time histories and the predicted energy growths at times t = τ .

3.8 Chapter Summary

In this chapter, the numerical methods applied in this thesis have been presented

and detailed. The spectral-element method for computing quasi–two–dimensional

flow and heat transfer past a confined circular cylinder under a strong magnetic

field has been introduced, as well as the frameworks for the linear stability and

transient growth analysis.

The quasi-two-dimensional model is derived (Sommeria & Moreau 1982) by

averaging the flow quantities along the magnetic field direction. The formula-

tion of this flow and the corresponding conditions have been described. The key

feature of this model is that it provides modified two–dimensional Navier–Stokes
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equations with forcing and linear braking terms which represent the electromag-

netic force effects and the friction in the Hartmann layers. It has been shown that

the results of the present simulations compare favorably with those of a number of

previous studies, and the numerical system accurately captures the flow physics

of the flow past a circular cylinder.

The specific model setup and grid independence studies will be included for

each individual case presented in each of the results chapters to follow.
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Chapter 4

Flow and Heat Transfer Past a
Circular Cylinder on the
Centreline of a Rectangular Duct

This chapter presents results for fluid flow and heat transfer of a liquid metal

past a circular cylinder positioned on the centreline of a rectangular duct under

a strong transverse magnetic field. First, a description of the geometry and

boundary conditions is given in § 4.1. This is followed by a grid-resolution study

from which the computational domain size and spatial resolution are determined

§ 4.2. In the following section, the dynamics of the flow are presented in § 4.3.

The structure of the wake is considered for steady and unsteady flow at a ranges

of Hartmann number, Reynolds number, and blockage ratio. The transition of

the flow from steady to unsteady flow regimes is determined as a function of

Hartmann number Ha⋆ and blockage ratio β. The effects of Ha⋆ and β on the

critical Reynolds number from steady to unsteady flow, Strouhal number, wake

bubble length, drag, and lift forces are determined. Finally, heat transfer from

the heated wall and the mixing induced by the vortex shedding is presented in

§ 4.4. The effect of Ha⋆ and β on the time-averaged Nusselt number, local Nusselt

number and pressure drop are determined.

Some of the results in this chapter have previously been published in Hussam

et al. (2011).
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4.1 Geometry and Boundary Conditions

The system of interest is a rectangular duct confining a circular cylinder placed at

the centre of the duct parallel to the magnetic field and perpendicular to the flow

direction. A schematic representation of the system considered in this chapter is

shown in Fig. 4.1. The duct walls and the cylinder are assumed to be electrically

insulated. A homogeneous vertical magnetic field with a strength B is imposed

along the cylinder axis. One of the walls oriented parallel to the magnetic field

is heated and maintained at a constant wall temperature Tw whereas the other

surfaces are kept at constant temperature T0. As described in chapter 3, for a high

Hartmann number, the magnetic Reynolds number Rem, which represents the

ratio between the induced and the applied magnetic field is very small. Thus, the

induced magnetic field is negligible and the resulting magnetic field is maintained

in the z-direction only. Under these conditions the flow is quasi two–dimensional

and consists of a core region, where the velocity is invariant along the direction

of the magnetic field, and a thin Hartmann layer at the wall perpendicular to the

magnetic field, as previously outlined in § 3.2.3.

The inlet boundary condition imposed at the channel inlet is specified as the

analytical parallel flow solution of equations (3.61) and (3.62) in an unobstructed

plane channel. The non-MHD and MHD cases are respectively given by

u(−Lu/d, y) = 1−
(
yd

h/2

)2

u(−Lu/d, y) =
cosh(yd

√
2Ha/a− cosh(h

√
2Ha/2a))

1− cosh(
√
2Ha/2a)

A constant reference pressure is imposed at the outlet, and a high-order Neu-

mann pressure boundary condition is imposed on the Dirichlet velocity boundaries

to preserve the third-order time accuracy of the scheme. No-slip boundary condi-

tions (equation 3.16) for velocity are imposed on the side walls and the cylinder.

The temperature of the incoming stream and top wall is taken as To, and at the

bottom wall as Tw. The cylinder is thermally insulated (a zero normal tempera-

ture gradient is imposed at its surface).
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Figure 4.1: Schematic representation of the system under investigation. The mag-

netic field B acts in the out-of-plane direction, parallel to the cylinder axis. δS is the

thickness of the Shercliff layer, and h and d are the duct width and cylinder diameter,

respectively. The blockage ratio β = d/h.

4.2 Grid Resolution Study

A thorough grid resolution study was performed to ensure adequate domain sizes,

and spatial and temporal resolutions to accurately resolve all features of the flow

field for the Reynolds numbers, the Hartmann numbers and the blockage ratios

under consideration in this study. The spectral element method employed in

this thesis offers the flexible property that resolution may be controlled either

by varying the number of elements (h-type refinement) or the polynomial or-

der of shape functions within each element (p-type refinement). Karniadakis &

Sherwin (2005) describe that smooth solutions (such as would be expected in

the problems considered in this thesis) typically exhibit exponential convergence

via p-type refinement (i.e. increasing the order of elemental polynomial shape

functions while keeping the number of elements and their distribution fixed),

whereas only an algebraic convergence is obtained via h-refinement (increasing

the number of elements in the mesh). The exponential convergence properties of

97



p-type refinement are typical of polynomial spectral methods (Gottlieb & Orszag

1977). The superior convergence of p-type over h-type refinement means that

near-optimal spectral element simulations in terms of run-time efficiency for a

given error threshold tend to be achieved by designing a relatively coarse h-type

mesh with consideration being given to increasing the local element density in

regions of expected flow gradients (such as boundary layers, separated flow re-

gions, wakes, etc.), and employing p-type refinement to meet the target error

threshold. A well-designed h-type mesh will typically provide results with high

accuracy for relatively modest polynomial orders (e.g. between 5 and 15). Accu-

rate solutions can still be obtained for poor meshes (such as a mesh with too few

elements, and/or poorly distributed elements), but these may require a very high

polynomial order for the desired accuracy, which can be costly from both storage

and compute-time perspectives. For illuminating discussion and analysis of the

complexities of optimizing spectral/hp element simulations, see Vos (2011) and

references therein.

With this in mind, the process used to develop grid-independent solutions for

the simulations described in this thesis firstly required the careful creation of a

family of h-type meshes which employed a distribution of elements with higher

density at duct walls, around the surface of the cylinder, and in the expected

wake region immediately downstream of the cylinder. Preliminary test cases were

simulated to facilitate an iterative optimization of the distribution and number

of elements within the meshes to eliminate any localized regions of significantly

poorer resolution than the rest of the mesh. Following this phase, a domain

size study was conducted by adding or subtracting elements from the upstream

and downstream ends of the mesh to investigate the effect of truncation of the

domain on the solutions. Finally, the minimum polynomial order required for

grid independence of the computed solutions was determined through a p-type

refinement study.

The determination of the inlet length xu and the outlet length xd is described

in § 4.2.1. In § 4.2.2, spatial resolutions are selected for the domains such that

the requirement of the computational accuracy is fulfilled.
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β = 0.1 β = 0.4

M1 M2 M3 M1 M2 M3

Nel 1172 1340 1484 1052 1196 1308
xu/d 5 8 12 5 8 12
xd/d 15 25 40 15 25 40

Table 4.1: Domain lengths defining the meshes. Nel is the number of elements, and

xu and xd describe the inlet and outlet domain sizes, respectively.

4.2.1 Domain Size Study

For each blockage ratio, three families of meshes were tested. The pressure and

viscous component of the time-averaged drag coefficient (CD,p, CD,visc) and the

Strouhal frequency of vortex shedding (St) were monitored, as they are known to

be sensitive to the domain size and resolution. The upstream and downstream

domain lengths chosen for this study for blockage ratios β = 0.1 and β = 0.4

are shown in Table 4.1. Elements with polynomial degree 7 were used, and

parameters Re = 3000 and Ha⋆ = 120 were chosen to produce periodic flows

on the test meshes at each blockage ratio, which represent the upper end of the

parameters range of this study, and therefore represent a strenuous test of the

domain size and mesh resolution. A difference of less than 1% was found when

comparing values of St and CD between the M2 and M3 meshes. Based on this,

the M2 mesh sizing was used hereafter for all blockage ratios. For a summary

of the domain lengths chosen for the domain length study, see Table 4.1. For

all meshes, the density and distribution of elements around the cylinder was

kept constant and the mesh becomes sparser both upstream and downstream.

Therefore, the number of elements increases much less than linearly with the

length of the domain.

4.2.2 Spatial Resolution Study

The meshes applied in the grid-resolution study for β = 0.1 and β = 0.4 are

shown in Fig. 4.2. The spatial resolution study varied the polynomial order of

each macro-element of the chosen mesh based on the domain length parameters

from the mesh domain size study of § 4.2.1.
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β = 0.1 β = 0.4

M1 M2 M3 M1 M2 M3

St 0.24414 0.23804 0.23727 0.31509 0.31281 0.31052
CD,p 1.69943 1.65044 1.64385 2.55108 2.55000 2.54760
CD,visc 0.07762 0.07597 0.07576 0.10536 0.10518 0.10500
CD 1.77705 1.72640 1.71961 2.65644 2.65518 2.65260

Table 4.2: Convergence of the flow field parameters for the meshes applied at Ha⋆ =

120 and Re = 3000 to determine suitable domain sizes for the meshes employed

throughout this study.

β = 0.1 β = 0.4

Np St CD CD,p CD,visc St CD CD,p CD,visc

4 0.24872 1.82950 1.75278 0.07671 0.24071 2.30801 2.19119 0.11682
5 0.24071 1.71071 1.64593 0.07546 0.31166 2.62995 2.72005 0.10990
6 0.23880 1.72188 1.64746 0.07589 0.32875 2.65702 2.59305 0.10397
7 0.23866 1.72335 1.64746 0.07589 0.31281 2.65518 2.55000 0.10518
8 0.23801 1.72404 1.64826 0.07618 0.31246 2.65760 2.55386 0.10574
9 0.23804 1.72419 1.64802 0.07617 0.31243 2.65759 2.55361 0.10595

Table 4.3: Convergence of the flow field parameters for the mesh M2 at Ha⋆ = 120

and Re = 3000 for blockage ratios as indicated.

Computations have been performed with variation of the element polynomial

degree from 4 to 9, while keeping the macro-element distribution unchanged. Two

sets of computations are performed: one with β = 0.1, Re = 3000, and Ha⋆ = 120,

and the other at β = 0.4, Re = 3000, and Ha⋆ = 120. Again, the parameters St ,

CD,p, CD,visc and CD were monitored. To ensure that uncertainty due to spatial

resolution was smaller than that due to domain size, a target of 0.3% uncertainty

was chosen, and this was found to be achieved with polynomial degree 7, which

is used hereafter. Table 4.3 show the convergence characteristics with an increase

in polynomial order for the flow field quantities.

Efforts was taken when building meshes for other blockage ratios to ensure

that the meshes densities employed for these test meshes were preserved across

all meshes.
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(a) β = 0.1

(b) β = 0.4

(c) details of M2 for β = 0.1 (d) details of M2 for β = 0.4

Figure 4.2: Meshes used to test the effect of the domain lengths of the confined

cylinder meshes. (a) mesh M2 used for β = 0.1 and (b) mesh M2 used for β = 0.4,

extending 25d downstream and 8d upstream. (c) and (d) represent the details of the

meshes around the cylinder for β = 0.1 and β = 0.4, respectively.

4.3 Dynamics of the Flow

4.3.1 Variation of Critical Re with β and Ha

Limited data relating Rec to β and Ha⋆ exists in the literature. A comprehensive

coverage of the parameter space has therefore been undertaken. The results of

critical Reynolds and associated Strouhal number are plotted in Fig. 4.3.

For a given β, Rec is found to increase with increasing Ha⋆. The increase in
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Figure 4.3: (a) Rec and (b) Stc plotted against Ha⋆ at blockage ratios as indicated.

The dotted line shows the N = 10 parabola: the data predominantly lies to the right

of that curve, demonstrating the suitability of the quasi-two–dimensional assumption

(as N ≫ 1).
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Rec is more pronounced at high Ha and β. This is attributed to the effect of Ha⋆

and β which delay the transition from steady to periodic flow regimes, resulting

in the enhanced stability of the flow. Higher Hartmann number (i.e. a stronger

magnetic field) acts to dampen transverse fluctuations in the channel, which de-

lays transition, resulting in a higher Re being required to invoke transition. In

addition, as the cylinder moves closer to the confined walls (higher blockage ra-

tios), the interaction between the wall boundary layer and that of the cylinder

suppresses the wake instability from the cylinder (Sahin & Owens 2004; Mettu

et al. 2006).

For a constant Hartmann number, Rec varies strongly with β at small blockage

ratios (β . 0.3). Beyond β & 0.4, though, Rec varies only slightly with β. This

may be attributed to the fact that as the lateral walls approach the cylinder,

the local acceleration of the flow near the cylinder causes it to experience an

effectively higher Re flow, making it more unstable, offsetting the damping effect

caused by the vicinity of the approaching side walls.

4.3.2 Steady Flow: Wake Structure and Scaling

The steady flow is characterized by a pair of symmetric counter-rotating vortices

on either side of the wake centerline, immediately behind the cylinder. Fig. 4.4

shows isocontours of the stream function (streamlines) at Re = 580 and different

blockage ratios and Hartmann numbers. It can be seen that an increase in the

Hartmann number acts on the wake by decreasing the length of the recirculation

bubble. This is due to the domination of the Lorentz forces which results in a

damping in a direction opposite to the flow, resulting in a decrease in the wake

length. Similarly, increasing the blockage ratio was also found to decrease the

wake length. For β = 0.1, the recirculation bubble is visible up to Ha⋆ = 120,

but for β = 0.4, additional computations (not shown) determined that it was

suppressed completely beyond Ha⋆ & 300.

Increasing the Reynolds number broadly acts to increase the wake length,

while increasing the blockage ratio and Hartmann number both act to decrease

the wake length. To quantify these observations, the wake length (LR/d, taken as
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Ha⋆ = 50, β = 0.1

Ha⋆ = 120, β = 0.1

Ha⋆ = 200, β = 0.4

Ha⋆ = 480, β = 0.4

Figure 4.4: Streamlines of the steady base flows at Re = 580, blockage ratios β = 0.1

(top) and 0.4 (bottom), and Hartmann numbers as indicated. Flow is left to right in

each frame.

the distance from the aft surface of the cylinder to the stagnation point defining

the end of the recirculation bubble) was recorded at a large number of points in

the Re–Ha⋆–β parameter space. For a single β, LR/d increases almost linearly

with increasing Re for a constant Ha⋆, and decreases with Ha⋆ for a constant

Re. Dousset & Pothérat (2008) proposed for β = 0.25 that LR/d data collapsed

onto a universal curve when plotted against Re/Ha⋆0.8, but in this study a more

general universal relationship is sought that also incorporates the blockage ratio.

A non-linear optimization was conducted to find exponents A, B and C accurate

to three significant figures that serve to maximize the square of the correlation

coefficient (r2) of a linear least-squares fit to the LR/d data when plotted against
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Figure 4.5: Collapse of recirculation zone lengths over ranges of Hartmann number

50 ≤ Ha⋆ ≤ 50, Reynolds number 50 ≤ Re ≤ 2050 and blockage ratios 0.1 ≤ β ≤ 0.4

when plotted against (Re0.844Ha⋆−0.711β0.166).

ReAHa⋆BβC . The optimal exponents were determined to be A = 0.84, B = −0.71

and C = 0.16. The universal relationship between recirculation length, Reynolds

number, Hartmann number and blockage ratio is thus approximated by

LR/d = 0.28
(
Re0.84Ha⋆−0.71β0.16

)
− 0.71, (4.1)

and the pleasing collapse of the data obtained as a result of this analysis is shown

in Fig. 4.5.

Equation (4.1) can be used to estimate at which values of the parameters the

separation bubble will first appear (i.e. by solving for LR/d = 0). This gives

Re = 2.98 Ha⋆0.84β−0.2.

For the bookend blockage ratios considered in this study (β = 0.1 and 0.4), the

separation bubble threshold is defined by

Re = 4.69 Ha0.84 (4.2)
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and

Re = 3.57 Ha0.84, (4.3)

respectively. To illustrate the application of these relationships, Fig. 4.4 plots

flow streamlines at several combinations of Ha⋆ and β, and constant Reynolds

number Re = 580. For β = 0.1, equation (4.2) estimates critical Reynolds number

of Re = 127 at Ha⋆ = 50 and Re = 256 for Ha⋆ = 120. The plotted Reynolds

number exceeds both of these critical Reynolds numbers, and therefore for both of

these cases a wake recirculation bubble would be expected. The plots in the first

two frames of Fig. 4.4 confirm this. For β = 0.4, equation (4.3) estimates critical

Reynolds number of Re = 310 (less than Re = 580) at Ha⋆ = 200 and Re = 648

(greater than Re = 580) at Ha⋆ = 480. Hence a wake recirculation bubbles is

expected to be observed in the former case but not the latter, which is consistent

with the observation of the results in Fig. 4.4 that produce wake recirculation

bubbles, the wake lengths estimated by equation (4.1) are LR/d = 1.85, 0.66 and

0.49, respectively, which compare well with the wakes seen in the figure.

4.3.3 Unsteady Flow: The Dependence on Ha and β of
Vortex Shedding Evolution

Here the effect of the Ha and β on the structure of the wakes behind the cylinder

are considered. Figs. 4.6 and 4.7 illustrate instantaneous vorticity fields at Re =

2000, Hartmann numbers Ha⋆ = 50 and 120, and different blockage ratios. For

β = 0.1, the structure of the Kármán vortex street consists of regular positive

and negative vortices shed alternately from the shear layers either side of the

cylinder. This is similar to what is produced behind a circular cylinder in open

non-MHD flows (Williamson 1988). At high Hartmann number, Ha⋆ = 120, the

vortices diffuse rapidly as they convect downstream. This diffusion occurs as a

result of increased Hartmann damping at higher Ha, which is discussed in more

details shortly. A similar behaviour was also found at β = 0.2.

For β = 0.3, and modified Hartmann number of 50, boundary layer entrain-

ment from the walls (the Shercliff layers) occurs downstream of the cylinder. The

vortex street comprises regular vortices shed from the cylinder, observable by the
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Ha⋆ = 50

Ha⋆ = 120

β = 0.1

Ha⋆ = 50

Ha⋆ = 120

β = 0.2

Figure 4.6: Vorticity contour plots for Re = 2000, β of 0.1 and 0.2 at low and high

Hartmann number. 20 contour level are displayed between −2 ≤ ω ≤ 2, with red and

blue contours representing negative and positive vorticity, respectively.
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Ha⋆ = 50

Ha⋆ = 120

β = 0.3

Figure 4.7: Vorticity contour plots for Re = 2000, β of 0.3 at low and high Hartmann

number. 20 contour level are displayed between −2 ≤ ω ≤ 2, with red and blue

contours representing negative and positive vorticity, respectively.

β = 0.4

β = 0.5

Figure 4.8: Plots showing streamlines in the near wake overlaid on contours of

vorticity for Re = 2000, β = 0.4 and 0.5 at a Hartmann number of 120. 20 contour

levels are displayed between −2 ≤ ω ≤ 2, with red and blue contours representing

negative and positive vorticity, respectively.
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entrainment of vorticity from the walls towards the wake. The boundary-layer

detachment from the walls was observed to increase gradually as the blockage

ratio increases through 0.4 and 0.5 at Ha⋆ = 50 (not shown). Vorticity is drawn

into the channel and interacts with the Kármán vortex street, which creates an

obstacle that impedes its motion.

For β ≥ 0.3 at Ha⋆ = 120, vortex shedding is completely suppressed (Fig. 4.8).

At β = 0.4 and 0.5, the recirculation region has almost constant length and

separation angle, and the shape of the circulation zone changes little.

The momentum equation of the quasi-two–dimensional Navier–Stokes equa-

tions provides insight into the rate of vorticity decay in the wake. Taking the curl

of equation (3.62), and recognizing that the velocity field u is two–dimensional,

gives
Dω

Dt
= ν∇2ω − 2

(
d

a

)2
Ha

Re
ω, (4.4)

where ω is vorticity. The first term is the material derivative, the second term is

the viscous diffusion term, and the third term is the Hartmann friction term. As

a first approximation, in the high-Reynolds number limit

Dω

Dt
≈ −2

(
d

a

)2
Ha

Re
ω, (4.5)

which implies for a convecting packet of vorticity that

d(loge ω)

dt
≈ −2

(
d

a

)2
Ha

Re
. (4.6)

d(loge ω)

dt
≈ −2

Ha⋆

Re
. (4.7)

To test this prediction, the peak vorticity magnitude (ωpeak) in an individual

wake vortex was recorded as it convected downstream in each of the β = 0.1 flows

shown in Fig. 4.6. Time histories of vorticity decay are plotted in Fig. 4.6. This

data demonstrates that vortex decay, even at moderate Reynolds numbers, is

dominated by Hartmann damping. Viscous diffusion appears to play a negligible

role over the timeframe plotted in the figure. This behaviour has often been as-

sumed to be the case in quasi–two–dimensional turbulence (Sommeria & Moreau

1982; Davidson 1997; Pothérat et al. 2005). At β = 0.1 and Re = 2000, the
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Figure 4.9: Time history of the natural logarithm of peak vorticity in a vortex

convecting down the wake. Symbols show data points calculated at β = 0.1, Re =

2000, and Hartmann numbers Ha⋆ = 50 and 120. Lines of best fit have gradients of

−0.055 and −0.128.

gradients predicted by equation (4.7) for Ha⋆ = 50 and 120 are −0.05 and −0.12,

respectively. These are extremely close to the gradients −0.055 and −0.128 found

for the least-squares linear fits to the data in Fig. 4.9.

4.3.4 Lift and Drag Coefficients

The variation of the time history of the lift coefficient with Hartmann number

at different blockage ratios and Re = 2000 is shown in Fig. 4.10. At β =

0.1, the lift coefficient maintains a time-dependent oscillation at Ha⋆ = 50 and

120. However, at Ha⋆ = 120 and β = 0.4, no oscillation is detected as vortex

shedding is suppressed. As the blockage ratio increases, the amplitude of lift

coefficient decreases and the frequency increases. The respective Fourier spectra

of lift coefficient signals presented in Fig. 4.10(a)-(b) are shown in Fig. 4.11.
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Figure 4.10: Time history of lift force coefficient for a blockage ratio of 0.1 (a)

and 0.4 (b) at Hartmann numbers Ha⋆ = 50 (solid line) and 120 (dashed line) for

Re = 2000.
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Figure 4.11: Fourier spectra of lift coefficient signal for Re = 2000 at different

Hartmann numbers and blockage ratios. (a) Ha⋆ = 50, β = 0.1, (b) Ha⋆ = 120, β =

0.1 and (c) Ha⋆ = 50, β = 0.4.
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Since there is no signal at β = 0.4 and Ha⋆ = 120, in the absence of the vortex

shedding, no spectra are observed. In addition, it is observed that an increase in

the blockage ratio shifts the location of the peak power towards higher frequency,

i.e. higher Strouhal number St. The strong narrow peak in the power spectrum

indicates the flow is indeed periodic.

Fig. 4.12 illustrates the phase between instantaneous lift and drag coefficients

at Re = 2000 and Ha⋆ = 50 during one period of oscillation of vortex shedding.

The closed phase diagram shows that the flow is completely time-periodic, and

the double rings indicates that the time period of oscillations of CL is twice that

of CD. In this diagram, the location represents the mean lift and drag, while

the amplitude of oscillation is represented by the size of the ring. For a blockage

ratio of β 6 0.3, the amplitude of the lift oscillation remains almost constant

while that of the drag fluctuation decreases in the range. However for β = 0.4,

the amplitude of the lift oscillation increases significantly and that of the drag

oscillation remains constant.

Next, the effect of Ha⋆ and β on the time-averaged drag coefficient is con-

sidered. Figs. 4.13 and 4.14 presents the effect of the Hartmann number on the

time-averaged drag coefficient, CD, for different blockage ratios. For all

β, it is found that CD first decreases then subsequently increases with an in-

crease in Re/Ha⋆0.8. The choice of Re/Ha⋆0.8 comes from Dousset & Pothérat

(2008), who demonstrated for β = 0.25 that at low values of Re/Ha⋆0.8, data

collapses onto a universal curve. Similar collapses are observed at each blockage

ratio, though to distinct curves, hence the collapse is blockage-ratio dependent.

At higher Re/Ha⋆0.8, the drag coefficient increases, and displays a dependence

on Hartmann number. All data presented in Fig. 4.13 represents time-dependent

flows. In the low-Re/Ha⋆0.8 regime, the flow dynamics is dominated by Hartmann

damping. Conversely, at higher Re/Ha⋆0.8, Hartmann damping is no longer dom-

inant, and the wake resembles vortex shedding in the absence of a magnetic field.

Examples of these regimes are, respectively, the Ha⋆ = 120 and Ha⋆ = 50 flows

at β = 0.1 plotted in Fig. 4.6.
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Figure 4.12: The trajectories of CD and CL at Re = 2000 and Ha⋆ = 50 over one

period of oscillation for different blockage ratios as indicated.

4.4 Heat Transfer

4.4.1 Mixing Induced by Vortex Shedding

Figs. 4.15 and 4.16 present the distribution of instantaneous temperature contours

for blockage ratios β = 0.1, 0.2, 0.3 and 0.4, and Hartmann numbers Ha⋆ = 50

and 120 at Re = 2000. For all β, when Ha⋆ = 50 the temperature fields are

time-dependent because the flow is unsteady. As the blockage ratio is further

increased, the velocity of the flow near the heated wall increases. Therefore, the

low-temperature fluid is transported toward the hot region of the channel and the

high-temperature fluid near the heated wall is convected away to mix with the

low-temperature fluid. Consequently, the heat transfer is enhanced remarkably.

However, as Ha⋆ is increased to 120, the unsteadiness in the flow is suppressed at

β = 0.2, and the flow is steady as β increases to 0.3. This increases the thickness

of the thermal boundary layer, and hence the temperature gradient along the
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Figure 4.13: Time-averaged drag coefficients as a function of Re/Ha0.8 at different

Hartmann numbers and blockage ratios (a) β = 0.1 and (b) β = 0.2.
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Figure 4.14: Time-averaged drag coefficients as a function of Re/Ha0.8 at different

Hartmann numbers and blockage ratios (a) β = 0.3 and (b) β = 0.4 (symbols as per

Fig. 4.13).
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heated wall decreases.

4.4.2 Time-Averaged and Local Nusselt Number

Fig. 4.17 shows the effect of the blockage ratio on the time-averaged Nusselt

number of the heated wall, Nu, for Hartmann numbers Ha⋆ = 50 and 120 at

Re = 2000 and 3000. The heat transfer is shown to be higher at higher Reynolds

numbers. At Ha⋆ = 50, there is a remarkable increase in Nu for both Reynolds

numbers as β is increased from 0.1 to 0.4. The increase is more pronounced

at β ≥ 0.2. However, Nu reduces as the Hartmann number is increased to

Ha⋆ = 120.

To gauge the improvement to the heat transfer generated by placing a cylinder

in the duct, the percentage increment of the overall heat transfer is calculated

using equation (3.68) for the flows considered in this study. For Re = 2000

and Ha⋆ = 50, the percentage increment for 0.1 ≤ β ≤ 0.4 ranges between 3%

and 89%. At Ha⋆ = 120, the increments are smaller, ranging up to 25%. For

Re = 3000, the overall heat transfer increments range between 7% and 128% at

Ha⋆ = 50, and between 6% and 34% at Ha⋆ = 120. Thus at Ha⋆ ≈ 50 and

Re & 3000, in channels with blockage ratios β ≈ 0.4, heat transfer is enhanced

by more than 100% by placing a cylinder within the channel.

Figs. 4.18 and 4.19 show the distribution of the local Nusselt number along the

heated wall Nuw as a function of streamwise coordinate x for different Hartmann

numbers at Re = 2000. The effect of Hartmann number is found to be negligible

for small blockage ratio (β = 0.1). Similarly, at β = 0.2, the variation of the local

Nusselt number with Hartmann number is independent, except that of Ha⋆ = 50.

However, as the blockage ratio increases further from 0.2 to 0.4, the change in

the distribution of Nuw is remarkable with changing Hartmann number. The

change is more pronounced at low Hartmann number. The plot also demonstrates

that the curves collapse to a single curve at high Hartmann number and small

blockage ratio. It can be noted that Nu seems to depend on Hartmann number

at high blockage ratio. An explanation of this can be deduced from the vorticity

contour plots shown in Figs. (4.6-4.8) and temperature contour plots shown in
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Figure 4.15: Instantaneous dimensionless temperature contours at Re = 2000 for

β = 0.1 and β = 0.2 at low and high Hartmann number. Light and dark shading

shows hot and cold fluid, respectively.
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β = 0.4

Figure 4.16: Instantaneous dimensionless temperature contours at Re = 2000 for

β = 0.3 and β = 0.4 at low and high Hartmann number. Light and dark shading

shows hot and cold fluid, respectively.

Figs. (4.15-4.16). It can be noted that for small blockage ratios (wide channel)

at Re = 2000, the flow is unsteady for the all the range of Hartmann number

considered in this study. A regular vortex street is observed to comprise of regular

positive and negative vortices shed alternately from the shear layers either side

of the cylinder, with very weak boundary layer detachment from the walls. The

boundary layer detachment from the walls increases as the blockage ratio increases

(narrow channel); as a result the heat transfer from the heated wall increases

significantly due to the sweeping of the heating surface by the wake vortices at

low Hartmann number. On other hand, the unsteadies in the flow is reduced

significantly at high Hartmann number (it is completely damped for β = 0.3 at

Ha⋆ = 120), which leads to an increase the thickness of the thermal boundary

layer, and hence the heat transfer along the heated wall decreases markedly.

Therefore, Nuw is dependent on Hartmann number for higher blockage ratios.
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Figure 4.17: Effect of Hartmann number and blockage ratio on the time-averaged

Nusselt number for Reynolds numbers Re = 2000 (dashed lines) and 3000 (solid

lines). Solid symbols show Ha⋆ = 50 and open symbols show Ha⋆ = 120. For

reference, Nusselt number values for the channel without a cylinder present are also

provided: (�, ♢) represent Re = 2000 at Ha⋆ = 50 and 120, respectively. (N, ▽)
represent Re = 3000 at Ha⋆ = 50 and 120, respectively.

4.4.3 Pressure Drop

In magnetohydrodynamic channel flows, the pressure drop becomes large at high

Harmann number. Thus in the context of this study, it is prudent to consider the

additional pressure drop penalty incurred by adding a cylinder to the channel. In

Fig. 4.20, the pressure drop penalty is plotted. The data demonstrates that at

low blockage, there is only a small increase in pressure drop due to the addition

of the cylinder. However, as the blockage increases (particularly through β = 0.3

and 0.4), the increase in pressure drop is also more substantial. The pressure drop

penalty displays an increased dependence on Hartmann number as the blockage

ratio increases, with increasing Hartmann number resulting in an increased pres-

sure drop penalty. Demonstrating the significant effect of Hartmann number on
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Figure 4.18: Local Nusselt number over the heated surface of the side wall as a

function of x/d at Re = 2000 and different Hartmann numbers, and blockage ratios

as indicated.
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Figure 4.19: Local Nusselt number over the heated surface of the side wall as a func-

tion of x at Re = 2000 and different Hartmann numbers (symbols as per Fig. 4.18),

and blockage ratios as indicated.
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Figure 4.20: Pressure drop penalty at Re = 2000 due to inclusion of a circular cylin-

der within the duct, plotted against Ha⋆. The pressure drop penalty is the difference

in pressure drop across identical channels with and without a circular cylinder. Spline

fit are included for guidance.

the pressure drop penalty, at Ha⋆ = 50 the penalty at β = 0.4 is 11 times that at

β = 0.1, and at Ha⋆ = 120 this ratio increases to 16. The blockage effect rapidly

comes into effect between β = 0.2 and 0.3. Between these blockage ratios, the

gradient of pressure drop penalty with Hartmann number increases by a factor of

4, whereas a much more modest increase is observed as blockage ratio increases

to 0.4.

4.5 Chapter Summary

In this chapter, the fluid flow and heat transfer of liquid metal past a symmetrical

circular cylinder in a rectangular duct under a strong axial magnetic field has been

examined in detail. Under these conditions the flow is quasi-two-dimensional and

the modified Navier–Stokes equations are solved in a two–dimensional domain.
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The formulation of the geometries under investigation and the corresponding

flow and boundary conditions have been described. Meshes have been developed

that accurately model a range of blockage ratios at low and high Hartman num-

bers. The details of domain length length and grid-resolution study have been

presented.

The transition Reynolds number from steady to unsteady flow past a circular

cylinder confined within a plane channel is determined as a function of Ha⋆ and

β. The effect of Hartmann layers on the out-of-plane channel walls are described

through the Hartmann friction term added to the Navier–Stokes equations.

The critical Reynolds number at which the transitions from steady to unsteady

flow occurs was found to increase with increasing Ha⋆ for all values of β. The

increase in Rec was more pronounced at high Ha⋆ and β.

In the steady flow regime, for small blockage ratio, the recirculation bubble

was found to be visible up to Ha⋆ = 120, though it was suppressed completely

beyond Ha⋆ . 500. This is due to the effect of Lorentz forces which produce a

force in the direction opposite the flow resulting in the decrease of the wake length.

The recirculation length, Reynolds number, Hartmann number and blockage ratio

were related as LR/d+ 0.709 ∝ Re0.844Ha⋆−0.711β0.166.

In the unsteady flow regime, at Re = 2000, β ≤ 0.2 and Ha⋆ = 50 and 120,

the structure of the Kármán vortex street consists of regular positive and negative

vortices shed respectively from the bottom and the top of the cylinder. As β is

increased to 0.3, at Ha⋆ = 50, the boundary layer detachment from the side wall

of the duct occurs downstream of the cylinder. The detachment of the boundary

layer increased gradually as β increases further to 0.4 and 0.5. For β ≥ 0.3, at

Ha⋆ = 120, vortex shedding is completely suppressed.

For all β, it is found that the drag coefficient CD first decreases and then in-

creases as the Reynolds number is increased. The viscous contribution to the drag

coefficient for the cylinder was much smaller than the pressure drag. Therefore,

CD is dominated by the pressure contribution. This is attributed to the effect of

Hartmann friction and the confinement of the walls that delay the transitions of

the flow to a higher Reynolds number. As a result, the viscous contribution is
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much smaller than that of the pressure. Also, for all β, it was found that at each

blockage ratio the curves collapse to universal curves at lower values of Re/Ha⋆0.8.

The heat transfer rate is strongly dependent on the Hartmann number and

blockage ratio. For small Hartmann number, it increases significantly as blockage

ratio is increased. However, there is a gradual increase in the Nusselt number for

high Hartmann number as blockage ratio is increased. Overall, though, the en-

hancement of heat transfer was significantly augmented with increasing blockage

ratio, in some cases by more than two-fold.

The effect of the Hartmann number on the local Nusselt number from the

heated wall of the duct, Nuw, is found to be negligible for small blockage ratios.

However, for high blockages, the change in Nuw was found to be significant with

different Hartmann number.

The pressure drop penalty incurred by adding a cylinder to the channel is

found to increase with both blockage ratio and Hartmann number, and the penalty

is increasingly dependent on Hartmann number at higher blockage ratios.
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Chapter 5

Flow and Heat Transfer for a
Cylinder Offset from the Duct
Centreline

This chapter builds upon the previous chapter by considering the same flow sys-

tem except that the cylinder will now be offset from the channel centreline. It

has been demonstrated in chapter 4 that both the heat transfer from the heated

wall and the pressure drop penalty invoked by adding a cylinder to the channel

increase significantly as the blockage ratio increases. By placing a small cylin-

der in the channel near one wall, its size will not produce a large pressure drop

penalty, but the action of vortex shedding near the heated wall should improve

the heat transfer.

In this chapter, the fluid flow and heat transfer of a liquid metal flowing

past a circular cylinder positioned offset in a rectangular duct under a strong

axial magnetic field are investigated. The effects of varying the gap between the

body and the duct heated wall, blockage ratio and Reynolds number at constant

Hartmann number on the heat transfer characteristics and the flow behavior are

examined. Firstly, a description of the geometry, boundary conditions and grid

resolution is given in § 5.1. In the next section, the dynamics of the flow is

outlined. The effects of blockage and gap ratios β and γ on the flow structure

in the gap region are presented in § 5.2.1. Also, the effect of these parameters

on the lift and drag forces are determined in § 5.2.2 and § 5.2.3, respectively.

Finally, heat transfer from the heated wall and the mixing invoked by placing
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γ ∆/d(β = 0.1) ∆/d(β = 0.2) ∆/d(β = 0.3) ∆/d(β = 0.4)

1 4.5 2.0 1.15 0.75
0.5 2.25 1.0 0.58 0.38
0.25 1.13 0.5 0.29 0.19

Table 5.1: The minimum distance from the surface of the cylinder to the heated

wall of the duct at different blockage ratios.

a circular cylinder positioned asymmetrically in the duct is presented in § 5.3.1.

The effect of β, γ and the Reynolds number on the time averaged Nusselt number

and the gain of heat transfer enhancement, local Nusselt number, are determined

in § 5.3.2, § 5.3.3, and § 5.3.4, respectively.

5.1 Geometry and Boundary Conditions

The geometry of the problem under consideration is shown in Fig. 5.1. A rect-

angular duct contains a circular cylinder placed at a position defined by a gap

ratio γ. The gap ratio is defined as γ = ∆/(h/2− d/2) where ∆ is the minimum

distance from the surface of the cylinder to the nearest wall. The value of γ is

equal to 1 when the cylinder is placed symmetrically between the plane walls

and 0 when it touches one of the walls. Table 5.1 summarises the distance ∆

considered in this study at different blockage and gap ratios.

The setup of the system is the same as that described in the earlier chapters.

The cylinder is located at 8d and 25d from the inlet and outlet, respectively, which

is sufficient to obtain domain independent results as demonstrated previously in

§ 4.2.1.

Elements are concentrated in the vicinity of the cylinder and the heated wall

to capture the small-scale structures in the flow. The meshes comprise between

1196 and 2391 elements, depending on blockage and gap ratios. The details of

the layout of these meshes are shown in Fig. 5.2. The asymmetrically positioned

cylinder requires the creation of new meshes, and thus further grid-independence

tests are performed to ensure that adequate spatial resolution is maintained for

the simulations described in this chapter.
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Figure 5.1: Schematic for the flow past an asymmetrically confined circular cylinder.

The magnetic field B acts in the out-of-plane direction, parallel to the cylinder axis.

δS is the thickness of the Shercliff layer, and h and d are the duct width and cylinder

diameter, respectively. The blockage ratio β = d/h and the gap ratio γ = ∆/(h/2−
d/2).

As in the previous chapters, spatial resolution tests have been performed by

varying the element polynomial degree between 4 and 9, while keeping the macro-

element distribution unchanged. The parameters St and CD were monitored.

Convergence tests were performed on two cases, chosen at the upper end of the

parameter range of this study. The first case has β = 0.1, Re = 3000, Ha⋆ = 50

and γ = 0.25, and the other case has β = 0.4, Re = 3000, Ha⋆ = 50 and γ = 0.25.

A target of 0.3% uncertainty was desired and this was found to be achieved with

polynomial degree 7, which is used hereafter. Also, the results were tested to

ensure that the solution was independent of the size of the time step ∆t. Varying

the time step from 0.001 to 0.0005 for the flow conditions given above, resulted

in minimal variation in St and CD. The boundary conditions imposed here are

similar to those used for the symmetrical channel geometry described in § 4.1.
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(a) β = 0.1

(b) β = 0.4

(c) details for β = 0.1 (d) details for β = 0.4

Figure 5.2: Meshes of the confined asymmetrical cylinder with the details of the

region near the body. (a) mesh used for β = 0.1 and γ = 0.25. (b) mesh used for

β = 0.4 and γ = 0.25. The meshes extend 25d downstream and 8d upstream. (c) and

(d) represent the details of the meshes around the cylinder for β = 0.1 and β = 0.4,

respectively.
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At the channel inlet, a Hartmann velocity profile for the axial velocity is applied

(Moreau 1990). No-slip boundary conditions for velocity are imposed on the side

walls and the cylinder. At the outlet, a constant reference pressure is imposed and

a high-order Neumann condition for pressure is imposed on the Dirichlet velocity

boundaries to preserve the third-order time accuracy of the scheme (Karniadakis

et al. 1991). The temperature of the incoming stream and top wall is taken as To,

and at the bottom wall as Tw. The cylinder is thermally insulated (a zero normal

temperature gradient is imposed at its surface).

5.2 Dynamics of the Flow

5.2.1 Flow Structures: The Dependence on γ and β of
Vortex Shedding Evolution

When a cylinder is located asymmetrically in a duct, the dynamics of the flow

differ due to the presence of the fixed wall closer to the cylinder surface. A

Reynolds number of 2000 and Hartmann number Ha⋆ = 50 have been chosen to

demonstrate the interaction of the wall boundary layers parallel to the magnetic

field and that of the cylinder. Figs. 5.3–5.6 illustrate the effect of the blockage

ratio β and gap ratio γ on vortex shedding from the cylinder for these parameters.

The instantaneous vorticity fields are presented to show the effect of offsetting the

cylinder from the duct centerline. For β = 0.1, when the cylinder is symmetrically

in the plane channel (i.e. γ = 1) a wake comprising two well-defined rows of

vortices is formed with clockwise negative and counter-clockwise positive vortices

shed from the top and the bottom separating shear layers from the cylinder,

respectively. When γ = 0.5, the wake behind the cylinder is still characterized

as a two-row vortex street convected throughout the entire downstream region.

At this gap ratio, the wall shear layers (Shercliff layers) that develop along the

surface of the duct parallel to the magnetic field at the cylinder location are still

far from the lower shear layer on the cylinder surface. Therefore, these two shear

layers interact weakly with each other in the wake region. As γ is decreased to

0.25, the wall boundary layer expands and separates from the wall downstream of

the cylinder to form a negative vortex structure. This negative vortex interacts
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with the negative vortex shed from the upper shear layer on the cylinder. In this

case the Kármán vortex street almost becomes a single row of vortices.

Although, for β = 0.2 and γ = 1, the structure of the vorticity field was found

to resemble that of β = 0.1 at γ = 1, the lower wall shear layer is seen to interact

weakly with the negative shear layer on the cylinder surface. Therefore, the devel-

opment of the vorticity is not affected substantially and the vortex shedding from

the cylinder is not suppressed by the wall shear layer at this gap ratio. However,

the detachment of the wall shear layer at the cylinder location was observed to

increase significantly as the gap ratio decreases from 1 to 0.5. As a consequence,

the lower shear layer on the cylinder interacts strongly with the wall shear layer.

On further decreasing of gap ratio, the structure of the vortex shedding changes

dramatically with further decrease in gap ratio. The vortex street is observed

farther away from the wall and convected downstream, maintaining its state in

the outflow region.

For β ≥ 0.3 at γ = 1, the wall shear layers interact significantly with the

Kármán vortex street causing the wake vortices to decay much more quickly. For

γ ≥ 0.5, the boundary layer along the lower side of the cylinder and the shear

layer along the wall effectively merge and roll up together before travelling further

downstream. At the smallest gap ratio of γ = 0.25 for β = 0.4, the wake vorticity

on the upper side of the cylinder is stretched out as the wake advects downstream.

It can be noted that for ∆/d ≈ 2 − 2.25 at small blockage ratios (β = 0.1

and 0.2), the wake behind the cylinder is characterized by two-row vortex street

extending throughout the entire downstream. The wall boundary layer that de-

velops along the surface parallel to the magnetic field at the cylinder location are

far from the lower shear layer on the cylinder surface. On the other hand, for

∆/d ≈ 0.75− 1.15 at β = 0.1, 0.2 and 0.3, the structure of the wake behind the

cylinder is almost the same, while the wall boundary layer expands and separates

from the wall downstream of the cylinder to form negative-sign vortex structures.

For ∆/d ≈ 0.5− 0.58 at β = 0.2 and 0.3, the vortex street is observed to interact

strongly with the near-wall boundary layer, before deflecting away from the wall

and into the duct interior.
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For small blockage ratios, it is expected that the instability in the wake re-

gion should change character from being absolutely unstable at large gaps to

convectively unstable at small gaps. This was found previously for non-mag-

netohydrodynamic bluff body flows (Triantafyllou & Dimas 1989; Reichl et al.

2005).

5.2.2 Fluctuating Lift Coefficient

Figs. 5.7 and 5.8 present the time evolution of the lift coefficient at different gap

ratios for Re = 2000, Ha⋆ = 50 and blockage ratios of 0.1 and 0.4, respectively.

It can be seen that at the small blockage ratio β = 0.1 for all gap ratios tested,

the shedding is perfectly periodic, so the lift coefficient oscillates regularly. There

is no apparent difference in the time history of the lift coefficient at these three

gap ratios. However, for γ = 0.25 and β = 0.4, the amplitude of the oscillations

of the fluctuating lift coefficient decreases significantly and the signal becomes

irregular.

The change in the amplitude and the degree of regularity of the oscillating lift

are consistent with the change to the nature of the wake. For all gap ratios at β ≤

0.3, the lift coefficient oscillates regularly with a large amplitude consistent with

the existence of time periodic vortex shedding from the cylinder (see Figs. 5.3-

5.5). At the gap ratio γ = 0.25 for β = 0.4, the amplitude reduction and the

irregularity of the fluctuating lift correlate with vortex formation much further

from the cylinder and reduced regularity of shedding overall. The respective

Fourier spectra of the lift coefficient signals presented in Figs. 5.7 and 5.8 are

shown in Fig. 5.9. As expected, Fig. 5.9(a) shows a single harmonic peak at β =

0.1 for all the gap ratios considered. However, the spectrum for β = 0.4 and γ =

0.25 shows distinguishable and interesting features as indicated in Fig. 5.9(b). A

broad range of flow frequencies is apparent but with three primary peaks present.

The existence of the two incommensurate frequencies (0.45, 0.59) correspond to a

loss of periodicity of the lift signal. The figure also demonstrates that an increase

in the blockage and gap ratios shifts the location of the main peak towards higher

frequency. The change in frequency is more pronounced at high blockage and gap
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γ = 1, ∆/d = 4.5

γ = 0.5, ∆/d = 2.25

γ = 0.25, ∆/d = 1.13

β = 0.1

Figure 5.3: Instantaneous vorticity contour plots at Ha⋆ = 50, Re = 2000 and β of

0.1 for various gap ratios γ. 20 contour level are displayed between −2 ≤ ω ≤ 2, with

red and blue contours representing negative and positive vorticity, respectively.
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γ = 1, ∆/d = 2

γ = 0.5, ∆/d = 1

γ = 0.25, ∆/d = 0.5

β = 0.2

Figure 5.4: Instantaneous vorticity contour plots at Ha⋆ = 50, Re = 2000 and β of

0.2 for various gap ratios γ. 20 contour level are displayed between −2 ≤ ω ≤ 2, with

red and blue contours representing negative and positive vorticity, respectively.
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γ = 1, ∆/d = 1.15

γ = 0.5, ∆/d = 0.58

γ = 0.25, ∆/d = 0.29

β = 0.3

Figure 5.5: Instantaneous vorticity contour plots at Ha⋆ = 50, Re = 2000 and β of

0.3 for various gap ratios γ. 20 contour level are displayed between −2 ≤ ω ≤ 2, with

red and blue contours representing negative and positive vorticity, respectively.

γ = 1, ∆/d = 0.75

γ = 0.5, ∆/d = 0.38

γ = 0.25, ∆/d = 0.19

β = 0.4

Figure 5.6: Instantaneous vorticity contour plots at Ha⋆ = 50, Re = 2000 and β of

0.4 for various gap ratios γ. 20 contour level are displayed between −2 ≤ ω ≤ 2, with

red and blue contours representing negative and positive vorticity, respectively.
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Figure 5.7: Time history of lift force coefficient at different gap ratios for a blockage

ratio of 0.1, Hartmann numbers Ha⋆ = 50 and Re = 2000.
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Figure 5.8: Time history of lift force coefficient at different gap ratios for a blockage

ratio of (a) 0.1 and (b) 0.4 at Hartmann number Ha⋆ = 50 and Re = 2000.
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Figure 5.9: Fourier spectra of lift coefficient signal for Re = 2000 and Ha⋆ = 50 at

different gap blockage ratios. (a) β = 0.1 and (b) β = 0.4.
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ratios. For example, at β = 0.4 and γ = 0.25 the Strouhal frequency is almost

twice that at β = 0.1.

5.2.3 Drag Coefficient

Figs. 5.10 and 5.11 present the effect of gap ratio on the time-averaged drag

coefficient CD for different blockage ratios at Ha⋆ = 50. It is clearly seen that for

β = 0.1 and Re ≤ 2000, as the cylinder approaches the lower confining wall, there

is a small increase in CD as γ decreases from 1 to 0.25. However, the change in CD

is negligible for Re > 2000 as γ is decreased. For β = 0.2, CD increases gradually

at low Reynolds numbers but it does not change for Re ≥ 2500. For β ≥ 0.3, the

effect of decreasing γ on CD is more pronounced at low Reynolds numbers and

high blockage ratios. For example at β = 0.1 and Re = 1000, the increase in CD

as γ decreases from 1 to 0.25 is 6.15%, whereas at β = 0.4 the increase in CD is

15.5%. Also, for high blockage ratios at Re & 2200, CD decreases with further

increasing of the gap ratio. This is due to the fact that when the cylinder moves

closer to the lower wall (i.e. small γ), the gap between the cylinder and the wall

is filled by the shear/boundary layers of the cylinder and the wall where viscous

forces are dominant. In this case the contribution from the viscous force exerted

on the cylinder outweighs the pressure force, resulting in a decrease in the total

drag coefficient.

5.3 Heat Transfer

Firstly, the effect of blockage and gap ratio for a fixed value of Re is presented,

and subsequently the dependence on Re is considered.

5.3.1 Mixing Induced by Vortex Shedding in the Gap Re-
gion

Figs. 5.12–5.15 show the distribution of instantaneous temperature contours for

different blockage ratios for gap ratios γ = 1, 0.5 and 0.25 at Re = 2000 and

Ha⋆ = 50. These correspond to the instantaneous vorticity contours as shown in

Fig 5.3–Fig 5.6. For blockage ratio β ≥ 0.2 , as the gap ratio increases, the heat
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Figure 5.10: Time-averaged drag coefficients as a function of Reynolds number at

different gap ratios, Ha⋆ = 50 and blockage ratios (a) β = 0.1 and (b) β = 0.2.
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Figure 5.11: Time-averaged drag coefficients as a function of Reynolds number at

different gap ratios, Ha⋆ = 50 and blockage ratios (a) β = 0.3 and (b) β = 0.4.

142



γ = 1, ∆/d = 4.5

γ = 0.5, ∆/d = 2.25

γ = 0.25, ∆/d = 1.13

β = 0.1

Figure 5.12: Instantaneous dimensionless temperature contours at Ha⋆ = 50, Re =

2000 and β of 0.1 for various gap ratios γ as marked. Light and dark shedding shows

hot and cold fluid, respectively.
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γ = 1, ∆/d = 2

γ = 0.5, ∆/d = 1

γ = 0.25, ∆/d = 0.5

β = 0.2

Figure 5.13: Instantaneous dimensionless temperature contours at Ha⋆ = 50, Re =

2000 and β of 0.2 for various gap ratios γ as marked. Light and dark contours show

hot and cold fluid, respectively.
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γ = 1, ∆/d = 1.15

γ = 0.5, ∆/d = 0.58

γ = 0.25, ∆/d = 0.29

β = 0.3

Figure 5.14: Instantaneous dimensionless temperature contours at Ha⋆ = 50, Re =

2000 and β of 0.3 for various gap ratios γ as marked. Light and dark contours show

hot and cold fluid, respectively.

γ = 1, ∆/d = 0.75

γ = 0.5, ∆/d = 0.38

γ = 0.25, ∆/d = 0.19

β = 0.4

Figure 5.15: Instantaneous dimensionless temperature contours at Ha⋆ = 50, Re =

2000 and β of 0.4 for various gap ratios γ as marked. Light and dark contours show

hot and cold fluid, respectively.
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transfer increases significantly. This is due to the sweeping of the heating surfaces

by the wake vortices. Therefore, the low-temperature fluid is transported towards

the lower wall of the channel and the high-temperature fluid near the heated

wall is convected away to mix with the low-temperature fluid. Accordingly, the

heat transfer is enhanced significantly. However, as the gap ratio is decreased to

γ = 0.25, the unsteadiness in the flow is reduced significantly for β ≥ 0.4. This

increases the thickness of the thermal boundary layer, and hence the temperature

gradient along the heated wall decreases markedly.

5.3.2 Average Nusselt Number of the Heated Wall: Offset
Ratio Dependence

Fig. 5.16(a) shows the effect of the offset ratio on the time-averaged Nusselt

number from the heated wall at different blockage ratios β for Ha⋆ = 50 and

Re = 2000. It can be noted that for a given blockage ratio, there is a remarkable

change in Nu as the offset ratio varies from γ = 1 to 0.25. The change is more

pronounced at β = 0.1 and 0.4. For blockage ratio β = 0.1, the Nusselt number

increases substantially as offset ratio is decreased from γ = 1 to 0.25. Similarly,

the effect of changing the offset ratio from γ = 1 to 0.5 on Nu is found to be

remarkable for β = 0.2. It increases significantly, then it decreases gradually for

further decrease in the gap ratio. For β = 0.3, there is a slight increase in heat

transfer as γ is decreases to 0.5, after that it gradually decreases. As expected,

for blockage ratio β = 0.4, the Nusselt number drops more steeply as offset ratio

is further decreased to γ = 0.25.

The variation of pressure drop with the offset ratio for different blockage ra-

tios at Re = 2000 and Ha⋆ = 50 is presented in Fig. 5.16(b). Here, the pressure

drop penalty is the difference in pressure drop across identical channels with and

without a cylinder placed asymmetrically in the duct. For β ≤ 0.2, there is only

a small increase in pressure drop as the offset ratio is changed from 1 to 0.5, then

it remain steady for further increase in γ. However, for β ≥ 0.3, the pressure

drop increased gradually as it changes from 1 to 0.5. The pressure drop exhibits

an increased dependence on offset ratio as the blockage ratio increases, with in-
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creasing offset ratio resulting in an increased pressure drop. To demonstrate the

significant effect of γ on ∆Pcyl, the pressure drop at β = 0.4 is nearly 8.6 times

that at β = 0.1 as γ changes from 1 to 0.25. For β = 0.3 and 0.2, it increases by

factors 5.5 and 2, respectively.

In order to estimate the improvement of the heat transfer by placing a cylinder

asymmetrically in the duct, the percentage increment of the overall heat transfer

is calculated using equation (3.68) for the flow considered in this study. The

percentage increment for Re = 2000 at γ = 1, 0.5 and 0.25 for 0.1 ≤ β ≤ 0.4

varies between 3% – 45%, 22% – 39%, 62% – 68% and 43% – 89%, respectively.

For Re = 3000, the increments lie in the ranges 8% – 58%, 24% – 70%, 70% –

85% and 60% – 128%, respectively.

To characterize the quality of heat transfer improvement in this study, both

the heat transfer and the pressure drop on the channel are considered. The

efficiency index is adopted (Tsui et al. 2000; Yang 2003) and defined as

ηeff =
HR

PR
, (5.1)

where HR and PR are the heat transfer enhancement ratio and pressure penalty

ratio, respectively. Note that HR and PR are given by

HR =
Nu

Nu0
, (5.2)

PR =
∆P

∆P0

, (5.3)

where ∆P is the overall pressure drop across the channel where a circular cylinder

is shifted from the channel centerline and ∆P0 is the overall pressure drop without

a cylinder. The results of percentage heat transfer increments HI, heat transfer

enhancement ratio HR, pressure penalty ratio PR and efficiency index ηeff for

different blockage and offset ratios are listed in Table 5.2. The results in this

table demonstrate that the improvements in heat transfer are much higher at

small blockage ratios, but they are not as great when the cylinder approaches the

heated wall (small gap ratio) as it is when the cylinder is located at the mid-

plane. It is also noticed from this table that the efficiency index ηeff is greater
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Figure 5.16: (a) Time-averaged Nusselt number of the heated wall and (b) pressure

drop penalty plotted against γ−1 at blockage ratios as indicated for Re = 2000 and

Ha⋆ = 50. For reference, Nusselt number for the channel without a cylinder present

are also provided and indicated as a dash line.
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Re β γ HI HR PR ηeff

2000 0.1 1 3% 1.03 1.04 0.99
2000 0.1 0.5 9% 1.08 1.04 1.04
2000 0.1 0.25 45%∗ 1.45 1.04 1.39∗

2000 0.2 1 22% 1.21 1.05 1.15
2000 0.2 0.5 53%∗ 1.52 1.06 1.44∗

2000 0.2 0.25 39% 1.41 1.06 1.33

2000 0.3 1 67% 1.53 1.08 1.42
2000 0.3 0.5 62% 1.62 1.09 1.49∗

2000 0.3 0.25 68%∗ 1.41 1.09 1.30

2000 0.4 1 89%∗ 1.89 1.09 1.72∗

2000 0.4 0.5 80% 1.80 1.10 1.63
2000 0.4 0.25 43% 1.43 1.10 1.30

3000 0.1 1 8% 1.05 1.06 0.99
3000 0.1 0.5 14% 1.12 1.10 1.02
3000 0.1 0.25 58%∗ 1.55 1.08 1.43∗

3000 0.2 1 24% 1.21 1.09 1.11
3000 0.2 0.5 70%∗ 1.67 1.08 1.55∗

3000 0.2 0.25 52% 1.61 1.07 1.51

3000 0.3 1 70% 1.66 1.12 1.48
3000 0.3 0.5 85%∗ 1.82 1.15 1.58∗

3000 0.3 0.25 79% 1.70 1.11 1.54

3000 0.4 1 128%∗ 2.24 1.16 1.94∗

3000 0.4 0.5 83% 2.07 1.64 1.26
3000 0.4 0.25 60% 1.66 1.13 1.47

Table 5.2: Percentage increment of the overall heat transfer and efficiency index ob-

tained by adding the cylinder at different gap ratios from the heated wall. Superscript

∗ shows the maximum values at each blockage ratio.

than 1 or nearly 1 for all the cases tested, which indicates that the heat transfer

enhancement for this flow is viable.

In addition, to characterize the gain in heat transfer generated by placing the

cylinder in the channel near to the wall with that at the centerline, the overall

percentage increment in heat transfer is calculated as

HIasym =
Nuasym − Nusym

Nusym

× 100, (5.4)

where Nu,asym and Nusym represent the time-averaged Nusselt number of the

heated surface for the cylinder placed symmetrically or asymmetrically in the

duct. The effect of the gap ratio on heat transfer improvement is quite clear in

Table 5.3 where the cylinder approaches the heated wall, higher heat transfer is
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Re β γ HIasym

2000 0.1 0.5 5.45%
2000 0.1 0.25 40.5%∗

2000 0.2 0.5 26%∗

2000 0.2 0.25 16.5%

2000 0.3 0.5 5.85%∗

2000 0.3 0.25 -7.65%

3000 0.4 0.5 -4.8%
3000 0.4 0.25 -24.5%

000 0.1 0.5 6%
3000 0.1 0.25 47%∗

3000 0.2 0.5 37.5%∗

3000 0.2 0.25 32.5%

3000 0.3 0.5 9.70%∗

3000 0.3 0.25 2.58%

3000 0.4 0.5 -7.85%
3000 0.4 0.25 −26%

Table 5.3: Percentage increment of the overall heat transfer HIasym obtained by

adding the cylinder at different gap ratios from the heated wall. Superscript ∗ shows

the maximum percentage increment at each blockage ratio.

obtained at small blockage ratio (β ≤ 0.2). The reason for this increase may

be attributed to the increased velocity of the flow in the vicinity of the heated

surface caused by the wake vortices, which leads to an effective mixing between

the hot region flow and core cold flow, leading to a significant increase in heat

transfer. The maximum increment in heat transfer is 40.4%, which is obtained

at γ = 0.25 for β = 0.1 and Re = 2000 while for β = 0.2, the maximum heat

transfer improvement is occurres at γ = 0.5, and is 26%. For Re = 3000, the

increments are 47% and 37.5%, respectively. From Table 5.3, it can be seen that

the heat transfer improvement significantly decreases as the cylinder is further

from the heated wall of the channel for blockage ratio β ≥ 0.3.

5.3.3 Reynolds Number Dependence

Figs. 5.17 and 5.18 show the variation of time-averaged Nusselt number Nu of the

heated wall with Reynolds number for different blockage and gap ratios at Ha⋆ =

50. It is can be noted that for all Reynolds numbers considered in this study,

the variation of the time-averaged Nusselt number shows different behaviour for
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different ranges of blockage and gap ratios, because the flow and the temperature

field have different distributions depending on these two parameters. For β = 0.1

and γ ≤ 0.5, there is a slight increase in Nu as the Reynolds number increases.

However, it increases significantly at γ = 0.25. For β = 0.2, the effect of changing

the gap ratio on Nu is negligible for Re ≤ 1300. For the remaining range of

Reynolds number, there is a considerable increase in Nu as γ varies between 1

and 0.5. However, as the gap ratio is further decreased to 0.25, Nu declines

substantially for Re ≥ 2100. Similarly, for β ≥ 0.3, the effect of changing the gap

ratio on Nu is negligible for the range Re . 1500. In fact, for β = 0.3, there is

a gradual decrease in Nu as γ varies between 0.5 and 0.25 for Re ≥ 2000. The

decrease in Nu is more pronounced at β = 0.4 as γ is increased.

5.3.4 Streamwise Distribution of Local Nusselt Number

The local Nusselt number along the heated wall as a function of streamwise

coordinate x with Reynolds number is given in Figs. 5.19–5.22 for γ = 1, 0.5

and 0.25, and Ha⋆ = 50 at different blockage ratios. For small blockage ratio

(β = 0.1), the effect of Reynolds number is found to be small for γ = 1 and 0.5.

The distribution reaches a maximum at x/d = 5 and falls gradually at γ = 0.25.

Similarly, at β = 0.2, the variation of local Nusselt number is small at γ = 1.

The maximum occurs at x/d = 5 for γ = 0.5 and γ = 0.25, then the Nusselt

number decreases steadily. However, as the blockage ratio increases further from

0.2 to 0.4, the change in the distribution of Nuw is considerable with changing

Reynolds number. For β = 0.3, the distribution reaches a maximum at x/d = 5

and falls noticeably as γ and Reynolds number increase. However, for β = 0.4, the

maximum position shifts to x/d ≈ 8.5, as Reynolds number increases for γ = 1,

which is quite different from the other cases. The plots also demonstrate that the

distribution of local Nusselt number maintains its shape for β ≤ 0.2 at high gap

ratio. For high blockage ratio, the distribution is identical, but the position of

the maximum Nusselt number shifts downstream as Reynolds number increases

at high gap ratio. As expected, the local Nusselt number is seen to have higher

values with an increase in the Reynolds number and blockage ratio.
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Figure 5.17: Variation of time-averaged Nusselt number with Rynolds number for

different gap ratio at Ha⋆ = 50 and blockage ratios (a) β = 0.1 and (b) β = 0.2.
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Figure 5.18: Variation of time-averaged Nusselt number with Rynolds number for

different gap ratio at Ha⋆ = 50 and blockage ratios (a) β = 0.3 and (b) β = 0.4.
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Figure 5.19: Streamwise time-averaged local Nusselt number over the heated surface

of the side wall for Ha⋆ = 50, β = 0.1 at different Reynolds numbers and gap ratios

as indicated.
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Figure 5.20: Streamwise time-averaged local Nusselt number over the heated surface

of the side wall for Ha⋆ = 50, β = 0.2 at different Reynolds numbers and gap ratios

as indicated. Symbols as per Figs. 5.19.
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Figure 5.21: Streamwise time-averaged local Nusselt number over the heated surface

of the side wall for Ha⋆ = 50, β = 0.3 at different Reynolds numbers and gap ratios

as indicated. Symbols as per Figs. 5.19.
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Figure 5.22: Streamwise time-averaged local Nusselt number over the heated surface

of the side wall for Ha⋆ = 50, β = 0.4 at different Reynolds numbers and gap ratios

as indicated. Symbols as per Figs. 5.19.
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5.4 Chapter Summary

This chapter was dedicated to investigate the details of fluid flow and heat transfer

of liquid metal past a circular cylinder positioned offset from the duct centreline

under a strong axial magnetic field. As before, under these conditions the flow is

quasi-two-dimensional and the modified Navier–Stokes equations are formulated

in a two–dimensional domain.

New numerical meshes have been developed that model a range of blockage

and gap ratios. The details of domain size and grid-resolution studies have been

presented.

The proximity of the cylinder to a wall has a significant influence on the flow

and heat transfer characteristics. At Re = 2000, β = 0.1 and 0.25 ≤ γ ≤ 1, a two-

row vortex street is formed with clockwise negative and counter-clockwise positive

vortices shed from the top and the bottom shear layers of cylinder maintaining

their offsets from the centreline. For β ≥ 0.2, the structure of the vortex shedding

changes dramatically on further decreasing of gap ratio. The vortex street drifts

further away from the wall and convects downstream with long slow decay. For

high blockage ratios at γ ≥ 0.5, the separating shear layer from the lower side

of the cylinder and the boundary layer from the wall effectively merge before

combined structures travel further downstream. At the smallest gap ratio, the

wake vorticity on the upper side of the cylinder elongates as it travels downstream

due to the effect of the wall. It is expected that the instability in the wake region

should transform from being absolutely unstable at large gaps to convectively

unstable at small gaps, which is consistent with the previous findings for non-

magnetohydrodynamic bluff body flows.

For all gap ratios at β ≤ 0.3, it is found that lift coefficient oscillates regularly

with a large amplitude, which is correlated with the existence of periodic vortex

shedding from the cylinder. At the gap ratio γ = 0.25 for β = 0.4, the reduction

and the irregularity of the fluctuating lift signal is consistent with vortex formation

further downstream from the rear of the cylinder and development of irregularity

in the wake.
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For β ≤ 0.2, the effect of changing γ from 1 to 0.25 on CD was found to be

small for Re ≤ 2000 and it was negligible for Re > 2000. For β ≥ 0.3, there was

a significant change in CD at low and high Reynolds numbers.

The characteristics of heat transfer depend strongly on the proximity of the

cylinder to the heated wall. This is due to interaction of the boundary layer with

the shear layers separating from the cylinder surface. For small blockage ratios,

it increases significantly as the gap ratio decreases from 1 to 0.25. However,

there is a substantial drop in Nusselt number for high blockage ratio. Overall,

the enhancement of heat transfer was significantly augmented by 58% through

decreasing the gap ratio for small blockage ratio (i.e. when the cylinder is close

to the wall). In contrast, for β = 0.4, the maximum heat transfer augmentation

was more than twofold, which is found at γ = 1 (i.e. when the cylinder is placed

furthest from the walls.) The efficiency index ηeff was greater than 1 or nearly 1

for all the cases teste, which demonstrates that the heat transfer enhancement for

this flow is viable. The maximum gain in heat transfer generated by placing the

cylinder in the channel near to the wall with that at the centerline was obtained

at β = 0.1 as the cylinder is further approached the heated wall.

The magnitude of the local Nusselt number distribution increases proportion-

ally with Reynolds number and blockage ratio. The position where the each dis-

tribution exhibits a maximum value is independent of Reynolds number for small

blockage ratios at γ = 0.5 and 0.25. However, the position moves downstream

with increasing Reynolds number for β = 0.4 at γ = 1.
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Chapter 6

Optimal Transient Disturbances
Leading to Vortex Shedding

This chapter presents the role of linear transient growth in the subcritical regime,

below the onset of von Kármán vortex shedding, and its consequences on the

transition to unsteady flow. More specifically, while the base flow is linearly

stable, perturbations may exhibit significant transient growth before eventual

decay .

The critical Reynolds number for the transition to unsteady flow, Rec, in the

presence of magnetic fields can be very large; an understanding of the non-normal

growth properties of the flow may enable unsteady flow to be triggered at lower

Reynolds numbers using only low level forcing. It is unknown how the addition

of a cylinder into an MHD duct flow influences the transient response of the flow,

and whether this may be exploited to further enhance heat transfer.

Firstly, a brief description of the geometry and boundary conditions together

with details of the grid-resolution study is given in § 6.1. The Hartmann number

dependence on the optimal growth is presented in § 6.2.1. In the following section,

the structure and the evolution of the disturbance field are considered in § 6.2.3.

The Reynolds number dependence on the optimal growth is given in § 6.2.6.

Finally, the response of the flow to continuous upstream disturbances is presented

in § 6.3.

Some of the results in this chapter have previously been published in Hussam

et al. (2012).
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6.1 Geometry and Boundary Conditions

The configuration of the system under investigation is a rectangular duct confining

a circular cylinder placed at the centre of the duct parallel to the magnetic field

and perpendicular to the flow direction, as presented previously in Fig. 4.1.

The boundary conditions are imposed on equations (3.62) and (3.61) as the

same for the previous chapters. For the transient growth analysis, zero-velocity

Dirichlet boundary conditions are imposed on the perturbation field on all bound-

aries during integration of the forward and adjoint equations as recommended by

Blackburn et al. (2008a).

The computational domain is divided into a grid of elements. Elements are

concentrated in areas of the domain that experience high velocity gradients. The

meshes comprise between 1052 and 1484 elements, depending on blockage ratio,

and details of meshes can be found in § 4.2.1. The upstream and downstream

lengths xu and xd chosen for this study are 8 and 25, respectively, as determined

by the domain size study below. The dependence of energy growth on upstream

domain length is determined through the calculation of energy growth for a fixed

time span of τ = 6. Tables 6.1 and 6.2 show the effect of truncating the domain

upstream length while keeping the downstream length and the inner portion of the

mesh constant. For each blockage ratio, two Reynolds numbers are considered to

ensure that the mesh chosen is adequate to resolve the solution in the subcritical

range. For β = 0.1 and Ha⋆ = 50, Re = 200 and 580 are considered, and for

β = 0.4 and Ha⋆ = 50, Re = 400 and 1160 are considered. It can be noted that

the effect of truncating the upstream length from 32d to 8d results in less than a

3% difference in the growth rate prediction for the four cases in Tables 6.1 and

6.2. As might be expected higher Reynolds number increases the error, while

increasing the Hartmann number decreases the error.

As before, a grid resolution study was undertaken to determine a suitably

accurate element polynomial degree. The polynomial degree used for most simu-

lations was Np = 7. Convergence tests were performed on two cases, again chosen

at the upper end of the parameter range of this study. The first case featured
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β = 0.1, Re = 200 β = 0.1, Re = 580
xu G(6) %Error G(6) %Error

4 8.9665E-02 5.912 1.4353E+03 21.6
8 8.5021E-02 0.427 1.2150E+03 2.93
16 8.4665E-02 0.0065 1.1858E+03 0.469
32 8.4660E-02 0.0000 1.1803E+03 0.000

Table 6.1: The effect of variation of domain upstream length on growth energy

at τ = 6 across blockage β = 0.1 for Ha⋆ = 50 for different Reynolds number as

indicated.

β = 0.4, Re = 400 β = 0.4, Re = 1160
xu G(6) %Error G(6) %Error

4 6.4643E-04 0.145 3.3138E+04 0.606
8 6.4737E-04 0.0004 3.3140E+04 0.599
16 6.4737E-04 0.0000 3.3313E+04 0.0825
32 6.4737E-04 0.0000 3.3340E+04 0.0000

Table 6.2: The effect of variation of domain upstream length on growth energy at

τ = 6 across blockage β = 0.4 for Ha⋆ = 50 and different Reynolds number as

indicated.

β = 0.1, Ha = 120 and Re = 1000, and the second featured β = 0.4, Ha⋆ = 480

and Re = 2000. The results of these tests are shown in Table 6.3, which show

convergence of the normalized length of the recirculation zone behind the cylinder

(measured downstream from the aft surface of the cylinder), and the growth rate

of the leading eigenmode from a linear stability analysis described in § 3.5. This

shows that the differences in both the recirculation zone length and growth rate

for Np = 7 relative to the most highly resolved case (NP = 9) are less than 1%.

6.2 Transient Energy Growth

Firstly, the results as a function of τ and Ha for a fixed value of Re at differ-

ent blockage ratios β are presented, and subsequently the dependence on Re is

considered.
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β = 0.1, Re = 1000 β = 0.4, Re = 2000
Np LR/D σ LR/D σ

5 1.511 -0.04991 0.721 -0.1053
6 1.552 -0.07281 0.724 -0.1287
7 1.549 -0.09185 0.725 -0.1572
8 1.526 -0.09122 0.725 -0.1579
9 1.532 -0.09136 0.725 -0.1584

Table 6.3: Convergence of the normalized circulation length LR/d and maximum

growth rate σ across blockage ratio β = 0.1 and β = 0.4 for Ha = 1200 with increasing

polynomial order.

6.2.1 Hartmann Number Dependence on Optimal Growth

Figs. 6.1 and 6.2 show the transient energy growth G of optimal disturbances as

a function of time interval τ for the steady base flow at four different blockage

ratios covering 0.1 ≤ β ≤ 0.4 at different Hartmann numbers and Re = 400. It

also makes sense to define the critical parameter ratio CRe = (Re − Rec)/Rec,

since transient growth is relevant to critical Reynolds number. For blockage

ratios 0.1 ≤ β ≤ 0.4 and 50 ≤ Ha⋆ ≤ 120, this ratio ranges between −0.82

to −0.43. The initial observation on these data is, though the chosen Re for the

analysis is well below the critical Reynolds number for unsteady flow at the lowest

Hartmann number Ha⋆ = 50, there exist perturbations which grow in energy by

sometimes more than a thousand times. In addition, the significant damping

effect of Hartmann number is also revealed. For example, for β = 0.1 the peak

energy growth is 60.93 and 2.72 at Ha⋆ = 50 and Ha⋆ = 120, respectively. For

β = 0.4, there is growth of energy by a factor of 1.86× 103 and 7.22, respectively.

For all β, it is found that increasing Ha⋆ leads to a significant reduction of the

energy amplification of the disturbances and to a shift of the peak growth towards

smaller times. This is not surprising given that the Hartmann term acts as an

extra damping in addition to viscous damping. However, for a fixed modified

Hartmann number, the global maxima of energy growth also varies significantly

with blockage ratio, being larger at higher β, and the maximum amplification

occurs for larger times. This is probably a result of the increased acceleration of
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the flow in the neighborhood of the cylinder for higher blockage ratios, making

the Reynolds number effectively higher for higher β, although increasing β also

shortens the separation bubble length as well.

6.2.2 Structure of Optimal Disturbance Fields

Fig. 6.3 plots the vorticity field of the optimal initial perturbations for the four

blockages considered in this study (as presented in Figs. 6.1 and 6.2) at Hartmann

numbers Ha⋆ = 50 and 120. In each, the optimal disturbance field is localized in

the region of the boundary layer separation around the cylinder near the wake as

also observed in the analysis of Hill (1992); Giannetti & Luchini (2007) and Ab-

dessemed et al. (2009b) for the case without a magnetic field (Ha⋆ = 0). Perhaps

not surprisingly, the structure of the disturbance is consistent across these block-

age ratios. The perturbation convects along the separation region being amplified

to the peak growth state downstream of the recirculation bubble. In Fig. 6.4, the

resulting time interval for maximum growth, τmax, is plotted as a function of the

circulation length at Ha⋆ = 50. It is observed that τmax increases significantly

as circulation length increases. This is commensurate with the amplifying nature

of the separated shear layers in the wake, as the disturbance travels further and

grows larger as it convects down the longer wake. This phenomenon is consistent

with transient growth in several systems, including a plane channel (Reddy et al.

1998), rectangular duct (Zikanov 1996), and abrupt geometrical expansion flows

(Blackburn et al. 2008a,b; Cantwell et al. 2010).

6.2.3 Evolution of Optimal Disturbance Fields

Fig. 6.5(a, c) shows the vorticity of the initial perturbation for β = 0.1 at Re =

400, and Ha⋆ = 50 and 1200, for which τmax = 5.54 and 1.72, respectively. It can

be seen that independent of Hartmann number, the optimal perturbation field

remain concentrated around the limiting streamline identifying the recirculation

bubble.

In Fig. 6.5(b, d), the evolution from this optimal initial disturbance is plotted,

i.e. the disturbance that linearly evolves from these disturbances at t = 5.54 and
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Figure 6.1: Plots of log10G against τ , at blockage ratios 0.1 and 0.2 at different

Hartmann numbers as shown for Re = 400. The dashed-line curves shows the locus

of maximum growth as a function of τ .
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Figure 6.2: Plots of log10G against τ , at blockage ratios 0.3 and 0.4 at and Hart-

mann numbers as shown for Re = 400. The dashed-line curves shows the locus of

maximum growth as a function of τ .
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β = 0.1

β = 0.2

β = 0.3

β = 0.4

Figure 6.3: Plots of vorticity of the optimal initial perturbation at τmax and blockage

ratios as labeled for Re = 400. Hartmann numbers Ha⋆ = 50 (left) and 120 (right)

are shown. The streamlines of the stable base flow is overlaid in each case.

t = 1.72. At the peak growth time, the disturbance flow structures present as a

series of counter-rotating spanwise rollers. However, for β = 0.4, at Ha = 500

(see Fig. 6.6b), interaction with the channel wall boundary layers (the Shercliff

layers) occurs downstream of the cylinder. Vorticity is drawn into the channel

and interacts with the vorticity detached from the rear of the cylinder. The level

of wall boundary layer disturbance was observed to increase significantly as the

blockage ratio increased from β = 0.1 to 0.4. In fact, for β . 0.2 there were no

strong perturbation structures observed along the walls.
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Figure 6.4: Maximum τ of the energy maxima at Ha⋆ = 50 as a function of circu-

lation length at different blockage ratios.

6.2.4 Characteristic of Optimal Perturbation Field

Consideration is now given to the time evolution of a predicted optimal distur-

bance from its initial condition, through to, and beyond, τmax. Fig. 6.7 shows a

sequence of perturbation vorticity contours that evolve from the optimal initial

state at β = 0.3, Re = 400, Ha⋆ = 50, and τ = 6.90. At early times, the dis-

turbance that passes through this region interacts with the boundary layer (the

Shercliff layers) detached from the walls. Then, the wave packet is amplified while

traveling downstream. The disturbances consist of a roller packet structure and

the maximum rate of growth occurs at the beginning of the sequence when the

perturbation passes through the separation bubble. This spatial pattern indicates

that the energetic amplification of the perturbation is, at least initially, consistent

with convective instability: the amplitude of maximum energy growth moves in a

frame convecting with the disturbance, and the energy at the initial disturbance

location decays as the disturbance convects away.
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(a) Ha⋆ = 50, t = 0

(b) Ha⋆ = 50, t = τmax = 5.54

(c) Ha⋆ = 120, t = 0

(d) Ha⋆ = 120, t = τmax = 1.72

Figure 6.5: Contours of spanwise vorticity for β = 0.1 and Re = 400. (a) and (c)

show the optimal disturbance initial condition at Ha⋆ = 50 and 120, respectively. (b)

and (d) show the development of these linear disturbances to t = τmax. Streamlines

of the stable base flow are overlaid in each case. Vorticity contour levels of |ω| ≤ 0.05

are plotted in frames (a) and (c), and levels of |ω| ≤ 0.5 are plotted in frames (b)

and (d).
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(a) Ha⋆ = 50, t = 0

(b) Ha⋆ = 50, t = τmax = 8.26

(c) Ha⋆ = 120, t = 0

(d) Ha⋆ = 120, t = τmax = 2.43

Figure 6.6: Contours of spanwise vorticity for β = 0.4 and Re = 400. (a) and (c)

show the optimal disturbance initial condition at Ha⋆ = 50 and 120, respectively.

(b) and (d) show the development of these linear disturbances to t = τmax. Contour

levels are as per Fig. 6.5.

To illustrate this, Fig. 6.8 shows the profiles of the vertical velocity compo-

nent that evolve from the optimal initial state for the case shown in Fig. 6.7. The

vertical velocity component is extracted along the line y = 0. The profiles are

normalized to have absolute maximum value of unity. Again the characteristic

dynamics of convective instability are apparent. The initial disturbance decays as

the disturbance convects away. The extremely sharp fluctuation in the optimal

perturbation can be observed in the boundary layer separation near the wake.

The average streamwise wavelength of the fluctuations of the vortical structures
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Figure 6.7: Time sequence of linear perturbation vorticity contours developed from

the optimal disturbance initial condition for β = 0.3, Re = 400, and Ha⋆ = 50 at

t = τmax. Flow from left to right. From top to bottom, frames show times t = 0,

4, 8, 12, 16 and 20. white and black representing positive and negative vorticity,

respectively. Separation streamlines of the base flow are overlaid in each case.

leaving the circulation bubble at the optimal time estimated by zero-crossing

analysis is λx/d = 2.30 and 2.59, at Ha⋆ = 50 and 120, respectively. The charac-

teristics of the optimal perturbation fields at the point of maximum growth for

the case of Ha⋆ = 50 and 120 at different blockage ratios are given in Table 6.4.
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Figure 6.8: Time sequence of the vertical component of the perturbation velocity

(v′) profile along the channel centerline obtained at β = 0.3, Re = 400 and Ha⋆ = 50.

The sequence evolves from the optimal disturbance achieving peak energy growth,

which had an evolution time τmax = 6.90. From top to bottom, frames show times

t = 0, 4, 8, 12, 16 and 20. The shaded region denotes the location of the cylinder.
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6.2.5 Optimal Perturbation and Global Instability Mode

Fig. 6.9 presents a sequence of the base-10 logarithm of energy contours that

evolved from the initial optimal disturbance obtained for β = 0.3, Re = 1075,

Ha⋆ = 50 and τ = 7.51. The flow structures that give rise to these energy contours

are a series of counter-rotating spanwise rollers. Initially the energies of the

optimal disturbance are concentrated around the cylinder. Then, the disturbance

energy convects downstream along the separated shear layer and is amplified until

t = τmax. For t > τmax, there is no significant further downstream convection of the

disturbance, which instead remains largely in place several diameters downstream

of the cylinder, where it slowly decays away. The centroid location of the energy

of the global linear instability mode (real eigenmode corresponding to a growth

rate σ = −0.0402) lies at xc ≈ 3.5. For the optimal disturbance at t = τmax and

t > τmax, the centroid location of evolved perturbation energy are xc = 4.22 and

xc ≈ 3.5, respectively.

These properties imply that the action of the optimal disturbance is to perturb

the leading global instability mode. This behaviour is consistent with the obser-

vation for a cylinder in a non-magnetohydrodynamic flow past a circular cylinder

(Abdessemed et al. 2009a) That study further demonstrated that a flow seeded

with the optimal disturbance beyond a transition Reynolds number experienced

a far more rapid evolution of the instability than was obtained via the global

instability mode (i.e. relying on exponential growth only). While the unstable

regime is not considered in this study, a similar behaviour would be expected in

this flow due to the consistent manner in which the optimal disturbances excite

the global instability modes.

6.2.6 Reynolds Number Dependence

The Reynolds number dependence of the maximum growth and the associated

disturbances are now considered. Figs. 6.10 and 6.11 show the predicted transient

energy growth G of optimal perturbations as a function of evolution time τ for

the steady base flows. For blockage ratios 0.1 ≤ β ≤ 0.4, 50 ≤ Ha⋆ ≤ 120 and

300 ≤ Re ≤ 800, the critical parameter ratio CRe ranges between −0.87 and
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Figure 6.9: Contours of the base-10 logarithm of energy developed from the global

optimum disturbance initial condition for β = 0.3, Re = 1075 and Ha⋆ = 50. From

top to bottom, frames show times t = 0, 4, 8, 16 and 32.

β
Ha⋆ = 50 Ha⋆ = 120

xc τmax λx f xc τmax λx f

0.1 2.57 5.54 2.54 0.30 1.60 1.72 1.81 0.25
0.2 3.10 6.10 2.37 0.32 1.18 1.83 2.37 0.27
0.3 4.00 6.90 2.30 0.36 1.37 2.01 2.59 0.28
0.4 4.67 8.26 2.21 0.40 1.75 2.43 2.89 0.35

Table 6.4: Characteristics of the optimal perturbations at the time of maximum

growth τmax for different blockage ratios at Hartman numbers as indicated and a

Reynolds numbers Re = 400. Along with τmax the centroid location xc of the evolved

perturbation energy, the local axial wave length λx, and frequency f of the pertur-

bation.
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β Rec1 (Ha = 500) Rec1 (Ha = 1200)

0.1 248.53 283.43
0.2 164.49 275.78
0.3 157.46 263.37
0.4 140.69 241.55

Table 6.5: Critical Reynolds numbers for positive energy growth of optimal distur-

bances Rec1 for Ha⋆ = 50 and 120 as indicated for different blockage ratios.

−0.40. For all β, while the chosen Reynolds numbers for the analysis are well

below Rec, there exists perturbations that grow in energy by factors of 3.81×102,

6.99×102, 2.0×103, and 1.89×104 at β = 0.1, 0.2, 0.3, and 0.4, respectively. For

all Re at Ha⋆ = 120, it is found that increasing β leads to a significant increase

of the energy amplification and to a shift of the global maxima towards smaller

evolution times. For β ≤ 0.2, there is a substantial change in the τmax of the

global maxima. However, this is less pronounced for β & 0.3, where τmax occurs

consistently at smaller τ .

6.2.7 Critical Re for Positive Energy Growth

The critical Reynolds number for positive energy growth of optimal disturbances,

Rec1, corresponds to the Reynolds number below which G(τ) ≤ 1 for all τ . By

inspection of this data, this corresponds to the Reynolds number at which the

gradient ofG–τ data at τ = 0 is zero, as for smaller Re, G decreases monotonically

with τ . For each β, gradients were obtained for each Reynolds number using

polynomial curve fitting. The resulting Rec1 at Ha⋆ = 50 and 120 for different

blockage ratios are presented in Table 6.5. These results demonstrate that it

is possible to find disturbances which invoke positive energy growth around a

circular cylinder. For all β (see Fig. 6.10), it can be seen that for Re ≥ Rec1 the

optimal curve has a positive slope at τ = 0 and there is a range of τ for which the

energy of an optimal disturbance increases rather than decreases from its initial

value.
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Figure 6.10: Plots of the transient energy growth, G, against τ , at different blockage

ratio for Reynolds numbers from 300 to 800 in steps of 100 and Ha⋆ = 120. In (a),

the critical parameter ranges from CRe = −0.78 to −0.40 over 300 ≤ Re ≤ 800, while

in (b) the critical parameter ranges from CRe = −0.82 to −0.51.
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Figure 6.11: Plots of the transient energy growth, G, against τ , at different blockage

ratio for Reynolds numbers from 300 to 800 in steps of 100 and Ha⋆ = 120. In (a),

the critical parameter ranges from CRe = −0.85 to −0.60 over 300 ≤ Re ≤ 800, while

in (b) the critical parameter ranges from CRe = −0.87 to −0.64.

178



6.2.8 The Variation of Gmax and τmax with Re

Figs. 6.12(a, b) and 6.13(a, b) show the variations of Gmax and τmax as functions

of Re for different β at Ha⋆ = 50 and 120, respectively. In addition, these data

are also plotted against CRe in Figs. 6.14(a, b) and 6.15(a, b). For all β, it is

found that Gmax grows exponentially or faster with Re and (CRe) at Ha⋆ = 50

and 120. For low Hartmann numbers the growth appears to be quadratic with

Re and (CRe), at least initially beyond the onset of positive amplification. At

higher Reynolds numbers (higher critical parameter ratios) the variation appears

to be linear. This is consistent with previous findings for non-magnetic bluff body

flows (Blackburn et al. 2008a; Thompson 2011). At the higher Hartmann number

the growth is much closer to linear from the point of positive amplification. In

addition, for a given β, there is a significant change in the asymptotic slope of the

curves as Hartmann number increases from Ha⋆ = 50 to 120, decreasing by almost

40%. In the high Re linear regimes, the growth rates are 0.0091, 0.0096, 0.0117,

and 0.0152 at Ha⋆ = 50, and 0.0057, 0.0062, 0.0070 and 0.0089 at Ha⋆ = 120

for β = 0.1, 0.2, 0.3, and 0.4, respectively. To quantify this further, Gmax at

Ha⋆ = 50 increases by factor of approximately 8.13, 9.12, 14.7 and 33.1, and 3.72,

4.17, 5.01 and 7.76 for Ha⋆ = 120 for each Re increment of 100, for β = 0.1, 0.2,

0.3, and 0.4, respectively.

When considering the data in the context of the critical parameter (figures 6.14

and 6.15), it is interesting to note that the effect of increasing blockage ra-

tio becomes more pronounced. For instance, the case with β = 0.4 reaches

log10Gmax ≈ 1.8 at CRe ≈ −0.8, whereas at β = 0.1, this level of energy growth

is only obtained at CRe ≈ −0.43, nearly twice as close to the transition Reynolds

number in this flow. Therefore increasing blockage leads to an increased sensitiv-

ity to non-modal transient growth in this flow. When considering the predicted

optimal perturbation fields displayed in figure 6.3, which are strongest imme-

diately transverse to and downstream of the cylinder, this result supports the

observation that an increased blockage ratio will increase the local velocities as

the flow passes around the cylinder, leading to increased rates of shear and ulti-

mately sensitivity to transient growth in the flow (Blackburn et al. 2008a,b).
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For larger Reynolds numbers (high critical parameter ratios), a linear variation

between τmax and Re is observed, corresponding to the higher Reynolds number

linear regime observed for logGmax. From Fig. 6.12(b) and Fig. 6.13(b), at Ha⋆ =

50, ∂τmax/∂Re = 0.0238, 0.0239, 0.0269 and 0.0362, and 0.0097, 0.0102, 0.0114

and 0.018 at Ha⋆ = 120 for β = 0.1, 0.2, 0.3, and 0.4, respectively. It is noted that

these gradients only display a very weak blockage ratio dependence compared to

the Gmax variation.

6.3 Response of the Flow to Continuous Up-

stream Disturbances

To demonstrate the relevance of linear growth computations to a real flow in the

presence of inflow noise, direct numerical simulations (DNS) have been performed.

The initial state is the steady flow at Re = 1160, Ha⋆ = 200 and β = 0.4. This

case has been chosen as it exhibits the maximum energy growth of all the cases

investigated in the previous sections. For this purpose a random white noise with

small amplitude is added to the velocity field at the inlet to the computational

domain. Therefore, we aim to see strong evidence of disturbances growing to

non-linear levels as the base flow is excited with noise.

In a non-magnetohydrodynamic flow, an injected disturbance decays only

through the action of viscosity. However, in these flows Hartmann damping also

acts to damp disturbances. The rate at which disturbance vorticity (ω) decays can

be approximated using equation (4.7). Using this expression for these flow con-

ditions gives d(loge ω)
dt

≈ −0.344. If it is assumed that inflow disturbances convect

at approximately u0, then by the time a disturbance reaches the cylinder, it will

have decayed to just 7.5% of its original strength. This Hartmann damping would

be even stronger at lower Reynolds numbers and higher Hartmann numbers. Ul-

timately, this means that upstream disturbances need to be significantly stronger

in these magnetohydrodynamic flows than in comparable non-magnetohydrody-

namic channel flows to facilitate amplification of the disturbances to non-linear

levels.

Fig. 6.16 shows the vorticity in the disturbance invoked by the addition of
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Figure 6.12: Maximum energy growth Gmax (a) and time of maximum of the energy

maximum (b) as a function of Reynolds number for different blockage ratios β at

Ha⋆ = 50. Linear trends in the data in (a) signifies an exponential relationship. The

values of Re is below the critical Reynolds numbers Rec. The asymptotic slopes of

∂ log10Gmax)/∂Re at β = 0.1, 0.2, 0.3, and 0.4 are 0.0091, 0.0096, 0.0117, and 0.0152,

respectively.
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Figure 6.13: Maximum energy growth Gmax (a) and time of maximum of the energy

maximum (b) as a function of Reynolds number for different blockage ratios β at

Ha⋆ = 120. The values of Re is below the critical Reynolds numbers Rec. The

asymptotic slopes of ∂ log10Gmax/∂Re at β = 0.1, 0.2, 0.3, and 0.4 are 0.0057, 0.0062,

0.007 and 0.0089 respectively.
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Figure 6.14: Maximum energy growth Gmax (a) and time of maximum of the energy

maximum (b) as a function of critical parameter ratio CRe for different blockage ratios

β at Ha⋆ = 50. The minimum and maximum CRe corresponding to Re = 100− 400

are −0.92 and −0.43, respectively. Colours and symbols as per Fig. 6.12.
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Figure 6.15: Maximum energy growth Gmax (a) and time of maximum of the energy

maximum (b) as a function of critical parameter ratio CRe for different blockage ratios

β at Ha⋆ = 120. The minimum and maximum CRe corresponding to Re = 300− 800

are −0.87 and −0.40, respectively. Colours and symbols as per Fig. 6.13.
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white noise to the inflow. Even for low levels of random noise (e.g. a disturbance

envelope of 0.1u0), a distinct pattern of disturbance is observed behind the cylin-

der. This disturbance pattern appears in the vicinity of the separation of the flow

from the sides of the cylinder, and is observed to propagate downstream along

the separated shear layers in the wake, becoming broader. These flaring distur-

bance zones meet at the wake centerline, and further downstream a disturbance

pattern is observed which is consistent with those observed to have evolved from

the optimal initial disturbance leading to maximum energy growth for the given

parameters.

Further analysis of the system with the inflow perturbed by white noise with

an amplitude of 0.5u0 is elucidated in Fig. 6.17. In Fig. 6.17(a), a simulated

dye visualization image is produced (Sheard et al. 2007; Sheard 2009) following

injection of a high concentration of passive tracer particles into the flow from

the vicinity of the surface of the cylinder. Particles are evolved using an im-

plementation Neild et al. (2010) of the high-order particle transport algorithm

of Coppola et al. (2001). This visualization approach reveals an instantaneous

streakline pattern in the flow, which demonstrates that at these flow and pertur-

bation conditions (which are below the critical Reynolds number for the onset

of vortex shedding), the level of upstream disturbance is sufficient to invoke an

observable wavy disturbance downstream of the wake recirculation bubble.

Fig. 6.17(b) plots vorticity in the flow, which exhibits the same wavy per-

turbation seen in Fig. 6.17(a). The flow is characterized by a pair of symmetric

counter-rotating vortices on either side of the wake centerline. The bubble length

of the wake is of particular interest when considering the behavior of transient

disturbances in the flow, as separated shear layers appear to consistently act as

an amplifier of disturbances. Note that the vorticity decays relatively quickly

downstream of the wake recirculation bubble due to Hartmann damping, though

waviness in the dye streak persists further downstream. This may have significant

implications for efforts to enhance mixing across magnetohydrodynamic channel

flows.

Attention is now directed to the disturbance field, which is generated by sub-
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tracting the unperturbed flow from the perturbed flow. In Fig. 6.17(c), vorticity

in the disturbance field is plotted. In comparison to the strength of vorticity

structures in the wake, very weak vorticity structures can be observed to the

left of the cylinder. This demonstrates the significant degree by which distur-

bances have been amplified as they convect past and downstream of the cylinder.

Included for comparison with this disturbance field are the corresponding opti-

mal perturbation evolved to τmax and the leading global linear instability mode

(Figs. 6.17(f) and 6.17(g), respectively). Downstream of the recirculation bubble

a good agreement is observed across these three plots: alternating-sign vortex

structures repeating at a consistent streamwise wavelength are observed, which

decay further downstream of the cylinder. The notable point of difference is that

the white-noise disturbance field also features diverging zones of disturbance vor-

ticity convecting from the flow separation points either side of the cylinder and

into the wake. Whereas the optimal disturbance at τmax and the global mode

correspond to isolated disturbances in an otherwise unperturbed flow, the distur-

bance field is continuously fed by upstream disturbances. The visible disturbances

in the separated shear layers appear as a result of this continuous injection of up-

stream disturbances, and reflect the amplifying nature of this region of the wake

flow.

The energy field of the disturbance offers an added perspective on the per-

turbed flow, and is plotted in Fig. 6.17(d). Whereas the disturbance vorticity

field compares favorably with that of the optimal growth mode evolved to time

t ≈ τmax, the energy fields are notably different. Firstly, the disturbance energy

field exhibits a clear asymmetry about the centreline downstream of the cylin-

der. This asymmetry demonstrates that the disturbance has evolved to levels

well beyond the linear regime, and is consistent with the observed waviness in

Figs. 6.17(a) and 6.17(b). Secondly, the disturbance energy field displays signifi-

cant zones of energy either side of the cylinder, which is absent from the optimal

disturbance energy plots in the vicinity of τmax (see Fig. 6.9). This feature bears a

close similarity to the energy field of the optimal initial condition, which is shown

in Fig. 6.17(e). The interpretation to be drawn from this is that the weak inflow
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(a)

(b)

(c)

Figure 6.16: Disturbance vorticity contours obtained for Re = 1160, Ha⋆ = 200 and

β = 0.4. The disturbance velocity field was isolated by subtracting the unperturbed

steady-state solution from a snapshot of the simulations perturbed by white noise.

Shown are cases computed with envelopes of white noise amplitudes of (a) 0.1u0, (b)

0.3u0, and (c) 0.5u0.

disturbances supply energy to the optimal transient modes in the flow, which in

turn lead to amplification of the disturbances as they convect aft of the cylinder

and into the wake. As the optimal mode has been shown to act as an amplifier

for the global linear instability mode (as also seen in Abdessemed et al. (2009a)),

these disturbances therefore manifest in a fashion consistent with the instability

mode effectively leading to a (weak) von Kármán vortex street.

6.4 Chapter Summary

In this chapter, an investigation has been carried out into the transient growth of

optimal linear perturbations of a liquid metal magnetohydrodynamic flow past a

confined cylinder in a duct under a strong axial magnetic field in the subcritical

regime prior the onset of oscillations. Under these conditions, the flow is quasi

two–dimensional and the modified Navier–Stokes equations are solved in a two–

dimensional domain.

For all blockage ratios, for a given Reynolds number, very significant transient

energy growth was found in this regime, which suggests a potential for the de-

187



(a)

(b)

(c)
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Figure 6.17: Plots visualizing a computation at Re = 1160, Ha⋆ = 200 and β = 0.4

perturbed by a random disturbance at the inflow with an amplitude of up to 0.5u0.

Frames show (a) simulated dye visualization of the disturbed flow; (b) the vorticity

field of the disturbed flow; (c) the isolated disturbance vorticity as per Fig. 6.16;

(d) the base-10 logarithm of the energy in the disturbance field shown in (c); (e)

the base-10 logarithm of the energy of the optimal initial disturbance computed for

evolution time τmax for the unperturbed flow; (f) vorticity field of the linear optimal

initial disturbance evolved to time t = τmax; and (g) vorticity in the leading global

instability mode for the unperturbed flow obtained from a linear stability analysis.

In each frame, arbitrary contour levels are plotted to elucidate the key features of the

flow in each frame.
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sign of actuation mechanisms to promote vortex shedding and thus enhance heat

transfer in these ducts. The energy amplification of the disturbances was found

to decrease significantly with increasing Hartmann number, where the maximum

growth peaks at shorter time intervals. This is due to the reduction of pertur-

bation kinetic energy by Hartmann damping. The global maxima of energy was

found to vary significantly with blockage ratio, being longer at higher β. The

structure of the disturbance was found to be consistent across all blockage ratios

being tested.

The optimal disturbance was maximal in the region of the boundary layer

separation around the cylinder near the wake. The perturbation convects along

the separating region being amplified to the peak growth state downstream of the

recirculation bubble. The τmax was found to increase significantly as recirculation

length increases which demonstrates the amplifying nature of the separated shear

layers in the wake.

For all Re at high Hartmann number, it was found that increasing β leads to

a significant increase of the energy amplification and to shift the global maxima

towards smaller times. For β ≤ 0.2, there was a substantial change in the τmax of

the global maxima. However, it changed very slightly for β ≥ 0.3.

The critical Reynolds number for positive energy growth of the optimal dis-

turbance, Rec1, was found to increase significantly with increasing blockage ratio

and Hartmann number. The optimal disturbances at Re ≤ Rec1 monotonically

decreased with τ , while for Re ≥ Rec1 the energy of an optimal disturbance in-

creases rather than decreases from its initial value. For all β, it is found that

Gmax grows exponentially with Re at low and high Hartmann numbers.

Direct numerical simulation in which the inflow was perturbed by white noise

demonstrated that the optimal transient growth properties of the flow could be

activated by continuous upstream random perturbations, which results in a sig-

nificant amplification of the disturbances as they pass around the cylinder. This

was sufficient to partially destabilize the wake through the global instability re-

sponsible for producing the von Kármán wake, despite the simulation being run

at conditions below the critical Reynolds number for vortex shedding.
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Chapter 7

Heat Transfer Enhancement
Induced by a Torsionally
Oscillating Cylinder

The results presented in chapter 6 demonstrated that very significant transient

energy growth was found in the subcritical regime below the onset of Kármán vor-

tex shedding. The results show that the optimal disturbance fields are strongest

near the cylinder and that they are consistent with an asymmetrical disturbance

with respect to the horizontal centreline of the system. This suggests a potential

for the design of actuation mechanisms to invoke unsteady flow at low Reynolds

numbers and thus enhancing the heat transfer from the heated surface in ducts

using a perturbation introduced through the cylinder. Examples could be either a

transverse or torsional oscillation tuned to the frequency of the evolving optimal

disturbance.

In this chapter, a mechanism for enhancement of heat transfer from the heated

duct wall is explored, based on a torsional cylinder oscillation intended to excite

vortex shedding in the normally steady-state flow regime. This is significant

due to the natural damping of vortex shedding that occurs at high Hartmann

number, which in turn limits the efficiency of heat transfer. To this end, the

fluid structure and heat transfer characteristics of the flow of a liquid metal past

a circular cylinder undergoing torsional oscillation and confined in a duct in the

presence of a strong magnetic field will be investigated. The effects of the angular

torsional oscillation velocity amplitude A and oscillation frequency fe on the heat
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transfer and flow characteristics are examined for a test case with a constant

blockage ratio β = 0.3 and Hartmann number Ha⋆ = 50.

7.1 Motivation of this Study

As stated, the work contained in this chapter was motivated by the findings of

chapter 6. The rationale for investigating this proposed heat transfer enhance-

ment mechanism is outlined here. Vorticity and energy contours of the optimal

disturbance field for β = 0.3, Ha⋆ = 50 and Re = 1075 are presented in Fig. 7.1.

The initial disturbance vorticity field is concentrated in the vicinity of the cylin-

der around the recirculation bubble as shown in Fig. 7.1(a). Fig. 7.1(b) presents

the base-10 logarithm of energy contours of the initial disturbance, which further

indicates that the energies of initial optimal disturbance are localized and con-

centrated around the cylinder. The work presented in Chapter 6 demonstrated

that the optimal disturbance excites the global instability mode associated with

vortex shedding, and that vortex shedding will enhance heat transfer through the

duct wall when compared to the Hartmann-damped steady-state flow at higher

Hartmann numbers. The proximity of optimal perturbation structures to the

cylinder motivates the pursuit of a mechanism for perturbation of the flow that

is invoked at or near the surface of the cylinder.

(a) (b)

Figure 7.1: Vorticity and energy contours of the optimal initial disturbance at Re =

1075, Ha⋆ = 50 and β = 0.3, acuired for τ = 7.51. Frames show (a) the vorticity

field of the optimal initial disturbance, and (b) the base-10 logarithm of energy in

the initial disturbance. Contours level are arbitrary chosen, and in (a) the solid lines

show the separating streamlines for the underlying flow.
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The perturbation vorticity field in Fig. 7.1(a) has reflective symmetry about

the wake centreline. Thus, the underlying velocity field cannot possess reflective

symmetry about the wake centreline. This implies that a perturbation mecha-

nism that acts to break symmetry about the wake centreline will be preferred

for inciting instability. To further illustrate the asymmetry of the flow that is

introduced by the evolving optimal perturbation, Fig. 7.2 shows time histories

of vertical and axial velocity components that are generated from perturbing the

flow with the optimal initial condition. The velocity components are recorded

at locations immediately above and below the cylinder. The amplitude of oscil-

lations decrease over time as the disturbance convects downstream. Notice that

both the vertical and horizontal velocity components measured above and be-

low the cylinder have identical time histories. This reiterates that the optimal

perturbation breaks the reflective symmetry of the wake. Possible perturbation

mechanisms that could feed energy into the separating shear layers could include

imposing a transverse oscillation on the cylinder (Leontini et al. 2007; B.Celik

& Beskok 2009; Celik et al. 2010), or a torsional oscillation (Baek & Sung 1998;

Mahfouz & Badr 2000). Working within the constraints of the present numerical

algorithm, though the remainder of this chapter a mechanism featuring torsional

oscillation of the cylinder will be explored for its potential to enhance the heat

transfer from the heated wall.

7.2 Geometry and Boundary Conditions

As before, the configuration of the physical system to be considered is shown in

Fig. 7.3 where a circular cylinder of diameter d is placed at the centre of a duct

parallel to the magnetic field and perpendicular to the flow direction. In this case a

torsional oscillation is imposed on the cylinder about its own axis. The duct walls

and the cylinder are assumed to be electrically insulated. A uniform homogeneous

axial magnetic field with a strength B is imposed parallel to cylinder axis. One

of the walls oriented parallel to the magnetic field is heated to a constant wall

temperature Tw whereas the other wall and the inflow have temperature T0. The

cylinder is located at 8d and 25d from the inlet and outlet, respectively, which
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Figure 7.2: The time histories of u′ and v′ velocities recorded at locations (a) above

and (b) below the cylinder for Re = 1075, Ha⋆ = 50 and β = 0.3, for linearized

evolution of the optimal perturbation (τ = 7.51). x and y are measured from the

centre of the cylinder. These velocities are normalized to have an absolute maximum

value of unity.

are sufficient to obtain domain independent results as demonstrated previously

in § 4.2.1.

The boundary conditions imposed here are identical to those used for the

symmetrical flow geometry, with the exception of the imposed cylinder rotation.

On the cylinder wall, a periodic torsional oscillation condition is applied. Since

the cylinder is rotated sinusoidally in time at a forcing frequency fe, the angular

velocity of the cylinder is expressed as

θ̇cyl = A sin(2πfet). (7.1)

The maximum tangential surface speed of the cylinder is therefore given by

A(d/2), and the angular amplitude of displacement of the oscillation is given
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Figure 7.3: The physical model of the torsionally oscillating cylinder system under

investigation. The magnetic field B acts in the out-of-plane direction, parallel to the

cylinder axis. δS is the thickness of the Shercliff layer, and h and d are the duct

width and cylinder diameter, respectively. The blockage ratio β = d/h = 0.3. The

upstream and downstream lengths are xu = 8d and xd = 25d, respectively.

by A/(2πfe). Hereafter, A is taken to have been non-dimensionlized by u0/d

and frequency results are reported based on the dimensionless Strouhal number

defined in equation (3.76), Ste =
fed

u0
. The cylinder is thermally insulated, and a

zero normal temperature gradient is imposed at its surface.

In this chapter, the blockage ratio and Hartmann number are kept constant

at β = 0.3 and Ha⋆ = 50, and the control parameters Ste and A are varied. The

mesh representing the elemental discretization of the computational domain is

shown in Fig. 7.4.

Again, a convergence study for spatial resolution has been performed by vary-

ing the element polynomial degree from 4 to 9, while keeping the macro-element

distribution around the cylinder unchanged unchanged. However, it is true that

cylinder rotation reduces the boundary layer thickness at the cylinder surface so
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Figure 7.4: Spectral element mesh of the confined symmetrical cylinder employed

for the torsional oscillation study. The mesh extends 8d upstream and 25d down-

stream of the cylinder. Collection points within elements are not shown.

Np CL,max CM,max Nu

4 4.7330 0.6693 2.5451
5 4.6408 0.6788 2.5494
6 4.6608 0.6732 2.5553
7 4.6766 0.6736 2.5617
8 4.6768 0.6738 2.5616
9 4.6768 0.6740 2.5615

Table 7.1: Peak lift coefficient amplitude CL,max and average Nusselt number along

the heated wall Nu with varying polynomial order for a torsional oscillating cylinder

at Ha⋆ = 50, Re = 1075, A = 3, Ste = 0.2 and β = 0.3.

that higher interpolation order is needed to obtain the same accuracy as for the

previous studies, as is shown by the p-refinement resolution study. This has been

conducted to gain an understanding as to whether the addition of cylinder rota-

tion affects the spatial convergence of the simulations. The maximum lift coeffi-

cient CL,max, maximum moment coefficient CM,max and the time-averaged Nussult

number along the heated wall Nu were monitored. Convergence tests were per-

formed for an oscillation amplitude A = 3, Ste = 0.2, Re = 1075, Ha⋆ = 50 and

β = 0.3. This case has been chosen as it exhibits high energy growth compared

to other case at small blockage ratios. The results are presented in Table 7.1. It

is found that the results differ by less than 0.5% of the most resolved case when

Np = 7, which is hereafter used for the remaining simulations reported in this

chapter.
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7.3 Effects of Oscillation Frequency and Ampli-

tude on Heat Transfer

In this chapter, a wide range of velocity amplitudes A and forcing frequencies

Ste are investigated. The velocity amplitude is varied over the range 0 ≤ A ≤ 3,

while the forcing frequency is varied over 0 ≤ Ste ≤ 10. This range of parameters

is consistent with the range employed in previous studies which have considered

the torsional oscillation of a cylinder in a free stream flow (e.g. Mahfouz & Badr

(2000)). However, to focus on important results, vorticity and temperature con-

tours are presented only for cases where the maximum heat transfer occurred.

The time-averaged Nusselt number for a broad range of forcing frequency Ste

is shown in Fig. 7.5 for a selection of oscillation ampliudes. Note that without

cylinder rotation, the flow remains steady for this combination of parameters.

The critical Reynolds number for the onset of vortex shedding at this β and Ha

is Rec = 1100. The figure shows that there is a significant enhancement in heat

transfer obtained for high angular velocity amplitudes. It is also interesting to

observe that as the oscillation amplitude increases, the frequency producing peak

heat transfer decrease, and a wider range of frequencies produce heat transfer

enhancement. For comparison, frequencies associated with both the dominant

linear instability and the optimal disturbance are each included in the plot. It

can be seen that increasing A shifts the frequency for peak heat transfer enhance-

ment away from these frequencies, presumably as a result of non-linearity of the

imposed perturbation.

In Fig. 7.6, the peak heat transfer coefficient at each angular velocity am-

plitude, Numax, is plotted against A. It can be observed that Numax increases

significantly as A increased. This may be attributed to the fact that stronger

vortices are generated behind the cylinder when it oscillates with larger ampli-

tude thanks to the higher shear between the moving cylinder surface and the flow

during the part of the cycle where the cylinder is moves against the flow. It is

noted that the most rapid increases are formed for smaller A. hence there is a

diminishing benefit in terms of heat transfer enhancement when the amplitude is
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Figure 7.5: The distribution of time-averaged Nusselt number over the heated sur-

face of the side wall with excitation frequency of the cylinder at different amplitudes

for Re = 1075 and Ha⋆ = 50. For reference, Nusselt number for the case of steady

flow without oscillation (Ste = 0) is shown by the horizontal dashed line.

progressively increases.

The percentage increments to the overall heat transfer are approximately

6.5%, 11.5%, 15%, and 22% for A = 0.1, 0.5, 1.0, and 3.0, respectively, over

that obtained for steady flow. The effect of increasing the amplitude on heat

transfer enhancement is further clarified in Fig. 7.7. However, again it is noted

that the change in heat transfer per unit increase in A decreases with increasing

A. This indicates there is a practical limit to the benefit of this heat transfer

enhancement mechanism, whereby the benefit of enhancing heat transfer may be

outweighed by the cost of increasing A.

To illustrate the role of oscillation and perturbation frequencies on the flow,

Fig. 7.8(a) shows the variation of forcing frequency for maximum heat transfer

Ste,max with oscillation amplitude. The figure suggests that as A→ 0, the optimal
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Figure 7.6: The variation of peak time-averaged Numax over the heated surface with

velocity amplitude of the cylinder for Re = 1075 and Ha⋆ = 50.

excitation frequency approaches the frequency of the global mode predicted from

linear stability analysis. Fig. 7.8(b) presents the frequency predicted by linear

stability analysis (LSA), transient growth (TG) analysis and DNS as a function

of Reynolds number. Relatively higher frequencies are observed prior to the onset

of vortex shedding. The preferred wake frequency is observed to decrease as

the non-linear regime is entered (either through increasing the Reynolds number

or by imposing a higher-amplitude forcing through oscillation of the cylinder),

which also creates large-scale oscillations in the wake. In addition, it is worth

mentioning that frequencies predicted by LSA and those by TG are very close,

and they intersect near the unsteady transition Reynolds number. This confirms a

conclusion of chapter 6 that heat transfer enhancement is viable, and is consistent

with the position that the optimal perturbation excites and feeds energy into the

global wake mode.

In order to determine the range of driving frequencies where appeciable heat

transfer enhancement is generated, a full width at half maximum (FWHM) anal-
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Figure 7.7: The percentage increase to the heat transfer generated by oscillating a

cylinder in the duct as a function of velocity amplitude of the cylinder for Re = 1075

and Ha⋆ = 50.

ysis is applied. The full width at half maximum is a parameter usually used to

describe the width of a peak of a function (Smith 2003). It is given by the fre-

quency range at which the function reaches half its maximum value as indicated

in Fig. 7.9. A smaller FWHM corresponds to a narrower frequency bandwidth

and vice versa for larger FWHM. The details of FWHM obtained at different

amplitudes are listed in Table 7.2. These are represented relative to the zero-

oscillation baseline Nus = 2.15. The results show that FWHM almost doubles

as the forcing frequency is increased from 0.1 to 3. Thus at large amplitude, the

range of forcing frequencies that produce significant heat transfer improvement

is higher than for small amplitudes.

7.4 Flow Structure and Heat Transfer

In this section, the effect of a torsional cylinder oscillation on the flow struc-

ture and heat transfer are examined. Vorticity contours for different frequency
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Figure 7.8: (a) A plot of oscillation frequency for maximum Nusselt number

(Ste,max) as a function of angular velocity amplitude of the cylinder. (b) A plot

of shedding frequency St against Re showing the natural frequency predicted by lin-

ear stability, DNS and transient growth analyses, as labelled. The data from (a) is

included at Re = 1075 for comparison.
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Figure 7.9: Estimation of full width at half maximum FWHM of frequencies at

A = 3 for Re = 1075 and Ha⋆ = 50.

amplitudes at the frequency of maximum heat transfer augmentation are shown

in Figs. 7.10-7.13 (parts bi − ei). Each set of figures show results for a differ-

ent amplitude A, compared to those for a stationary cylinder. Snapshots are

provided at each quarter of an oscillation cycle. For stationary case, the flow is

characterized by a pair of a symmetric counter-rotating vortices on the either side

of the wake centerline. The temperature field is time-independent, and steady

structures observed in the thermal boundary layer.

A Half max.Numax Ste1 Ste2 FWHM

0.1 2.2171 0.3016 0.4287 0.1271
0.5 2.2702 0.2038 0.3896 0.1858
1.0 2.3044 0.1501 0.3798 0.2298
3.0 2.3747 0.0865 0.3358 0.2493

Table 7.2: Calculated full width at half maximum FWHM Strouhal number ranges

at different oscillation amplitudes for Re = 1075 and Ha⋆ = 50.
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At the lowest amplitude of oscillation (A = 0.1), a pattern of wake shedding

is produced that closely resembles natural vortex shedding in an unperturbed

flow above the critical Reynolds number. Note in particular that successive alter-

nately shed vortices align approximately in a single row. These advecting vortices

weakly interact with the wall boundary layers as they travel downstream (note

the visible variation in wall boundary layer thickness between approximately 1

and 5d downstream of the cylinder). Considering Fig. 7.11, as the cylinder os-

cillation amplitude is increased to A = 0.5, the vortex formation length shortens

and the vortices move closer to channel side walls as as they convect downstream.

In addition, the intensity of vortices increases. The wall shear layers start to

entrain inwards to interact with the vortices shed from the cylinder. This effect

is further pronounced at A = 1 (Fig. 7.12), whereas by A = 3 (Fig. 7.13) the

wall shear layers roll up into opposite-sign vortices that pair with wake vortices.

These counter-rotating vortex pairs then self-propel inwards from the walls, ex-

plaining the increasing heat transfer enhancement with increasing A. It can also

be speculated that the reason for the diminishing heat transfer enhancement at

larger A may be because this mechanism for inciting advection of the fluid away

from the heated wall has a limited capacity for enhancement, and has likely been

likely exhausted by A = 3.

In order to better characterize the effect of the vortex patterns on the wall

heat transfer, corresponding temperature contours are presented in Figs. 7.10-

7.11 (parts bii − eii). The wavy structures observed in the thermal boundary

layers are due to the cross-stream mixing induced by the presence of advecting

vortices. The net effect is for low-temperature fluid to be transported toward the

hot region of the channel and the high-temperature fluid near the heated wall to

be convected away to mix with the low-temperature fluid. This process enhances

the mixing between the heated surface and the cold fluid, and as a result the heat

transfer is significantly enhanced compared to the stationary cylinder.

Fig. 7.14 presents the distribution of the local Nuselt number Nuw along the

heated surface as a function of stream-wise coordinate x for different oscillation

amplitudes. It is found that the effect of oscillation amplitude on the distribution
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Figure 7.10: Vorticity and temperature contours plots for fixed and torsional oscil-

lating in a channel for Re = 1075, Ha⋆ = 50 and β = 0.3. Fixed cylinder (ai,aii).

Rotating oscillating cylinder for one oscillating cycle at A = 0.1 for maximum fre-

quency: (bi,bii) t = t0 + Te/4, (ci,cii) t = t0 + 2Te/4, (di,dii) t = t0 + 3Te/4 and

(ei,eii) t = t0 + Te. In the vorticity plots, red and blue contours show positive and

negative vorticity, and in the temperature plots, yellow is hot and black is cold fluid,

respectively. 204
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Figure 7.11: Vorticity and temperature contours plots for fixed and torsional oscil-

lating in a channel for Re = 1075, Ha⋆ = 50 and β = 0.3. Fixed cylinder (ai,aii).

Rotating oscillating cylinder for one oscillating cycle at A = 0.5 for maximum fre-

quency: (bi,bii) t = t0 + Te/4, (ci,cii) t = t0 + 2Te/4, (di,dii) t = t0 + 3Te/4 and

(ei,eii) t = t0 + Te. Contours and shading are as per Fig. 7.10.
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Figure 7.12: Vorticity and temperature contours plots for fixed and torsional oscil-

lating in a channel for Re = 1075, Ha⋆ = 50 and β = 0.3. Fixed cylinder (ai,aii).

Rotating oscillating cylinder for one oscillating cycle at A = 1 for maximum fre-

quency: (bi,bii) t = t0 + Te/4, (ci,cii) t = t0 + 2Te/4, (di,dii) t = t0 + 3Te/4 and

(ei,eii) t = t0 + Te. Contours and shading are as per Fig. 7.10.
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Figure 7.13: Vorticity and temperature contours plots for fixed and torsional oscil-

lating in a channel for Re = 1075, Ha⋆ = 50 and β = 0.3. Fixed cylinder (ai,aii).

Rotating oscillating cylinder for one oscillating cycle at A = 3 for maximum fre-

quency: (bi,bii) t = t0 + Te/4, (ci,cii) t = t0 + 2Te/4, (di,dii) t = t0 + 3Te/4 and

(ei,eii) t = t0 + Te. Contours and shading are as per Fig. 7.10.
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of Nusselt number along the heated wall is significant. The figure shows that as

A is increased, there is a progressive increase in Nuw over a region extending from

the cylinder to a distance downstream of the cylinder. It can also be seen that

the duct wall region over which the local Nusselt number is increased (compared

to the A = 0) moves upstream. i.e. As A is increased over 0.1, 0.5 and 1, the

point of maximum increase in local Nusselt number advances upstream from

approximately x/d = 10 to 5 (see Fig. 7.14b). The large oscillation velocity

amplitude (A = 3) also produces maximum increase in Nuw at approximately

x/d = 5, but it is also notable that unlike the lower oscillation velocity amplitudes,

A = 3 shows significantly increased local Nusselt number near to the cylinder

(i.e. 1 . x/d . 2.5). An explanation for this can be deduced from the vorticity

plots shown in Figs. 7.10-7.13. These figures show that for A = 3, the wake

vortices are cast to the side walls much nearer to the cylinder than for the smaller

amplitudes. As a result, the highest local Nusselt number is observed for the

A = 3 case. On the other hand, the local Nusselt number measurements upstream

of the cylinder are coincident for all velocity amplitudes, where the flow and

heat transfer characteristics are very similar. This demonstrates that the heat

transfer enhancement benefit is only felt downstream of the cylinder, and this is

also reflected in Figs. 7.10-7.13, where no visible differences are apparent in the

vorticity and temperature fields upstream of the cylinder.

A notable observation from Fig. 7.14 is that the enhancement to heat transfer

is higher in the near wake region, where the wake vortices are strongest. Further

downstream these vortices decrease in strength rapidly due to Hartmann damping,

and the local Nusselt number again approaches that for the steady wake case.

The predicted enhancement to the time-averaged Nusselt number was based on

using the entire computational domain length to calculate the spatial average;

however, perhaps a more physically based averaging length would be the active

wake region. In practice, there would be no reason to just use a single cylinder

to enhance heat transfer, i.e. more cylinders could be positioned along the duct

centreline to regenerate the wake.

Figs. 7.10-7.13, show that the wake vortices are clearly discernible for only
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Figure 7.14: (a) Local Nusselt number over the heated surface of the side wall and

(b) the difference Nuw −Nus as a function of x/d at different oscillation amplitudes

for maximum frequency at Re = 1075 and Ha⋆ = 50.
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approximately 10 cylinder diameters downstream. For example, for small and

large velocity amplitudes (A = 0.1 and A = 3), the ratio between the vorticity at

10 cylinder diameters to that of maximum vorticity ωx=10d/ωmax ≈ 0.1 and 0.04,

respectively. Reducing the spatial averaging length to just the 10d immediately

downstream of the cylinder increases the heat transfer enhancement over the base

case from 22% to 33% for A = 3. For the other rotation speeds the enhancement

is also approximately 50% more.

7.5 Power Requirements

Consideration is now given to the mechanical power required to oscillate the cylin-

der about its axis. The moment of inertia of the cylinder, friction in bearings and

other mechanical losses are not considered. Only the power required to overcome

the moment exerted by the flow on the cylinder is considered. Mathematically,

this can be determined from the dot product of the moment exerted by the fluid

on the cylinder and its angular velocity vector as

P (t) = −M(t) · θ̇cyl(t), (7.2)

where the negative sign appearing in equation (7.2) indicates that the power is

added to the system to drive the cylinder. Here both M and θ̇cyl are defined as

counterclockwise positive. The time-averaged power is obtained by integrating

the instantaneous power over a time using

Pavg =
−1

t

∫ t

0

M · θ̇cyl dt. (7.3)

The time variation of the moment and mechanical power required to drive the

cylinder for different velocity amplitudes at maximum frequency is presented in

Fig. 7.15 for different velocity amplitudes at the maximum frequency. From

Fig. 7.15(a), a significant phase-shift in the moment is observed as A increases.

Therefore, it is expected that the power required to oscillate the cylinder grows

substantially as A increases. The time variation of power in Fig. 7.15(b) indicates

that the minimal power requirement occurs for A = 0.5. This is likely related to

the fact that the forcing frequency at small amplitude approaches the frequency
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of global mode (see Fig. 7.8), resulting in the flow resembling that of stationary

confined cylinder above the shedding transition.

To quantify the magnitude of oscillations in the moment time history, which

are not necessarily perfectly sinusoidal, a root mean square (RMS) measure of

the moment is employed, defined as

MRMS =

√
1

t

∫ t

0

[m(t)]2dt. (7.4)

It is found that MRMS increases almost 321%, 682% and 1986% as A changes

from 0.1 to 0.5, 1 and 3, respectively. The variation of MRMS with A is shown in

Fig. 7.16(a), which follows a power law relationship that is given by

MRMS = 0.045 A0.89. (7.5)

The variation in the time-averaged and maximum power are predicted in

Fig. 7.16. The figure reveals that the averaged and maximum powers increases sig-

nificantly with increasing A, and they depend on approximately the 1.9th power.

The relation between the power and amplitude is found to be

Pmax = 0.055 A1.88, (7.6)

Pavg = 0.023 A1.89. (7.7)

Interestingly, P ∝ A1.9 and M ∝ A0.9. In the other words, P ∝ M × A, which

follows from equation (7.1) , as A is a measure of the angular velocity appearing

in equation (7.2).

To quantify the power required to torsionally oscillate the cylinder against the

flow, a comparison is made to the power required to pump the fluid through the

channel. The time-averaged pumping power is calculated using the pressure drop

across the channel for the fixed and torsionally oscillated cylinder. The pumping

power P∆p, listed in Table 7.3, increases with increasing velocity amplitude of the

cylinder. Not suprisingly, the larger velocity amplitude (A = 3), results in only

3.5% increase in the pumping power compared to that for a stationary cylinder,

and the power required to oscillate the cylinder is about two order of magnitudes

lower than for the pumping power. Using the data given in Table 7.3, the increase
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Figure 7.15: Time variation of (a) the moment and (b) the power required to drive

the cylinder for A = 0.5, 1 and 3 at the optimal frequency.
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against A.
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A P∆p Pavg

0.0 1.93 0.0
0.1 1.94 2.99× 10−4

0.5 1.96 6.60× 10−3

1.0 1.97 2.28× 10−2

3.0 2.01 1.91× 10−1

Table 7.3: Pumping power required to drive fluid in the channel (P∆P ) and the

time-averaged power required to oscillate the cylinder, for Re = 1075 and Ha⋆ = 50.

in power compared with the stationary case are approximately 3% and 13% for

A = 1 and 3, respectively. For A ≤ 0.5, the increase is almost negligible.

7.6 Chapter Summary

In this chapter, a mechanism for heat transfer enhancement in the steady flow

regime due to damping at high Hartmann number involving rotational oscillation

of a cylinder placed in a duct is proposed and investigated over a wide range

of oscillation amplitudes and forcing frequencies. The motivation for exploring

this mechanism was inspired by the transient growth analysis performed in the

previous chapter, which indicated that the optimal disturbances are localized near

the cylinder and are characterised by an asymmetrical disturbance with respect

to the wake centreline.

The results show that there is a considerable increase in heat transfer from the

heated channel wall due to rotational oscillation of the cylinder, with maximum

enhancement of almost 22% observed for the highest amplitude case examined

over steady flow, increasing to more than 30% in a zone extending 10d downstream

of the cylinder. The range of Ste for effective enhancement was widened, and the

frequency at which the peak Nusselt number occurred was shifted slightly to the

lower frequency, as A was increased. It was found that as the amplitude was

reduced, the optimal forcing frequency approached the frequency of the global

mode. FWHM analysis showed that for the largest amplitude case the range

of forcing frequencies that produced higher augmentation in heat transfer was

approximately 100% larger than for the smallest amplitude case.
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The wake vorticity and temperature contours were found to be closely related.

As the amplitude was increased, the formation of strong discrete wake vortices

induced the wall boundary layers to be drawn away from the walls enhancing heat

transfer. The effect of oscillation amplitude on the distribution of local Nusselt

number Nuw along the heated wall was significant. For small A, the distribution

was found to be similar to that for a fixed cylinder (i.e. A = 0). However, for

large A, significant enhancement occurred in the cylinder near the wake before

dropping away further downstream.

Calculations of the power required to oscillate the cylinder indicated that

the demands of time-averaged and maximum power significantly increased as the

velocity amplitude of oscillation increased from A = 0.1 to 3, and they depend on

1.89th and 1.88th power, respectively. For the largest amplitude, an increase in the

pumping power was predicted compared to that for the stationary cylinder, the

pumping power was increased 3.5%. The power required to oscillate the cylinder

was about two order of magnitudes lower than that for pumping power.

Given that the improvement in heat transfer enhancement diminished with

increasing A, and the that the power requirements increases more steeply with

increasing A, it is apparent that there will certainly be a practical limit to the

available benefit of implementing a mechanism such that proposed here. However,

further exploration of these matters is beyond the scope of the present study.
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Chapter 8

Conclusions and
Recommendations for Future
Work

A numerical study on the investigation of magnetohydrodynamic flows and heat

transfer past a circular cylinder in a duct under a strong magnetic field parallel

to the cylinder axis has been conducted using a spectral-element method. Un-

der these conditions, the flow is quasi-two-dimensional and the modified Navier–

Stokes equations are solved in a two–dimensional domain. The numerical sim-

ulations have been performed over a range of parameters including Reynolds

numbers 50 ≤ Re ≤ 3000, modified Hartmann number 50 ≤ Ha⋆ . 500, and

blockage ratios 0.1 ≤ β ≤ 0.5. The few studies which have investigated similar

flow systems in the past have presented either the vortex dynamics or the heat

transfer enhancement at constant small blockage ratio. The present study pro-

vides a detailed investigation of the magnetohydrodynamic flows and heat transfer

enhancement as well as the transient response of the flow over a wider range of

blockage ratios. The major conclusions from this study are outlined below, along

with some suggestions for future work.

8.1 Conclusions

The critical Reynolds number for the transition from steady to unsteady flow at

different Hartmann numbers and blockage ratios was determined. It was found

that it increases with increasing Hartmann number and blockage ratio. The
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increment in Rec was more pronounced at high Ha⋆ and β.

In the steady flow regime, the effect of Hartmann number on the recirculation

bubble was found to be more significant at high blockage ratio. For β = 0.1, the

recirculation bubble is visible up to Ha⋆ = 120, while it is suppressed completely

beyond Ha⋆ ≈ 500 for β = 0.4. This was due to the consequence of Lorentz

force, which produces a force opposing the flow resulting in a decrease of the

wake length. The variation in the wake recirculation length is determined as

a function of Reynolds number, Hartmann number and blockage ratio, and a

universal scaling law is proposed as LR/d+ 0.709 ∝ Re0.844Ha⋆−0.711β0.166.

In the unsteady flow regime, for small blockage ratio (i.e. β ≤ 0.2) at Ha⋆ =

50 and Ha⋆ = 120, the structure of the vortex street was found to resemble

vortex shedding behind a circular cylinder in open non-MHD flows, where regular

positive and negative vortices shed alternately from the shear layer either side of

the cylinder. For β = 0.3 and Ha⋆ = 50, boundary layer entrainment of the

Shercliff layers from the duct side walls occurs downstream of the cylinder, which

was observed to increase gradually as the blockage ratio increases through 0.4 and

0.5. At these blockage ratios, the interaction between the Kármán vortex street

and vortices detached from duct side walls creates an obstacle that impeded its

downstream advection.

For β ≥ 0.3 and Ha⋆ = 120, the vortex street was observed to be completely

suppressed. The recirculation regions had almost constant length and separation

angle, and their shape changed little for β = 0.4 and 0.5.

For all β, it is found that the drag coefficient CD firstly decreases and then

increases as Reynolds number increases. The drag coefficient was dominated by

the pressure contribution. This is a result of the effect of Hartman friction and

the confinement of the wall which delay the transitions of the flow to a higher

Reynolds number. Therefore, the viscous contribution is much smaller than that

of the pressure. For all blockage ratio, it was also found that at each blockage

ratio the data collapse onto universal curves at lower values of Re/Ha⋆0.8.

The heat transfer from the heated wall was significantly dependent on the

Hartmann number and blockage ratio. It was found that it increased substantially
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as blockage ratio was increased at Ha⋆ = 50 while it increased gradually for

Ha⋆ = 120. Downstream cross-stream mixing induced by the cylinder wake was

found to increase heat transfer from the heated wall by more than a factor of two

in some cases when compared to the steady-state duct flow.

The distribution of local Nusselt number along the heated wall of the duct,

Nuw, was found to be independent on Hartamnn number for small blockage ratios

(i.e. β ≤ 0.2) while for high blockages, the change in Nuw was remarkable with

changing Hartmann number. The results also demonstrated that the curves of

Nuw collapse to a single curve at high Hartmann number and small blockage

ratio.

The proximity of the cylinder to the heated wall has significant effects on both

the flow and heat transfer. For β = 0.1, a two-row vortex street is formed with

clockwise negative and counter-clockwise positive vortices shed from the top and

the bottom shear layers of the cylinder, respectively. For β ≥ 0.2, the structure

of the vortex shedding changes dramatically on further decreases of gap ratio.

The vortex street drifts farther away from the wall and is convects along over the

entire downstream region. For high blockage ratio at γ ≥ 0.5, the shear layer

along the lower side of the cylinder and the shear layer along the wall merge and

roll up together downstream. At the smallest gap ratio, the wake vorticity on the

upper side of the cylinder elongates farther downstream.

The heat transfer enhancement depends strongly on the proximity of the cylin-

der to the heated wall. This is due to interaction of the lower wall shear layer with

that on the cylinder surface. For small blockage ratio, it increases significantly

as the gap ratio decreases from 1 to 0.25. However, there is a substantial drop in

heat transfer for high blockage ratio. Overall, the enhancement of heat transfer

was significantly augmented by 58%, 79% and 85%, respectively, by decreasing

the gap ratio for blockage ratios β ≤ 0.2. In contrast, for β = 0.4, the maximum

heat transfer augmentation was more than a factor of two (128%) at γ = 1 (i.e.

when the cylinder is far from the wall). Therefore, placing the cylinder in the

channel near the heated wall will not lead to a large pressure drop, but the action

of vortex shedding near the heated wall will improve the heat transfer.
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For all blockage ratios, a very significant transient energy growth was found

in the subcritical regime below the onset of the Kármán vortex shedding. The

optimal disturbance field is consistently concentrated near the cylinder around the

limiting streamline identifying the recirculation bubble, and is consistent with an

asymmetrical disturbance with respect to the horizontal centreline of the system.

This suggests a potential for the design of actuation mechanisms to invoke vortex

shedding at low Reynolds numbers and thus enhance the heat transfer from the

heated surface in ducts using a perturbation introduced through the cylinder.

The energy amplification of the disturbances was found to decrease signifi-

cantly with increasing Hartmann number and led to a shift of the peak growth

towards smaller times. This is due to the reduction of perturbation kinetic energy

by Hartmann damping. Conversely, the global maximum of energy was found to

increase significantly with increasing blockage ratio. This is due to the increased

acceleration of the flow in the neighborhood of the cylinder for higher blockage

ratios, making the Reynolds number effectively higher for higher β, although in-

creasing β also shortens the separation bubble length as well. The structure of

the disturbance was found to be consistent across all blockage ratios being tested.

The perturbation convects along the separating region being amplified to the

peak growth state downstream of the recirculation bubble. The resulting time

interval for maximum growth τmax was found to increase significantly as recircula-

tion length increases which demonstrates the amplifying nature of the separated

shear layers in the wake. This phenomenon is consistent with transient growth

in several systems for non MHD flows.

The critical Reynolds number for positive energy growth of the optimal dis-

turbance Rec1 was found to increase significantly with increasing blockage ratio

and Hartmann number. The optimal disturbances at Re ≤ Rec1 monotonically

decreased with τ , while for Re ≥ Rec1 the energy of an optimal disturbance in-

creases rather than decreases from its initial value. For all β, it is found that

Gmax grows exponentially with Re at low and high Harmann numbers.

Direct numerical simulation in which the inflow was perturbed by white noise

demonstrated that the optimal transient growth properties of the flow could be
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activated by continuous upstream random perturbations, which result in a sig-

nificant amplification of the disturbances as they pass around the cylinder. This

is sufficient to destabilize the wake through the global instability mode respon-

sible for producing the von Kármán wake, despite the simulation being run at

conditions below the critical Reynolds number for vortex shedding.

A mechanism for heat transfer enhancement from the heated surface in ducts

in the Hartmann-damped steady flow regime involving rotational oscillation of

the cylinder is proposed to invoke unsteady flow at low Reynolds numbers, and

thus enhance the heat transfer using a perturbation introduced through the cylin-

der. The motivation for choosing this mechanism was inspired from the transient

growth analysis reported in this thesis, which indicated that the optimal distur-

bances are localized near the cylinder and are characterized by an asymmetrical

disturbance with respect to the wake centreline.

It was found that there was a considerable increase in heat transfer from the

heated channel wall due to rotational oscillation of the cylinder, with maximum

enhancement of w 30% observed at higher amplitude than that of steady flow if

only the section of the wall adjacent to the vortex rollers in the wake is considered.

It is found that as the angular velocity of oscillation A increases, the forcing

frequency range for effective enhancement and the frequency at which the peak

of Nusselt number occurs is shifted slightly to a lower frequency. The frequencies

predicted by linear stability analysis and those by transient growth analysis are

very close, and they intersect near the transition, which confirms the fact con-

cluded by transient growth analysis that heat transfer enhancement is viable, the

optimal perturbation excites and feeds energy into the global mode.

8.2 Future Work

It is hoped that the present investigation has provided some understanding of

the dynamics and heat transfer of a magnetohydrodynamic flow past a circular

cylinder confined in a duct under a strong magnetic field. However, it has in turn

raised a number of questions that present potential avenues for further study.

These include:
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• Investigations should performed on the flow past a cylinder with square

or triangular cross-sections at different angles of attack to compare the

dynamics of the flow and level of heat transfer augmentation obtained to

that of a circular cylinder.

• For small blockage ratios, the effect of placing two or more tandem cylinders

near the heated wall on the flow and heat transfer characteristics will be

important as the length of ducts used for these flows is long. This may

reveal other states of shedding of fundamental interest.

• The effect of varying duct aspect ratio may affect the flow transitions and

heat transfer characteristics.

• A fully three–dimensional study is required to investigate the influence of

the weak three-dimensionality in the Shercliff layers for certain values of

Re, Ha⋆ and β. A three–dimensional linear stability analysis is desirable

for a condition of high blockage and offset ratio to verify whether the base

flow is genuinely two–dimensional.
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