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Summary 

Based on experimental results, in this study, two and three dimensional generation-
phase simulations for these high-speed crack propagation phenomena are carried out. The 
numerical simulations results provided energy flow to crack tip, the relationship of 3-D 
crack surface roughness versus the Φtotal parameters and the distributions of the dynamic 
J integral along the crack front.   

Introduction 

There have been several studies on limiting crack velocities in an elastic 
homogeneous material. According to energy theory of dynamic fracture mechanics, the 
crack propagation velocity C cannot exceed the Rayleigh wave velocity CR. Moreover, 
considering only the stress singular term near the crack tip, the analytical asymptotic 
stress field, suggests the maximum hoop stress deviates from the crack propagation 
direction when the crack velocity exceeds 60% of the shear wave velocity (C>0.6Cs) [1]. 
Therefore, until recently it has been considered that the straight crack propagation 
exceeding 0.6Cs never occurs.  

However, in the latest research, straight crack progress exceeding 0.6Cs is observed 
by experiment in the high-speed crack propagation in a fracture test and an Interface 
crack, in which the load system was pluralized. Therefore, it is necessary to reconsider 
the mechanism which defines the limit of crack propagation velocity.  

In our previous experimental study [2], the cracks were critically accelerated by using 
a multi-loading system. One of the crack propagation velocities reached 74% of the shear 
wave velocity. From the experimental study, loading histories, crack propagation 
histories and C.G.S. fringes were obtained.  

Based on these experimental results, in this study, two and three dimensional 
generation-phase simulations for these high-speed crack propagation phenomena are 
carried out. The generation-phase simulations are performed to estimate fracture energy 
flow and other parameters. Energy flow to crack tip are visualized by 2-D numerical 
simulation. In 3-D numerical simulation, the relationship of 3-D crack surface roughness 
and Φtotal parameters are obtained. The increase of the dynamic J integral with the 
increase of crack propagation velocity is measured in numerical simulations. Furthermore, 
the distributions of the dynamic J integral along the crack front are obtained. 
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Measurement of the Dynamic J Integral using the Equivalent Domain Integral 
(EDI) Method 

In this study, one of the fracture mechanics parameters, the dynamic J integral, as 
defined by Nishioka and Atluri [3], is used. The dynamic J integral is very attractive due 
to the following reasons: It has the physical meaning of the dynamic energy release rate; 
It has the property of being a path-independent integral; It can be related to the dynamic 
stress intensity factors by shrinking the integral path to the crack tip. 

In order to evaluate fracture parameters along a three-
dimensional crack front, Nishioka et al [4], developed the 
following procedures using the dynamic J integral [3]: 

J '
k = limΓε→0 W+K nk-tiui,k dS

Γε

                                                     (1) 

= limΓε→0 W+K nk-tiui,k dS
Γ+Γc

+ ρuiui,k-ρuiui,k dV
VΓ-Vε

                  (2) 

 where W and K are the strain and kinetic energy density, 
respectively; nk are the outward normal-direction cosines; ti is the traction; ui, ui, and ui 
are the components of displacement, velocity and acceleration of a material point, 
respectively; ρ is mass density; Γε is a near-field contour arbitrary close to the 
propagating crack-tip; Γ is an arbitrary far-field path; VΓ and Vε are the volumes enclosed 
by Γ+Γc and Γε, respectively.  

In order to ease the three-dimensional numerical evaluation of the dynamic J integral, 
an expression of dynamic J integral terms of equivalent domain integral (EDI) was 
developed [5]. Suppose that the crack front is divided into segments (see Fig.1), using a 
continuous function s that takes a non-zero value on the near-field path and the far-field 
paths, then the following equivalent domain integral expression is derived: 

J '
k = 1

f
σijui,ks,j- W+K s,k+ ρuiui,k-ρuiui,k s dV+

VΓ

W+K nk-tiui,k sdS
Γ1+Γ2

                                (3) 

In this study, we use two types of s functions [6] 
as presented in Fig.2. Type A gives the value of the 
dynamic J at the central corner node, and type C 
gives the value of the dynamic J at the mid-node, in 
a sense of a weighted mean. To evaluate the 
dynamic J integral at all nodes along the crack front, 
both types of the s function are jointly used. 

The s function can be interpolated using the shape functions of the 20-noded 
isoparametric elements, which are also used for the displacement field: 

 
   Fig.1 Crack front segment
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     Fig.2 Typical s function 
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s = Nq ξ,η,ζ sq·
q=1

20

                                                       (4) 

 where Nq and sq are the shape function and the value of the s function at the node q, 
respectively. 

Substituting Eq. (5) into Eq. (4), the dynamic J integral can be evaluated by: 

J '
k = 1

f
·
n=1

Nv

Rknqsq·
q=1

20

+1
f
·
n=1

Ns

Qknqsq·
q=1

20

                                                                                     (5) 

Rknq = σijui,kNq,j- W+K Nq,k+ ρuiui,k-ρuiui,k Nq dV
Vn

                                                               (6) 

Qknq = W+K nk-tiui,k NqdS
Sn

                                                                                                (7)  

in which f is the integral value of s function along a segment of crack-front under 
consideration; Nv and Ns are the total number of elements in VΓ and on the Γ1+Γ2; Vn and 
Sn are the volume and surface on the n-th element, respectively. 

Using the nature of the dynamic J as a vector, to avoid using transformation for stress 
and strain and other fields at all integration points in VΓ, the local components of dynamic 
J integral can be determined from the global components of the dynamic J integral 
through the relation 

J '0
l = αlkJ '

k                                                                                                                 (8) 

where αlk is the coordinate transformation tensor from the global coordinates Xk(k=1,2,3) 
to the crack-front coordinates xl

0 (l=1,2,3). 

Three-Dimensional Moving Finite Element Method [7] 

In the moving finite element method, three-dimensional 20-noded isoparametric 
elements are used. The 20-noded isoparametric elements used in the mesh are divided 
into three types: Type A: moving elements, Type B: distorting elements, Type C: non-
distorting elements, respectively. Type A elements near the crack front translate in each 
time step for which crack growth occurs. Type B elements, surrounding the moving 
elements are continuously distorted. 

The mesh pattern for the elements near the crack-tip translates in each time step for 
which the crack growth occurs. Thus, the crack-tip always remains at the center of the 
moving elements throughout the analysis. In order to simulate a large amount of crack 
propagation, the mesh pattern around the moving elements is periodically readjusted. 
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For the time integration of equation of motion, the Newmark β method is used. To 
obtain the numerical solution at the current steps, the nodal displacements, velocities and 
accelerations at the previous step are required. Therefore, the displacements, velocities 
and accelerations at the newly created nodes after shifting or readjusting the mesh pattern 
are required to obtain the interpolation of the field of variables at the old nodes. 

Numerical results 

The basic geometry configuration under 
consideration is presented in Fig.3. The specimen was 
made of PMMA (polymethyl methacrylate) with the 
material properties of Young’s modulus E=2.948 GPa, 
Poisson’s ratio ν =0.329 and Mass density ρ�1190 
kg/m3. The dilatation, shear and Rayleigh wave 
velocities in the material are Cd=1666.7, Cs=965.4 and 
CR=898.6 m/sec, respectively.  

Using the experimentally recorded loading histories 
and crack propagation histories, the generation-phase 
simulation were carried out. The loading histories in each pin are shown in Fig.4. The 
load was applied as an equivalent nodal force through the specimen thickness. 
Furthermore, the crack propagation history and crack velocity history are summarized in 
Fig.5. By assuming the shape of the crack-front to be linear, the generation-phase 
simulation was carried out.      

In two-dimensional numerical simulation, by the moving finite element method based 
on Delaunay automatic triangulation, the generation-phase simulation was carried out. 
The mesh consists of 9660 elements and 5000 nodes. For the numerical simulation the 
time increment of 0.25 µsec is used. 

Due to the symmetry of the geometry and the loading condition, in the three-
dimensional numerical simulation, only the upper part of the specimens was modeled in 

Fig. 3 Specimen geometry 

     
                 Fig.4 Load values history              Fig.5 Crack propagation and crack velocity histories 
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the analysis. Six layers of 20-noded isoparametric moving elements through the thickness 
were used. The mesh consists of 3252 elements and 15767 nodes. For the numerical 
simulation the time increment of 0.25 µsec is used. 

The dynamic J integral histories for 
two-dimensional problems and for three-
dimensional problems at the surface (Z=0) 
and mid-plane (Z=1/2h) of the plate are 
shown in Fig.6. At this time, for each far-
field path, excellent path independence was 
obtained. It can be observed from Fig.6 that 
the dynamic J integral values increases 
with the increases of the crack propagation 
velocity. However, the dynamic J integral 
decreases rapidly after C/Cs=0.74. Also, 
the dynamic J integral value of the mid-plane (Z=1/2h) takes the value which is higher 
than the dynamic J integral value of the surface (Z=0). The difference increases with the 
increase in the crack propagation velocity.   

The distributions of the dynamic J integral along the crack-fronts are shown in Fig.7. 
At the crack tip on each layer, the constant dynamic J integral values have been obtained 
under C/Cs<0.53. Thus, the dynamic fracture event is done in two-dimensional 
deformation and destruction condition under this crack propagation velocity. However, it 
is seen that the dynamic J integral takes the maximum values at mid-plane of the plate 
when the crack propagation velocity reaches C/Cs>0.7. 

Fig.8 shows the relationship between the crack surface roughness at surface (Z=0), 
quarter-plane (Z=1/4h) and mid-plane (Z=1/2h) of the plate measured by experimental 
results, and the parameter Φtotal, which means the energy inflow per unit time to crack 
surface obtained by three-dimensional numerical simulation. The Φtotal is calculated based 
on the crack propagation velocity C and the dynamic J integral J1

'0. It is seen that the value 
of Φtotal increases when the crack surface roughness increases. In addition, in the surface 

       Fig.6 Dynamic J integral histories 

          
Fig.7 Distribution of dynamic J integral                Fig.8 Relation between crack surface roughness and Φtotal

1897
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



(Z=0), both the crack surface roughness and the Φtotal take on a low value compared with 
the values at the  quarter-plane (Z=1/4h), mid-plane (Z=1/2h) of the plate.     

Conclusions 

In this study, based on experimentally recorded history of high-speed crack 
propagation phenomena, two and three dimensional generation-phase simulations were 
carried out. From the numerical results, behaviors of the dynamic J integral during high-
speed crack propagation were clarified. Moreover, it was found that whit the increase in 
the crack propagation velocity, the fracture mechanics parameter at the crack tip on each 
layer was not constant. It was also seen that the change of the dynamic J integral values 
depend on the energy flow into the crack tip. Finally, the relations between the 
experimental crack surface roughness and Φtotal were measured.  
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