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Summary 

In this study, in order to deal with arbitrary shell structures such as a thin plate and 
pipe, the finite element method using the degeneration shell element was used, and 
numerical simulations were performed about the nonlinear fracture problem for shell 
structures. The path-independence of T,1

* integration was derived based on the second 
Kirchhoff stress and Green-Lagrange strain to which the nonlinear term was added, and 
the evaluative formula of T,1

* integration along the crack front tip for shell structures was 
shown. Moreover, we explained aspects and differences in reaching the starting state of 
fracture depending on analysis conditions. 

Introduction 

Today, pipelines are built in ships, along the coast and at the bottom of ocean to 
transport oil and natural gas. Fracture of these ocean and coastal structures could cause 
accidents in which internal fluid flows to the outside, resulting in serious damage to the 
marine environment. This is because huge leaks arises when large-scale crack extension 
is caused by inner pressure triggering a pipe burst. In this fracture, it is already known 
that the crack tip snakes its way toward the axis of the pipe, and that these aspects are 
dependent on the crack speed and the shape of the pipe.[1] To prevent such 
environmental accidents, some research on the damage process and fracture mechanisms 
of pipe have been made.[2] However, sufficient results have not been reported about the 
prediction of the fracture aspects after the occurrence of the accident and the damage 
control adapting the predicting method. In this research, these problems with pipelines 
are analyzed by numerical simulation. The ultimate goal of this research is to evaluate 
fracture and crack extension behaviors with high precision. In order to deal with arbitrary 
shell structures, such as a thin plate, pipe shape, etc., the finite element method using the 
degeneration shell element [3][4] was formulized. The Newton-Raphson method was 
used for analysis technique of nonlinear problems, such as large deformation and elastic-
plasticity. If crack length becomes large when a crack extends from inner pipe to its outer 
area, the steel plate near the crack will become deformed greatly. Therefore, it is 
necessary to develop effective criteria for nonlinear fracture problems of large 
deformation for shell structures. In this study, the analysis uses the second Kirchhoff 
stress and Green-Lagrange strain. In order to take into consideration the large 
deformation caused by the geometric nonlinear, the nonlinear term was added to Green-
Lagrange strain. The path-independence of T,1

* integration was derived based on these 
stress and strain, and the evaluative formula of T,1

* integration along the crack front tip 
for shell structures was shown. In order to examine the validity of these formulizations, 

1 Simulation Engineering Laboratory, Department of Ocean Mechanical Engineering, Kobe University of Mercantile 
Marine, Higashinada-ku, Kobe, 658-0022, Japan 

1875
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



we calculated the normalized stress intensity factor in the plate bending problem, and 
compared with the result of Nishioka et al [5]. Furthermore, the numerical simulations for 
elastic infinitesimal and large deformation, elastic-plastic infinitesimal and large 
deformation were performed about A533B pipe structure with through wall crack, and 
the results were shown. 

The finite element method using the degeneration shell element 

The concept of shell element, a global, a local, a curvilinear and a nodal coordinate 
systems are shown in Fig.1. The displacement field in a degeneration shell element is 
defined by formula (1). The degrees of freedom consist of the three displacement 
components (u, v, w) and two independent rotation components (α, β). 
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Where, (u, v, w) is the displacement component based on a global coordinate system, 
Ni(ξ, η) is the element shape function based on a curvilinear coordinate system and t is 
the plate thickness. The subscript is the middle surface in an element. P1 and P2 are the 
nodal coordinate systems defined on each node, and (α, β) express the rotations of P1 and 
P2 axis. A local coordinate system defines x’-y’ tangent plane to each integral point, and 
the z’ axis expresses the normal direction of the x’-y’ tangent plane. In order to establish 
a plane stress approximation (σzz=0), the stress and strain are defined on a local 
coordinate system. The tangential stiffness matrix for nonlinear problems, such as elastic-
plastic and geometric nonlinear problem can be expressed by formula (2) 

∫ ′′+∫ ′′′=′= 0 0
T

0
T

0
][ VVe dVddVDdqKd σψ BBB  

“ ' ” expresses the quantity defined by the local coordinate system. Elastic-plastic 
calculation is possible by replacing D' with D'ep which is elastic-plastic stress-strain 
matrix. Mises’s rule is used as the yield criterion. B' is the matrix which converts the 
displacement components defined by a global coordinate system to the strain of a local 
coordinate system on an integral point in an element. In order to take into consideration 

 
(a) Shell Element and Nodal Coordinates.  (b) Global, Local and Curvilinear Coordinates. 

Fig.1 Conceptual figure of 8-nodes shell element and coordinate systems 

P1, P2, P3 : 
Nodal-coordinate 
x, y, z : 
Global-coordinate 
x', y', z' : 
Local-coordinate 
ξ, η, ζ : 
Curvilinear-coordinate

(1)

(2)
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the large deformation, Green-Lagrange is expressed as formula (3) (4) by using the Von-
Karman assumption [6], which is that derivatives of u' and v' with respect to x', y' and z' 
are small and the variation of w with z is neglected. Therefore, B' becomes the form 
including the nonlinear term. B0' is the same form as the infinitesimal deformation 
analysis, and BL' is only dependent on displacement. Moreover, the Newton-Raphson 
method is used as the analysis technique of the nonlinear problem. 
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Fracture parameter ∆T,1
* 

Expressing the fracture parameter ∆T,1
* shown by Nishioka and Atluri et al [7][8], 

with the second Kirchhoff stress Sij and Green-Lagrange strain λij, formula (5) is obtained. 
In order to take into consideration the large deformation caused by geometric nonlinearity, 
Green-Lagrange strain can be expressed by the formula (3). Even if a nonlinear term is 
added to Green-Lagrange strain, path-independence of ∆T,1

* is maintained. In static 
elastic fracture, ∆T,1

* is equal to the static J of Rice [10] expressed by Caucy’s stress and 
Almansi’s strain. 

( )∫ ∆−∆∆+−∆=∆ Γε 01,01,0010
*
1, ]~~~[ dSutFuttFWnT ikikikkik  

( )∫ ∆−∆∆+−∆=
Γ+Γ cS ikikikkik dSutFuttFWn 01,01,0010 ]~~~[

∫ 







∆






 ∆+−∆






 ∆++ −Γ ε

λλλVV ijijijijijij dVSSS 01,1,1,1, 2
1

2
1  

Where, a subscript “0” is the quantity defined by the initial coordinate, a subscript “∆” is 
the incremental quantity, tj is surface force, uj is displacement, W is stress density 
∆W=(Sij+∆Sij/2)∆λij, Fij is deformation gradient tensor. In addition, all quantity T,1

* can be 
expressed by the following formula. 

*
1,

*
1, TT ∑ ∆=  

Considering the possible case of arbitrary shell structures with a through wall crack a 
global coordinate (x, y, z), a local coordinate (x', y', z'), and a crack tip coordinate (x, y, 
z) systems are shown in Fig.2. As shown in Fig.3, a shell element is divided into several 
layers across the thickness, and ∆T,1

* is evaluated at the middle face of each layer. 

Fig.2 Definition of coordinate systems 
for crack problem 

 
Fig.3 Crack front in shell structure 

(3)

(4)

(5)

(6)
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Correcting ∆T,1
* obtained by formula (5) to ∆T,1

* along the crack front in the arbitrary 
evaluation layer, formula (7) is obtained. Such a fracture parameter J for shell structures 
is shown by Watanabe et al [9]. In the case of infinitesimal deformation, formula (7) 
agrees with Watanabe’s J. 
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Where, a subscript “-” is the quantity defined by crack tip coordinate, ni is normal vector 
for Γ, ni is normal vector for A, Γ is line integral path, A is the area surrounded by Γ. 

Results and discussions 

Fig.4 shows the model in which the bending 
moment load is distributed at both ends of the plate. 
The material properties and the size used for 
calculation are shown on Table1, and the model was 
analyzed as an elastic infinitesimal deformation. The 
total nodal points are 1281 and elements are 400. 

Fig.5 shows a comparison with respect to a/W 
of the normalized stress intensity factor F1 obtained 
by this calculation and those of Nishioka [5] and 
Watanabe [9]. F1 is calculated by formula (8) and 
the value calculated on the surface of plane 
thickness (ζ=±1.0) is used as the T,1

* value. 

a
KF

πσ
1

1 =  

Where K1=(κT,1*)1/2 is stress intensity factor, κ=E at 
a plane stress and elastic problem, σ0 is bending 
stress. 
When the normalized stress intensity factor F1 with 
respect to a/W in Fig.5 is compared with Nishioka’s 
result, F1 obtained in this study is lower than 
Nishioka’s result. However, Watanabe calculates by 
the same method as this study, so it is well in 
agreement with Watanabe’s result. On the other hand, 
Nishioka calculates by the combined method of FEM 
and analysis solution of the plate bending theory 

Table. 1 Material properties 
Young’s modulus E=206(GPa) 
Poisson’s rate ν=0.3 
Crack length a=0.04(m) 
Thickness T=0.02(m) 
Bending load M=1961.33(Nm/m) 

 
Fig.4 Numerical model  

for plate bending 

6/2
0hM σ=  

0.0

0.4

0.8

1.2

0.0 0.5 1.0

F 1 Watanabe
Nishioka
this study

 
Fig.5 Comparisons of  

normalized stress intensity factor F1

(7)

(8)

a/W 
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which takes shear deformation into consideration, 
so a more accurate result has been obtained than 
the one in this study. 

Next, Fig.6 shows a cylindrical model with a 
through wall crack over which inner pressure is 
distributed. Assuming the material is A553B, the 
material properties and the size used for 
calculation are shown on Table 2. The work 
hardening at the time of elastic-plastic deformation 
can be obtained by formula (9). 

pYS nεσσ +=  

Fig.7 shows the mesh figure and integration paths of T,1
*. The total nodal points are 

2273 and elements are 720. We analyze this model for elastic infinitesimal deformation, 
elastic large deformation, elastic-plastic infinitesimal deformation, and elastic-plastic 
large deformation, and we show each result. 

Fig.8 shows path-independence for elastic and elastic-plastic large deformations. The 
path-independence of T,1

* observed in elastic large deformation is less than 1%, so its 
independence is considered to be good. Since the path-independence is less than 5%, 
even taking the material nonlinear case into consideration, its independence can be 
considered to be good. Therefore, it can be said that evaluative formula of T,1

* expressed 
with the second Kirchhoff stress and Green-Lagrange’s strain in this study is very 
effective for shell structures with through wall crack. 

Fig.9 shows the change of T,1
* with incremental inner pressure. Tc

* in Fig.9 is the 
fracture toughness value of A533B. When large deformation is introduced in elastic and 
elastic-plastic problems, the load reaching Tc

* for large deformation is very large 
compared with infinitesimal deformation. This is probably because incremental stiffness 
becomes higher to take into consideration geometric nonlinearity, and much more load is 
needed for T,1

* to reach Tc
*. Moreover, when we compare elastic and elastic-plastic 

deformation, elastic-plastic deformation reaches the starting state of crack extension 
earlier. This is probably because we analyzed by load control, and large deformation 
occurred against the same load, allowing incremental degree of T,1

* to be bigger. 

Table. 2 Material properties (A533) 
Young’s modulus E=206(GPa) 
Poisson’s rate ν=0.3 
Crack length a=0.05(m) 
Thickness T=0.001(m) 
Radius R=0.05(m) 
Length L=0.1(m) 
Yield stress σys=550(MPa) 
Harding rate n=500(MPa) 
Fracture toughness Tc

*=98(kN/m)[11] 

 
Fig. 6 Cylinder’s model 

 
Fig.7 Mesh figure and integration path 

(9)
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Conclusions 
In this study, we reached the following conclusions. 

(1) To address the shell structure crack problem, we showed fracture parameter Tc
* expressed with 

the second Kirchhoff stress and Green-Lagrange’s strain considering geometric nonlinear. 
(2) We performed elastic-plastic large deformation fracture analysis for arbitrary shell 

structures by using the degeneration shell element. 
(3) We obtained good path-independence regardless of elastic, elastic-plastic, infinitesimal 

and large deformation. Therefore, evaluative formula of T,1
* shown in this study is very 

effective for fracture evaluation of shell structures. 
(4) We explained aspects and differences in reaching the starting state of fracture of a cylinder structure. 
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