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1. Introduction 

Conventional fiber reinforced laminated composites are widely used in the aerospace, automobile, 
and other industries. While they offer significant weight savings, relative disadvantages are manufacturing 
cost and through the thickness mechanical properties. Textile composites offer the potential to alleviate 
these disadvantages. Consequently, the in-plane mechanical properties of a wide variety of textile 
composites have been and continue to be an important area of research. During the past several decades, 
many researchers have developed numerous models to study textile composites. In the early eighties, 
Ishikawa and Chou1 developed a “mosaic model” for analysis of elastic behavior of woven composites.  
Later, a 1D model referred to as the “fiber undulation model” was proposed by the same team2. 
Subsequently, several mechanics based models for predicting the elastic properties of woven composites 
were presented in [3-9] and several developments are summarized in the textbook by Chou3. 

Recently, Quek et al.10,11,12 investigated the response and failure of a representative unit cell of a 
2D triaxially braided composite under uniaxial compression, and also under multi-axial loads. They 
obtained good agreement on the predicted elastic constants and the maximum compressive strength 
compared against experiment. In this project, the behavior of 2D woven composite materials is investigated. 
Two aspects are studied. The first is the development of an analytical model to calculate the in-plane 
macroscopic elastic properties, Ex (Young’s modulus in the x direction), Ey (Young’s modulus in the y 
direction), Gxy (shear modulus in the x-y plane), and υxy (Poisson’s ratio in the x-y plane), and the second is 
to establish the compressive response of a Representative Unit Cell (RUC) and its relation to the response 
of a collection of unit cells (multi-unit cells). The Representative Unit Cell (RUC) is the smallest repeating 
geometrical entity in the textile composite material. Figure 1 shows the microstructure of the RUC studied. 
The analytical results obtained from the first task are compared against the results from a 3D finite element 
(FE) analysis of the corresponding unit cell. This comparison establishes confidence in the analytical model. 
Results for the compressive response of a single RUC are compared to that of a nine RUC model in order 
to establish the salient features associated with the compression behavior. Details of the analytical model, 
which is similar to that reported in Quek et al.10, are reported elsewhere. 
2. Computational Model  

Several analytical models for studying the response of textile composites are available3 and many 
of these are based on some form of averaging (homogenization of the complex textile architecture). They 
are useful for obtaining the linear stiffnesses, but are not useful for establishing the compressive response, 
which involves both, geometric nonlinearity, and material nonlinearity associated with the tows and the 
polymer matrix material. Consequently, a fully 3D FE approach is pursued to establish the compressive 
response.  
2.1 Model development 

This 3D FE model consists of three components: 0° fiber tow, 90° fiber tow, and the polymer 
matrix. Each fiber tow has waviness in the '' zx − plane as shown in Figure 2. 
The waviness is a function of 'x , and is given as 701.0)015.7'(014245.0' 2 +−−= xz  with origin 'o  
located at the left bottom corner as shown. A is the waviness amplitude and has a value 0.701mm. These 
geometrical features are taken into consideration in SDRC IDEAS MASTER SERIES 9.0 when creating 
the FE meshes. In all the meshes, 3D solid 10-noded tetrahedral elements were used. After creating the 
mesh, ABAQUS/Standard 6.3 was used to conduct the FE analysis. Due to geometric nonlinearity, it is 
necessary to ensure that the fiber tows are transversely isotropic in the current deformed configuration.  
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This was achieved by using an inbuilt subroutine during the course of the analysis. Two configurations of 
the composite are considered; a single RUC and a nine RUC model. 
2.2 Model properties 

The FE models created were subjected to simple uniaxial and shear load states. In the single RUC 
case, convergence of the results with respect to mesh density was checked by evaluating the elastic 
constants as a function of the number of elements. The Young’s modulus xE , shear modulus xyG , and 

Poisson’s ratio xyυ  were computed. Figure 3 and Figure 4 show convergence of the computed xyG  and xE , 
as a function of the number of elements. From the results shown, mesh size D containing 24144 elements 
was chosen for subsequent studies related to the nonlinear compression response. Table 1 shows the 
computed results for Ex. The results from both FE and the analytical model are listed for comparison. Note 
that in Table 1, results from another model (iso-tress for both steps) are also included.  
2.3 Model implementation – boundary conditions 

The boundary conditions used during the nonlinear response analysis and the simple load cases 
studied to obtain the elastic constants are shown in Figure 5 and Figure 6. Two types of boundary 
conditions as shown in Figure 5, were implemented. In the first case, during deformation the sides of the 
RUC are constrained to remain flat and move out uniformly while symmetric boundary conditions are used 
on the x-y planes. In the second case, the sides are unconstrained and are left free while symmetric 
boundary conditions are used on the x-y planes. It was found that the value of the elastic constant, Ex, 
reported in Table 1, is independent of the type of the boundary condition used. For the response analyses, it 
is the second type (sides free) of boundary condition that was used, since the former produces a higher 
value for the maximum limit load as will be discussed. The different boundary conditions and loading 
schemes implemented in the extraction of the elastic constants are shown in Figure 5 and Figure 6.  
3. Results and Discussion 

Accurate predictions of the elastic engineering constants provide verification of the computational 
model. Two types of response analyses were conducted. In the first type, the perfect RUC compressive 
responses are compared (single RUC and a nine cell RUC). This comparison was done to establish the 
effects of the number of unit cells on the peak load and the post peak response. In the second set of 
analyses, the effect of initial geometrical imperfections on the compressive response was studied by 
comparing the responses of a nine RUC composite with and without imperfection. The compressive 
response analyses of the RUC models were carried out using the RIKS method14 option in ABAQUS. This 
option allows the possibility of capturing unstable equilibrium solutions that are typical in complex 
compressive response studies of the sort carried out here.  

Prior to performing this, the effect of mesh density (number of elements) was studied by analyzing 
the single RUC compressive response.  Figure 7 shows the stress-strain results for a single RUC response 
as a function of mesh density (number of elements). It was deemed that beyond a mesh size with 24144 
elements the salient features of the RUC response did not change appreciably, thus reflecting convergence. 
Thus, this mesh size (24144 elements per RUC, referred to as mesh D) was used for all studies for which 
results are reported. Based on that mesh, a comparison between a one RUC and nine RUC model under 
uniaxial compression was performed. The response results will be discussed subsequently.   

In the ‘perfect’ RUC cases, the one RUC and nine RUC models are subjected to uniaxial 
compression loading under displacement control, using side free boundary conditions. For the ‘imperfect” 
RUC cases, a two-step approach is adopted. In the first step, the eigen modes of the structure are found and 
the mode corresponding to the lowest eigen frequency is used to perturb the mesh. The amplitude of 
perturbation is left as a parameter and the RUC responses to a series of imperfection amplitudes are 
analyzed. In all cases, nonlinear geometry and nonlinear matrix material properties are incorporated and 
special care is taken to ensure that the principal material axes of the transversely isotropic undulating fiber 
tows are maintained properly in the current deformed configuration. The results obtained for the single 
RUC (perfect) uniaxial compressive response are representative of the features that are observed in the 
different responses studied in this paper and it is illustrative to examine the features of a typical 
compressive response, by examining this case. The uniaxial compressive response for this case can be 
understood by examining a typical Σx versus εx plot (Figure 8). Here Σx, is macroscopic stress and is 
obtained by dividing the resultant reaction force on the loaded face by the initial undeformed area of the 
loaded face. εx is the normalized end-shortening and is obtained by dividing the specified end displacement 
by the initial undeformed length of the RUC in the direction of load application. Also shown in Figure 8 are 
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the deformed tows (with matrix elements removed from RUC for visual display) as a function of increasing 
load. Initially, the RUC responses display a relatively stiff linear behavior (point A in figure 8). The 
magnitude of the slope of this line is 2.096E+08 KPa and agrees well with the linear elastic stiffness given 
earlier. As seen in Figure 8, with continued loading, the RUC response becomes progressively nonlinear 
(B), and at a strain (εx) of approximately 0.025, a maximum stress (Σx) of 3.42 MPa is reached. The value 
of strain at this maximum or peak and the value of the corresponding stress itself are dependent on the 
magnitude of initial tow undulation, which is associated with the degree of misalignment of the zero degree 
tow along the load application direction. The progressive reduction in the macroscopic stiffness of the RUC 
is due to the geometrical nonlinearity associated with the tows and the material nonlinearity of the matrix. 
Indeed, as loading proceeds, the matrix material that is between the tows is required to support increasing 
amounts of shear stress. However, the equivalent stress-strain curve of the matrix15 indicates that the matrix 
modulus decreases progressively as the stress increases. Thus, because of the interaction of these 
nonlinearities, the overall stiffness of the RUC progressively decreases leading to a limit load type of 
instability. In an experimental setting, this limit load can be interpreted as the maximum compressive 
strength of the composite. However, at this load (or even prior to this), other events, such as matrix 
cracking and separation of the tows from the matrix (matrix/tow debonding) can occur, which may lead to 
tows “popping out”, as is characteristically seen in a compression experiment at failure12. The modeling of 
matrix cracking and tow/matrix separation requires knowledge of the matrix cracking toughness and the 
tow-matrix interface toughness. Since reliable data pertaining to these mechanisms are currently not 
available, they are not considered in the present study. Instead, matrix distributed cracking, for instance, is 
being modeled through the elastic-plastic stress-strain response of the matrix with the implicit assumption 
that such cracking induces plastic like behavior. 

As can be seen in Figure 9, the response of a one RUC model and that of a nine RUC model are 
comparable in terms of peak load, but the post-peak behavior shows differences. These differences are due 
to the type of deformation localization which is dictated by the spatial homogeneity of the structure. In 
order to investigate this further, the effect of initial geometrical imperfections was studied. The results of 
the “perfect” vs. ‘imperfect” nine RUC compressive responses are shown in Figure 10.  An initial 
imperfection with a shape that corresponds to the first natural frequency with a perturbation amplitude of 
x% (perturbation size divided by the tow diameter) was used. A series of such imperfection values 
corresponding to 0.71%, 1.43%, 2.14%, 2.85%, and 3.56% were used and the responses are displayed in 
Figure 10.  It is clearly seen that the response of the nine RUC’s becomes progressively nonlinear after the 
initial linear stage. Also the response shows the value of the strain at the peak load, and the peak load itself 
is dependent on the magnitude of the added imperfection. After the peak load, the stress is decreasing along 
with the increasing strain, which displays post peak softening. What is remarkable is that the post peak load 
shows convergence to a near plateau value while the peak load is continuously dependent on the 
imperfection magnitude. 
4. Concluding Remarks 

An iso-stress model in conjunction with CLT has been used to compute the elastic constants for a 
woven composite. The elastic constants found are in reasonable agreement with a fully 3D FE model of the 
RUC. The effect of the number of RUC’s on the compressive response has been studied and it is found that 
the compressive strength obtained from a single RUC model is comparable to the nine RUC model, but the 
post peak response show differences. The effect of initial geometric imperfections on the compressive 
response has been studied for the nine RUC model. It is found that as expected, the compressive strength 
diminishes with increasing imperfection magnitude but the post-peak response shows convergence to a well 
defined plateau value. 
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Figure 1: Microstructure of RUC fibers tows 

 
Table 1 Comparison between results from analytical and FEM models for xE  

Averaging stage in '' zx − plane Iso-stress Iso-stress Iso-strain FEM 
Obtaining engineering constants Iso-stress Iso-strain Iso-strain FEM 

Results(KPa) 1.3342E+07 2.3584E+08 2.729E+08 2.044E+08 
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Figure 7 Stress vs. Strain for One RUC with different mesh sizes 
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Figure 5 Loading and boundary conditions for the 
RUC analysis       
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Figure 8 Typical stress-strain response for a perfect one RUC model 

 
 

 
Figure 9 Macroscopic stress-strain relation for a one RUC model compared against a nine RUC model 

 
 

 
Figure 10 Macroscopic stress-strain relation as a function of initial geometric imperfection for a nine RUC 

composite  
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