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Summary

A procedure for the evaluation of drag forces due to Stokes flow around com-
plex Micro-Electro-Mechanical-Systems (MEMS) is discussed. The proposed tech-
nique makes use of discretized boundary integral equations. Both single-layer and
double-layer formulations are analysed. Numerical tests are carried out on three
selected geometries.

Introduction

MEMS, though being a promising and revolutionary technology, still suffer
several design difficulties due to their intrinsic complexity. One of the open issues
in MEMS design is the simulation of the fluid flow around moving parts. Due
to the small scale of MEMS, which implies low Reynolds numbers even for fast
oscillating parts, turbolence can be safely neglected, and the resulting Stokes model
can be employed to evaluate the viscous drag actions exerted on moving parts.

Boundary integral equation methods appear to be a viable approach for the ef-
fective solution of viscous incompressible flow on external domains ([6],[7]). The
use of the Fast Multipole Method [4] for the evaluation of matrix-vector multi-
plications allows to solve, with a reasonable computational cost, the large-scale
problems required by complex boundary geometries.

The resistance problem

With reference to a 3D situation, one or more rigid bodies of surfaceΓα are
moving with assigned velocity in a viscous, incompressible fluid, which can be
either unbounded or confined in an enveloping rigid boundaryΓE. The total drag
force and torque acting on these bodies are sought.

The steady-state Stokes flow is governed by{
µ∆uuu−∇P = 0

∇ ·uuu = 0
(1)

whereuuu is the flow velocity,P is the hydrodynamic pressure andµ is the viscous
drag coefficient.
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In the resistence problem a rigid motion velocity at each surfaceΓα is assigned

uuu|Γα
= VVVα +ΩΩΩα×XXX (2)

A free flow must also satisfy the radiation condition at infinity

lim
x→∞

uuu(x) = O
(
|x|−1

)
(3)

while confined flows must match the velocity of the enclosing boundary

uuu|ΓE
= VVVE +ΩΩΩE×XXX (4)

The single-layer formulation

Assuming an external flow around multiple rigid bodies, the velocity at any
point of the domain can be expressed in terms of a single-layer hydrodynamic po-
tentialqqq, leading to the equation

ui (x0) = −
Z

Γ
u j

i (x,x0)q j (x) dS(x) (5)

where

u j
i (x,x0) =

1
8πµ

δi j

r
+

(x−x0)i (x−x0) j

r3 r = |x−x0| (6)

is calledstokeslet. This equation holds even at points belonging to the boundary,
due to the weakly singular nature of the kernel. The unknown potentialqqq is the
surface traction exerted by the fluid flow over the rigid surfacesΓα.

It can be shown [6] that (5) is a singular operator. In order to solve the resistance
problem it is necessary to impose the orthogonality of the solution to the null-space
of the homogeneous operator associated to (5). Since the basis of the null-space is
described by the normal vectors to the surfaces of the rigid bodies, the additional
set of constraints has the formZ

Γα

q j (x)n j (x) dSα = 0 ∀α (7)

thus imposing a null hydrostatic pressure over each surfaceΓα. The use of these
constraints allows to find a solutionqqq⊥. The correct solution differs fromqqq⊥ by a
set of constant hydrostatic pressurespα applied to each surface. These pressures
can be evaluated by means of a pressure integral equation; however they are ignored
here since they do not contribute to total force and total torque. The latter quantities
can be evaluated by direct integration of the tractions over each surfaceΓα.

The theory of first kind Fredholm integral equations shows that (5) can lead to
ill-conditioned problems. However, an assessment of the actual limitations of this
approach when applied to large-size problems still deserves further study ([2], [3]).
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The completed double-layer formulation

According to an alternative approach, the velocity at any internal point of the
flow region can be expressed as a function of a double-layer densityφφφ, through the
equation

ui (x0) = −
Z

Γ
Ki j (x,x0)φ j (x) dS(x) (8)

where

Ki j (x,x0) =
3

4πµ

(x−x0)i (x−x0) j (x−x0)k nk (x)
r5 r = |x−x0| (9)

is calledstresslet.

When the pointx0 is taken to the boundary from the external domain, the
strongly singular nature of the stresslet kernel gives rise to a free term. The re-
sulting boundary integral equation at a smooth boundary point is

ui (x0) =
1
2

φi −−
Z

Γ
Ki j (x,x0)φ j (x) dS(x) x∈ Γ (10)

where the integral exists in the Cauchy Principal Value sense. Equation (8) cannot
describe an arbitrary solution of (1) since it can be shown that (10) has a solution
only if the assigned velocity condition over each boundary surface satisfies the
constraintZ

Γα

u j (x)ψk,(α)
j (x) dS = 0

ψk,(α)
j = δ jk ψk+3,(α)

j = ε jkl (x−xα)l k = 1,2,3
(11)

wherexα is an arbitrary point internal to surfaceΓα. The rigid body velocity as-
signed to the boundary surfaces does not satisfy (11), thus it leads to a velocity field
that cannot be described in terms of a double-layer potential alone. Moreover, the
generic flow described by (8) decays at infinity with orderO(1/r2), contradicting
the radiation condition for unbounded flows.

Power and Miranda ([5]) proposed acompleted formulation, which describes
the velocity field in the form

ui (x0) = −
Z

Γ
Ki j (x,x0)φ j (x) dS(x)+

∑
α

u j
i (x0,xα)F(α)

j +∑
α

r j
i (x0,xα)M(α)

j

(12)
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where

r j
i (x0,xα) =

1
8πµ

εi jk (x0−xα)k

r5 (13)

is calledrotlet.

The stregth of the internal singulatities can be arbitrarily expressed as linearly
dependent upon the double-layer density:

F(α)
k =

Z
Γα

φ j (x)ψk,(α)
j (x) dS

M(α)
k =

Z
Γα

φ j (x)ψk+3,(α)
j (x) dS

(14)

The completed double-layer equation can be solved in terms of the unknown
double-layer density. Due to the properties of stresslet, stokeslet and rotlet, the total
force acting on the generic bodyα is equal toF(α); analogously, the total torque
with respect to the pointxα is equal toM(α).

Implementation

The discretization of both (5) and (12) by means of the collocational Bound-
ary Element Method is a quite straightforward task. In order to allow the solution
of large problems, the GMRES iterative solver coupled with the Fast Multipole
Method ([4], [1]) has been implemented. Various approximations, from piecewise
constant to piecewise linear, have been tested. The orthogonality constraints re-
quired by the single-layer formulation have been satisfied by imposing them on
each search direction of the iterative solver.

Numerical examples

As a first test, the drag force exerted on a sphere and on a cube subject to a pure
translation in an unbounded domain is evaluated. Five different formulations are
tested: single-layer with piecewise constant approximation (SLPC), and double-
layer with piecewise constant (DLPC), continuous linear (DLCL), piecewise linear
(DLPL) and partially piecewise linear (DLPPL) approximation. DLPPL formula-
tion is discontinuous only across edges of the cubic geometry.

Figure 1 shows the error in the evaluation of the drag force using different
meshes and formulations. The reference value is represented by the analytical one
in the case of the spherical body, and by the value obtained with a 150000 DOF
mesh using the single-layer formulation for the cubic body.
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Figure 1: Error on the total drag force evaluation on a translating sphere and cube

The second example which is discussed is a first attempt to solve a complex ge-
ometry resembling an actual MEMS. The comb-drive resonator shown in Figure 2
is made of thee parts: two fixed stators and a rotor which is allowed to translate
parallel to the finger axis direction. The main dimension of the model is 215µm,
and the air viscosity coefficient is set toµ= 1.73×10−5 N s m−2.

The total drag force acting on the rotor is evaluated using the single-layer for-
mulation and three different meshes. The following table shows the results ob-
tained, together with the time needed to solve the problems on a Pentium 4 3GHz
PC.

DOF F (nN) Matrix-vector Iterations Total time (s)
multiplication time (s)

28800 138.24 8 29 284
145572 144.69 102 32 3777
368220 147.78 275 34 11661

Conclusions

This contribution presents some preliminary results of a research work that is
still under way. Several issues are being addressed, mainly related to ill-conditioning
in the presence of complex geometries. The goal of this work is to create a BE tool
for applied research in MEMS design and prototyping.
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Figure 2: Comb-drive resonator geometry
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