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Summary 
 

A micromechanical analysis of the representative volume element (RVE) of a plain 
weave textile composite has been performed using the finite element method. Stress 
gradient effects are investigated, and it is assumed that the stress state is not uniform 
across the RVE.  The stress state is defined in terms of laminate theory load matrices [N], 
[M], i.e. applied loads and applied moments.  Structural stiffness matrices analogous to 
the [A], [B], [D] matrices are defined.  These are computed directly from the 
micromechanical models, rather than making estimations based upon the homogeneous 
Young’s modulus and plate thickness.  Failure envelopes for a plain-weave textile 
composite have been constructed using microstresses from finite element analysis of the 
RVE.  Transverse failure of the fiber tow was the dominant mode of initial failure.  The 
DMM failure envelope compared closely in form to the Tsai-Wu failure theory, but was 
more conservative in some areas.   

Introduction 
 
Conventional micromechanical models for textile composites assume that the state of 

stress is uniform over a distance comparable to the dimensions of the representative 
volume element (RVE).  However, due to complexity of the weave geometry, the size of 
the RVE in textile composites can be large comparable to structural dimensions.  In such 
cases, severe non-uniformities in the stress state will exist, and conventional models may 
fail.  Such stress gradients also exist when the load is applied over a very small region, as 
in static contact or foreign object impact loading, and when there are stress concentration 
effects such as open holes in a structure.  Although micromechanical models have been 
successfully employed in predicting thermo-elastic constants of fiber-reinforced 
composite materials, their use for strength prediction in multiaxial loading conditions is 
not practical, as computational analysis must be performed in each loading case.  Thus 
phenomenological failure criteria are still the predominant choice for design in industry.  
There are three major types of engineering failure criteria for unidirectional composite 
materials: maximum stress criterion, maximum strain criterion, and quadratic interaction 
criterion (such as the Tsai-Hill and Tsai-Wu failure theories) [1].  These may also be 
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employed in the micromechanical analysis of textile composites, to build a macroscopic 
failure envelope upon which a textile composite failure criterion may be developed.   

 
Most of the modeling work done thus far have focused on predicting thermo-

mechanical properties [2-4].  To facilitate the use of textile composites in lightweight 
structures, it is required to have a lucid understanding of failure mechanisms, and design 
engineers must have an accurate and practical model for prediction of failure strength.  
Most of the current analytical and numerical methodologies developed to characterize 
textile composites [5-7] assume that the textile is a homogeneous material at the 
macroscopic scale. A previous study by the authors [8] extended a method, know as the 
Direct Micromechanics Method [9], to develop failure envelopes for a plain-weave textile 
composite under plane stress in terms of applied macroscopic stresses.  In the current 
paper, micromechanical finite element analysis is performed to determine the constitutive 
relations and failure envelope for a plain-weave graphite/epoxy textile composite.  

Methods 
 
In the current study, stress gradient effects are investigated, and it is assumed that the 

stress state is not uniform across the RVE.  This represents an extension of the 
micromechanical models used to predict the strength of textile composites [8-10].  The 
stress state is defined in terms of the well-known laminate theory load matrices [N] and 
[M], i.e. applied force resultants and applied moment resultants.  Furthermore, structural 
stiffness coefficients analogous to the [A], [B], [D] matrices are defined.  In this 
approach, these structural stiffness coefficients are computed directly from the 
micromechanical models, rather than making estimations based upon the homogeneous 
Young’s modulus and plate thickness.  Conventional models essentially neglect the 
presence of [M] terms that result from non-uniformity or gradients in applied force 
resultants.  The additional analysis of the [M] term includes information about the 
distribution, or gradient, of a non-uniform load.  These additions can greatly increase the 
ability of a failure model to accurately predict failure for load cases in which such effects 
may well be predominant, such as in thin plates, concentrated loading, or impact loading. 

 
A typical weave architecture has been selected and this RVE is detailed in Table 1 and 

Figure 1.  Total fiber volume fraction, given these dimensions, will be 25% 
(incorporating the fact that the resin-impregnated yarn itself has a fiber volume fraction 
of 65%). 

 
Table 1:  RVE Dimensions 

Dimension a , b c p t w 
Length (mm) 1.68 0.254 0.84 0.066 0.70 
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Figure 1:  RVE Geometry 

 
To ensure continuity of macrostresses and compatibility of displacements across an 

RVE, periodic traction and displacement boundary conditions must be employed.  Any 
macroscopically homogeneous deformation can be represented as a prescription of 
relative displacements on points on opposite faces of the RVE, as in Table2.  In addition, 
traction boundary conditions which enforce equal and opposite traction forces on 
opposite lateral faces of the RVE are required. 

 
In the Direct Micromechanics Method (DMM), the RVE is subjected to macroscopic 

force and moment resultants, which are related to macroscopic strain and curvature 
according to: 
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Thus the constitutive matrices must be evaluated to determine this correlation.  Once 

this has been determined, a macroscopic deformation can be applied using an FEM code.  
In this way, the FEM results for stress in each element yield the microstresses resulting 
from an applied force or moment resultant. 

 
The RVE is subjected to independent macroscopic unit deformations in order to 

evaluate the stiffness matrices of Eq 1.  In each of the six cases shown in Table 2 below, 
a single unit strain or a single unit curvature is applied, and all other terms are set to zero, 
and the appropriate periodic boundary conditions are applied.  The four-node linear 
tetragonal elements in the commercial ABAQUS FE software package were used to 
model the yarn and matrix for all cases.  The FEM results for each element yield the 
microstresses resulting from an applied macro level strain and curvature.  The 
corresponding macro level force and moment resultant in each case can be computed by 
averaging the microstresses over the entire volume of the RVE: 

 
 

 c a 

 b 
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Table 2: Periodic Displacement Boundary Conditions 
  u(a,y)- 

u(0,y) 
v(a,y)- 
v(0,y) 

w(a,y)- 
w(0,y) 

u(x,b)- 
u(x,0) 

v(x,b)- 
v(x,0) 

w(x,b)- 
w(x,0) 

1. εx
M = 1 a 0 0 0 0 0 

2. εy
M = 1 0 0 0 0 b 0 

3. γxy
M = 1 0 a/2 0 b/2 0 0 

4. κx
M = 1 az 0 -a2/2 0 0 0 

5. κy
M = 1 0 0 0 0 bz -b2/2 

6. κxy
M = 1 0 az/2 -ay/2 bz/2 0 -bx/2 

 
( ) ee

ijabij VN ∑= σ1                    (2) 

( ) ee
ijabij VzM ∑= σ1                    (3) 

 
Thus the six load cases can be evaluated to completely describe the six columns of the 

[A], [B], [D] matrices.  This information having been determined, one is then able to 
evaluate the microstress field resulting from any general loading case. 

 
The method described above can be used to predict failure strength by comparing the 

computed microstresses in each element against failure criteria for the constituent yarn 
and matrix of the textile composite.  The microstress state for a general applied force or 
moment resultant is obtained by superposing multiples of the results from the unit 
macrostrain analysis.   
 

Failure is checked on an element-by-element basis, and the failure criterion of each 
element can be selected appropriately based upon whether it is a yarn or matrix element.  
Initial failure is defined when one of the yarn or matrix elements has failed.  This is 
analogous to a first-ply failure of a laminated composite.  For matrix elements, which are 
isotropic, the maximum principal stress criterion is used to evaluate element failure.  The 
yarn is in essence a unidirectional composite at the micro level, thus the Tsai-Wu 
quadratic failure criterion is used to determine its failure.  The current study considers x-y 
plane stress analysis in terms of N and M.   

Results 
 
The fiber tow was assumed to have material properties of a unidirectional composite, 

in this case AS/3501 graphite-epoxy.  The constitutive matrices relating macroscopic 
loads to strains and curvatures were found to be: 
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The character of the constitutive matrices is analogous to an orthotropic stiffness 
matrix with identical elastic constants in the material principal directions.  These have 
been calculated directly from the micromechanics model without any homogenizing 
assumptions.  By comparison to the direct micromechanics results of the DMM, 
calculation of flexural stiffness via homogenization schemes are assumptions can 
misrepresent flexural stiffness values D11, D12, and D66 by as much as factors of 2.9, 1.1, 
and 0.7 respectively. 

 
Figure 2 shows the failure envelope for the plain weave graphite/3501 textile 

composite using the DMM, and a comparison to a Tsai-Wu failure ellipse.  In-plane 
biaxial loading is considered.  DMM failure envelopes are shown with no applied 
moment, and with an applied moment Mx equal to half the critical value that would cause 
failure if it were the only applied load.  There is no Tsai-Wu failure envelope to include 
applied moment resultants, as the theory is not developed to include such load types.   

 

F ailure Envelo pes
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Figure 2:  Comparison of DMM Failure Envelopes to a Tsai-Wu Failure Ellipse 

 
 Although the strength is less than the pure tow strength, the woven tow is not 
completely aligned in the loading directions.  Some is curved into the thickness direction, 
providing through-thickness reinforcement.  Furthermore, after initial transverse failure 
of the fiber tow (indicative of the introduction of intra-tow microcracking), the structure 
will still maintain load-bearing capacity, though stress concentrations will begin to build 
up and part integrity will be degraded.   
 

Without applied moment, the DMM failure envelope follows closely with the form of 
a Tsai-Wu failure ellipse.  Generally, the initial failure mode is transverse failure of the 
fiber tows.  However, at the extremes of the major axis of the failure envelope, the initial 
failure mode transitions to failure of the matrix material.  Thus the DMM failure 
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envelope is cut short at the ends (compared to the failure envelope that would exist if 
matrix failure were not considered) and is squared-off in these regions in the form of the 
maximum failure stress criterion. 

 
An applied moment in the x-direction has the effect of shrinking the failure envelope 

in regions where tensile applied loads dominate.  However, when only compressive loads 
are applied, an applied moment can actually increase the in-plane load capacity by 
offsetting some of the compressive stress with bending-induced tension.  As with the case 
of pure in-plane loading, the failure envelope at the outer corner of quadrant III is 
dominated by matrix failure.  The effects of applied moment on the failure envelope of 
the plain weave textile represents the importance of the consideration of stress gradients, 
or load non-uniformities.  The appreciable difference that arises suggests that such 
consideration could be critical to the successful design or optimization of a textile 
structural component.    
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