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Summary 

A number of frequency domain solutions for the dynamic behavior of layered media 
are already known for the pure 2D and 3D cases.  For the case of 2.5D systems, the 
authors have defined analytical solutions for specific configurations. This paper extends 
this earlier work to allow the analysis of generic layered media built as a sequence of 
solid and fluid layers, excited by 2.5D loads. 

The proposed model expresses the solutions for sinusoidal line loads as a summation 
of the effects of plane waves with different inclinations, taking into account the 
appropriate boundary conditions. This procedure allows the presence of the multiple 
layers and the interaction between them to be properly modeled. 3D responses can then 
be computed using a similar procedure, requiring the solution of a sequence of 2D 
problems for 2.5D loads with different wavenumbers. The model thus defined is used to 
compute the wavefield generated inside a fluid-filled waveguide with an elastic ground. 
It is conveniently integrated into a Boundary Element code in order to allow the presence 
of submerged inclusions to be taken into account. 

Introduction 

The development of analytical solutions for wave propagation in solid and fluid 
media has interested researchers for many years. Although they can only be defined for 
simple geometries, these solutions are useful as benchmark solutions, as a practical 
approach for simple engineering problems or as Green´s functions that may be used in 
conjunction with numerical methods. The case of stratified media, made of different 
fluid and solid layers, is particularly interesting, since these simple configurations can be 
found in research fields such as acoustics or oceanography. A class of solutions employs 
the wavenumber integration technique, allowing the wavefield to be written as a 
continuous integral of the effects of waves with different inclinations. The technique was 
first introduced by Lamb [1], and since then many researchers have developed it and 
applied it to different domains (Pekeris [2]; Bouchon [3]). More recently, this 
methodology has been generalized to allow the analysis of generic multi-layered 
domains, and is usually known as the Direct Global Matrix (DGM) approach (Jensen et 
al [4]). However, a significant limitation of the DGM is that it only allows the use of 2D 
or axisymmetric loads, and so it fails to model any 3D non-axissymetric configuration. 
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This happens, for example, when the propagation domain is excited by a load with a 
harmonic variation along its axis. That particular case is usually designated as a 2.5D 
problem, and is of particular interest since, in conjunction with adequate numerical 
methods, it allows the study of systems with 2D geometry subjected to 3D loads.  

In this paper, previous work by the authors (Tadeu et al [5]) is extended to give the 
analytical solutions for wave propagation in multi-layered systems formed as a sequence 
of solid and fluid layers, and subjected to the incidence of 2.5D pressure loads in a fluid 
layer. To establish these solutions, the wavenumber integral is conveniently transformed 
in a discrete summation, assuming the presence of an infinite number of virtual sources, 
equally spaced along one direction. A damping factor is used to avoid the contamination 
of the response by the virtual sources. A similar procedure is used to define the 3D 
solution as a discrete summation of 2.5D solutions. An applied example is presented, 
corresponding to a specific case in the field of oceanography. In this example, the wave 
propagation is studied in a fluid channel, with an elastic ground over rigid bedrock, 
subjected to a point load, and in the presence of a submerged rigid circular inclusion. A 
direct BEM formulation is used in conjunction with the analytical solutions to model the 
rigid inclusion. Results in the time domain are presented.  

Mathematical formulation 

Consider a layered system of infinite extent built from a series of fluid and solid 
layers with different thicknesses and properties, excited by a spatially sinusoidal 
harmonic pressure load located in a fluid layer at ( )0 0,x y . The incident field generated 
by this source can be defined by 

( ) ( ) ( )2 22
0 0 0

ip H
2

full
fk x x y yα

 = − − + −  
 with Im 0fkα ≤   (1) 

with ( )2
0H (...) being second kind Hankel functions of order 0 , 2 2

f f zk k kα = − , 

f fk ω α= , fα  is the acoustic wave velocity of the host fluid medium, ω  the excitation 
frequency, i 1= −  and zk  is the wavenumber in the z  direction. In the layer containing 
the source, the wavefield can be expressed as the sum of the incident field with the 
surface terms needed to satisfy the required boundary conditions at the medium 
boundaries. For this purpose, it is useful to express p full  as a continuous integral of plane 
waves with different inclinations. This integral can be discretized into a summation of 
discrete terms assuming the existence of an infinite number of virtual sources placed 
along the x  direction at equal intervals, xL , which are large enough to prevent the virtual 
loads from contaminating the response. Following that methodology, equation (1) can be 
written as 
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In a similar manner, the wavefield in any fluid layer can be expressed by taking into 
account the surface terms generated at its top and bottom boundaries, also written as a 
superposition of plane waves. For this purpose, two pressure potentials should be taken 
into account, which can be written as 
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upper and lower boundary of the fluid layer i, defined in the global system x, y, z, 
2 2 2i

i

f
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f
fk ω α= ; 1, if

nA  and 2, if
nA  are the unknown 

amplitude factors. 
For the case of a solid layer, each boundary requires considering one dilatational and 

two shear potentials, again written as a superposition of plane waves. The required 
potentials are: 
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In these equations, 2
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velocities in the solid layer. For a generic multilayered system, the derivation of the 
above potentials and the imposition of adequate boundary conditions allow the wavefield 
at any point of the domain to be computed.  

The solutions thus defined can be integrated into a boundary element code as Green´s 
functions, allowing the analysis of multilayered systems containing inclusions without 
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needing to discretize the interfaces between layers. Assuming the presence of a rigid 
2.5D inclusion inside a fluid layer, the relevant boundary integral equation can be written  

*
0

1
p( ) p g ( , ) p ( , )

n

N
n

n incP P n P
n S

C x x x dS x x
=

+ =∑ ∫  (5) 

where p( )px  is the pressure at px , pn  is the pressure at the nodal point n, *g ( , )P nx x  is the 
Green’s function for the pressure at nx  due to a unit load at px , C  is a constant that 
assumes the value 0.5 for a smooth boundary and 0p ( , )inc Px x  represents the pressure at 

px , generated by a 2.5D pressure source placed at 0x  in the absence of any inclusion. 
One should note that the Green’s function *g ( , )P nx x  is defined by summing the incident 
wave field, generated directly by the virtual source, with the wavefield generated at the 
boundaries of the different layers. 

When the excitation source is a point pressure load, the full 3D response can be 
computed as a discrete summation of the effects of 2.5D loads with different 
wavenumbers along z ( zk ). For this purpose, a second set of virtual loads, equally spaced 

zL  along the z axis has to be assumed. The 3D pressure field can then be written as 

-i,3 2p ( ) p ( , ) e z

n N
k zfull D full

z
n Nz

k
L
πω ω

=+

=−

= ∑  (6) 

After computing the 3D pressure field in the frequency domain, the pressure in the 
spatial-temporal domain can be calculated by applying a numerical fast inverse Fourier 
transform in ω . For this, the pressure point source is assumed to generate a Ricker pulse. 
Using this technique, it is possible to analyze a total time window of 2T π ω= ∆  ( ω∆  is 
the frequency increment). To avoid interference from aliasing phenomena, complex 
frequencies of the form c iω ω η= −  (with 0.7η ω= ∆ ) are used. In the time domain, the 
response must then be rescaled by applying an exponential window e tη . 

Applied example 

The model defined in the preceding sections is now applied to simulate the wave 
propagation inside a fluid waveguide filled with water ( 31000 Kg mfρ = , 1500 m sfα = ), 
20.0m deep, excited by a point pressure load placed 0.5m from its bottom. The bottom of 
the waveguide is assumed to be a sedimentary ground 10.0m thick, lying over rigid 
bedrock. It is considered that the axis of a rigid circular inclusion inside the fluid 
waveguide is parallel to the global z axis, and has a radius of 1.0m. This inclusion is 
modeled with a number of constant boundary elements defined so that each element is at 
least 12 times smaller than the wavelength of the incident pressure waves. In no case is 
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the number of elements less than 20. The pressure responses are registered over a 
horizontal line of receivers, placed along the z direction (Figure 1). The response is 
computed for a set of 128 frequencies, ranging from 10.0Hz to 1280.0Hz, with an 
increment of 10.0Hz. Time responses are then calculated, assuming that the excitation 
source generates a Ricker pulse with a characteristic frequency of 400.0Hz. 

=1500m/s
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14.5m
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20
.0

m
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.0
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Cylindrical rigid inclusion (R=1.0m)

 
Figure 1: Simulation model. 

Figure 2 illustrates the response computed at the first line of receivers. The amplitude 
of the response is represented by a grayscale, ranging from white to black as the 
amplitude decreases. In Figure 2a, the first signal registered corresponds to the incident 
pulse combined with a first reflection occurring at the top of the sediment layer, and it 
arrives at successively later times at receivers placed further away in z. Also visible are 
pulses resulting from multiple reflections between the free surface and the solid-fluid 
interface. Each time a wavefront strikes the solid-fluid interface, part of the energy is 
transmitted into the sediment layer, traveling as P, S and surface waves, while the 
remaining part is reflected back into the fluid. Within the sediment layer, multiple 
reflections occur between the rigid bottom and the interface with the fluid, causing 
multiple mode conversions between P and S waves. When these pulses hit the top 
interface, part of their energy is transmitted into the fluid again, and its arrival is visible 
in the time plots. At later times, it is possible to identify the arrival of the Scholte surface 
wave, traveling along the solid-fluid interface at a velocity below the S wave velocity in 
the sediment layer. When a rigid inclusion is introduced into the waveguide (Figure 2b), 
additional pulses become visible, due to reflection and diffraction effects on the surface 
of the inclusion. The wavefield thus generated is now more complex, since the multiple 
waves described will interact with the inclusion, generating new sets of pulses.  
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a) 

 
b) 

Figure 2: Time response registered when R=1.0m: a) waveguide without obstacles; b) 
waveguide with rigid inclusion. 

Conclusions 

Frequency domain analytical solutions for wave propagation in generic layered media 
excited by 2.5D loads have been described. These solutions are obtained as the 
superposition of the effects of plane waves with different inclinations, and they allow the 
3D response in the presence of 2.5D configurations to be computed as a discrete 
summation of 2.5D responses. These solutions have been used in conjunction with a 
BEM formulation as Green´s functions, making it possible to take into account the 
interfaces between the various layers without requiring their discretization. An example 
has been presented to demonstrate the applicability of these solutions, together with the 
BEM, to model a fluid-filled waveguide containing a rigid inclusion with constant 
geometry along one direction, excited by a point pressure load. 
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