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Summary

This paper presents a formulation and numerical analysis for bifurcation in
frictional dilatant materials like geomaterials at finite strains. The Cauchy stress
is employed to represent the yield function in place of the Kirchhoff stress which
is often used in metal plasticity. The energy-conserving elasticity and the non-
associative format of the plastic flow rule, together with the non-symmetric tangent
moduli, are naturally derived. We extend numerical scheme for bifurcation analysis
to problems in which the tangent stiffness matrix of FE-discretized system is non-
symmetric. Some numerical examples of bifurcation analyses are demonstrated.

Introduction

The development of computational model for finite strains in recent years has
made mathematical structure of plasticity theory more clear and has provided effi-
cient numerical schemes. In this paper the importance of the choice of the stress
measure in the expression of yield functions at finite strains is emphasized in view
of the relation between modeling of materials and calibration through experiments.

A basic kinematic concept of the multiplicative decomposition of the deforma-
tion gradient is adapted to model materials at finite strains. While the yield function
for metal plasticity is often expressed in terms of the Kirchhoff stress, it is pointed
out by Meschke et al. [1] that, for isotropic frictional dilatant materials such as
geomaterials, the Cauchy stress might be more suitable to represent the yield func-
tion. In this case the spatial format of the dissipation inequality and the principle
of maximum dissipation naturally lead to the energy-conserving elasticity and the
non-associative format of the plastic flow rule. Due to this non-associativity of the
plastic flow rule, the material tangent modulus loses its symmetry.

We extend the scheme for numerical bifurcation analysis to problems in which
the tangent stiffness matrix of the system does not possess the symmetry[2]. Some
numerical examples for post-bifurcation behavior of plane strain specimens under
uniform compression are presented. As a model of geomaterials, a perfectly-plastic
Drucker–Prager model with associated/non-associated flow rule is employed. A
significant role of bifurcation in the occurrence of typical failure modes is demon-
strated through the numerical bifurcation analysis.
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Formulations of Material Models and Boundary Value Problem at Finite Strains

A basic kinematic assumption of the multiplicative decomposition of the defor-
mation gradient into elastic and plastic partsF = Fe · Fp is considered. The elastic
left Cauchy–Green deformation tensor and its rate are respectively given as

be = Fe · FeT, ḃe = l · be+ be · leT+Lvbe, (1)

wherel = Ḟ ·F−1 is the spatial velocity gradient,Lvbe = F · [∂(F−1 ·be·F−T)/∂t] ·FT

is the Lie derivative ofbe, and∂(·)/∂t denotes the material time derivative. The
velocity gradientl can be additively decomposed into elastic and plastic parts as

l = le+ lp, le = Ḟe · (Fe)−1, lp = Fe · L̄p · (Fe)−1, (2)

whereL̄p = Ḟp · (Fp)−1 is the plastic part of the velocity gradient on the plastically
deformed configuration associated withFp, andlp is the push-forward of̄Lp to the
current configuration. In what follows, we employ a constitutive assumption for
the plastic spinwp = skw[lp] = O.

Assuming isotropic hyperelasticity, we can express the free energy function
Ψ as a function ofbe via its invariants (notbe itself). Restricting to the case of
isotropic hardening, we introduce a strain-ordered internal variableκ, which is work
conjugate to a stress-ordered variablek. With these notations in hand, the rate of
dissipationD per unit reference volume can be expressed in reduced form

D = τ : d− Ψ̇ (be, κ) = τ :
[−1

2(Lvbe) · (be)−1]+kκ̇ ≥ 0, (3)

whereτ is the Kirchhoff stress,d = sym[l] is the spatial rate of deformation. The
hyperelastic constitutive relation and the isotropic hardening law emerge as

τ (= Jσ) = 2
∂Ψ

∂be · be, k = −∂Ψ

∂κ
, (4)

whereJ = detF represents the volume change, andσ is the Cauchy stress. In con-
trast to usual treatments for plastic incompressible materials, we here express the
yield function of frictional dilatant materials like soils in terms of the Cauchy stress
σ as f (σ,k). According to the hypothesis of maximum dissipation, the evolution
equations of the plastic flow and the internal variable are respectively derived as

−1
2

(Lvbe) · (be)−1 = λ̇
1
J
∂ f
∂σ

, κ̇ = λ̇
∂ f
∂k
, (5)

whereλ̇ ≥ 0 is the plastic multiplier. One can note in Eqs.(5) that whereas the evo-
lution of κ is associative, the plastic flow rule is given in the non-associative format.
Apart from the theoretical rationality of maximum dissipation, it is common in soil
plasticity to introduce the non-associated plastic flow by assuming a plastic poten-
tial g(σ,k) which is different from the yield function. In this case the derivatives of
f (σ,k) with respect toσ andk in Eqs.(5) are replaced by the ones ofg(σ,k).
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By combining the plastic consistency conditioṅf = 0 for continuing plastic
loading, the rate form of hyperelastic constitutive equation, and the plastic evolu-
tion equations (5), the rate form of hyperelasto-plastic constitutive equation can be
obtained as

�
τ = aep : l, aep = a−

(
b : 1

J
∂g
∂σ

)
⊗

(
∂ f
∂σ : 1

Jb
∗)

∂ f
∂σ : 1

Jb : 1
J
∂g
∂σ +

∂ f
∂k h∂g

∂k

, (6)

where
�
τ is the nominal rate of the Kirchhoff stress,h = ∂2Ψ/∂κ2 is the isotropic

hardening modulus, and the fourth-order tensoraep is the hyperelasto-plastic tan-
gent modulus. The hyperelastic tangent modulia, b, andb∗ are respectively given
as

ai jkl = ci jkl +δikτ jl , bi jkl = ci jkl +δikτ jl +τilδ jk, b∗i jkl = bi jkl −τi jδkl, (7)

whereδi j is the Kronecker delta. The spatial hyperelastic tangent modulusc is
given by the second derivative of the stored energy function with respect to the
relevant elastic deformation tensor. One can note that due to the non-associative
format of the flow rule (5)1, aep does not possess major symmetry.

Next, we briefly summarize the formulation for the boundary value problem in
finite deformations. The weak form of the quasi-static equilibrium of a domainB
is expressed in the spatial description as

I(u;δu) =

∫

ϕ(B)
(δu⊗∇x) : σ dv−

∫

∂tϕ(B)
δu · t ds= 0, (8)

in which body forces are not included. Hereϕ(B) denotes the current configuration
of the bodyB, δu is an admissible variation of displacement fieldu, and t is the
prescribed surface traction on the boundary∂tϕ(B). Under a condition in which
configuration-dependent loading is absent, linearization of Eq.(8) with respect to
an incremental displacement∆u leads to

I+DI[∆u] = 0, DI(u;δu)[∆u] =

∫

ϕ(B)
(δu⊗∇x) : 1

Ja
ep : (∆u⊗∇x) dv. (9)

The linearized equation (9) is discretized into the finite-element scheme and, in
turn, is to be solved with respect to∆u by iterative scheme. Due to the non-
symmetric tangent modulusaep, tangent stiffness matrixK, which is derived by
the FE-discretization, is now non-symmetric.

In contrast to the rate formulation for modeling of materials, we should handle
discrete increments of finite step sizes in numerical solution procedure for the non-
linear equations (9). We thus employ in numerical analyses the exponential return
mapping algorithm and the algorithmically consistent tangent operator [1] to ensure
the quadratic rate of convergence.
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Figure 1. Examples of bifurcation modes.
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Figure 2. Schematic view of bifurcation.

Detection of Bifurcation and Branch Switching

This section presents numerical procedures for detection of bifurcation and
branch switching. We shall limit the discussion to diffuse mode bifurcation ((a)
and (b) in Figure 1), which consists of a continuous velocity or velocity gradient
field. In this paper, another class of bifurcation, namely, the shear band mode ((c)
in Figure 1), is not considered. The bifurcation condition postulated by Hill [3] is
expressed in the form

δI(v(∗)) =

∫

ϕ(B)
(v(∗)⊗∇x) :

�
σ(∗) dv = 0, (10)

where
�
σ =

�
τ/J denotes the nominal rate of the Cauchy stress. As illustrated in

Figure 2, we assume the existence of two distinct solutions of the velocity fields
v(0) andv(1) at an equilibrium point, and define their difference asv(∗) = v(1)− v(0).
If non-trivial solutionv(∗) , 0 exists, two distinct solutionsv(0) andv(1) (v(0) , v(1))
are possible, and a bifurcation point is encountered on the equilibrium path. From
Eq.(6), rate constitutive equations for the fieldsv(0), v(1) and the difference of a pair
of these equations are

�
σ(0) = 1

Ja
ep : l(0),

�
σ(1) = 1

Ja
ep : l(1) {

�
σ(∗) = 1

Ja
ep : l(∗) (11)

where the differences of
�
σ and l are defined as

�
σ(∗) =

�
σ(1)− �σ(0) and l(∗) = v(∗) ⊗

∇x = l(1)− l(0), respectively. Substituting Eq.(11) into Eq.(10), and noting the same
structure as in Eq.(9), we arrive at vector–matrix form

v(∗)T K v(∗) = 0 ⇒ v(∗) , 0 if detK = 0 (12)

where the notationv(∗) now denotes the vector of the difference of nodal velocities.

The use of the hyperelasto-plastic moduliaep in Eq.(11) might be open to crit-
icism, especially when we consider materials which do not obey the associated
flow rule. Elasto-plastic bifurcation can be rigorously identified by considering all
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Figure 3. Analysis model.
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Figure 4. Fundamental and bifurcated paths.

possible combinations of plastic loading and elastic unloading at each point of the
domain. In order to examine properly the bifurcation in elasto-plastic materials, the
notion of the linear comparison solid by Hill [3] is usually introduced to determine
bounds to the range of possible bifurcation. However, the possibility of bifurcation
in materials with the non-associated flow rule cannot be necessarily excluded, even
though we identify the absence of bifurcation in the comparison solid. Raniecki and
Bruhns [4] proposed the generalized notion and the proper choice of comparison
solids which can be applicable for non-associative materials.

Once the bifurcation is detected at an equilibrium point, the branch switching
is conducted to arrive at the post-bifurcation state by perturbing a homogeneous
state with a predictor for the incremental displacement

∆u(1) = ∆u(0) +∆u(∗), ∆u(∗) = Cθ, (13)

whereC is a scaling factor. The increment∆u(1) corresponds to the velocityv(1) in
the rate equations. The bifurcation modeθ is calculated by means of the method
proposed by van der Veen et al. [2]. The Fortran subroutine DGEEV in the LA-
PACK is utilized in eigen-analysis of non-symmetric tangent stiffness matrix.

Examples of Numerical Bifurcation Analysis

This section presents examples of post-bifurcation analysis. The analyses are
conducted for the associated and the non-associated plasticity to examine the effect
of plastic flow rule in the behavior of frictional dilatant materials like soils.

Analysis model of the specimen is shown in Figure 3. The Drucker–Prager
model without plastic hardening was employed, where the friction angle and the
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(1st antisymmetric (right after the Axial strain= 15% (2nd symmetric (right after the Axial strain= 15%
mode) bifurcation) mode) bifurcation)

1st Bifurcation (associated) 2nd Bifurcation (associated)

(1st antisymmetric (right after the Axial strain= 15% (2nd symmetric (right after the Axial strain= 15%
mode) bifurcation) mode) bifurcation)

1st Bifurcation (non-associated) 2nd Bifurcation (non-associated)

Figure 5. Bifurcation modes (left), post-bifurcation progress of the deformation and the
distribution of the shear strain (center and right).

dilatancy angle are set to be 23.5◦ and 2.0◦, respectively. Laḿe’s constants for
hyperelasticity are chosen to beλ = 11.54 MPa andµ = 7.69 MPa.

The fundamental and bifurcated paths are shown in Figure 4, where the mea-
sure of the true stressF/W is employed. One can note from the Figure 4 that the
bifurcation stress of the non-associated case is lower than that of the associated
case. Figure 5 shows the progress of deformation and the shear strain distribution
after the bifurcation. In all cases non-uniform deformation rapidly propagates after
the bifurcation, and then gradually concentrates to band-like localized zones.

Reference

1. Meschke, G., Liu, W. N. (1999): “A re-formulation of the exponential algo-
rithm for finite strain plasticity in terms of Cauchy stresses,”Comp. Meth.
Appl. Mech. Engrg., Vol. 173, pp. 167–187.

2. van der Veen, H., Vuik, K., de Borst, R. (2000): “Branch switching tech-
niques for bifurcation in soil deformation,”Comp. Meth. Appl. Mech. Engrg.,
Vol. 190, pp. 707–719.

3. Hill, R. (1958): “A general theory of uniqueness and stability in elastic–
plastic solids,”J. Mech. Phys. Solids, Vol. 6, pp. 236–249.

4. Raniecki, B., Bruhns, O. T. (1981): “Bounds to bifurcation stresses in solids
with non-associated plastic flow law at finite strain,”J. Mech. Phys. Solids,
Vol. 29, No. 2, pp. 153–172.

829

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

829




