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Summary

The concept of a Structural Health Monitoring System is discussed. The system includes a
permanently installed structural health-monitoring network of ultrasonic sensors. The sensors
continuously provide information to a probabilistic fatigue damage analysis procedure for
real time probabilistic forecasting of the remaining lifetime of a component. Here we report
preliminary laboratory results. To quantify pre-cracking fatigue damage, a narrowband SAW
generator and a harmonically- matched SAW receiver are used to monitor the variations in the
harmonic SAW signal as a function of loading and number of cycles. The sensor data is then
used in a probabilistic fatigue damage analysis. Probabilistic fatigue lives are evaluated using
the Monte Carlo Method with Importance Sampling. Numerical results on the probabilistic
assessment of fatigue damage are presented.

Introduction

Conventional procedures for life prediction of rotorcraft drive train components subjected to
fatigue are generally based on the ‘safe-life’ approach (see e.g. [1]), coupled with Palmgren
[2] and Miner [3] rules of linear cumulative damage. In the ‘safe-life’ approach for metal fa-
tigue, life prediction is based on data from fatigue testing of components. All components of a
structure are replaced when the probability of failure reaches a prescribed (often small) value,
even though some of them may have a significant remaining life. Hence it is a conservative
approach with an economic penalty. To avoid the penalty incurred when using the ‘safe-life’
approach, the ‘damage-tolerant’ approach is generally considered for life predictions. This ap-
proach is especially useful when the rate of damage is well understood and can be monitored
with a technique of quantitative non-destructive evaluation. However, in materials such as
high strength steels, critical damage in the form of a crack of detectable but very small length,
often occurs late in the lifetime of a component. When a detectable crack has developed out
of microscopic damage processes, it grows to an unacceptable length in a time that is short
as compared to the total lifetime of the component. Continuous monitoring by a condition
monitoring system can, however, significantly improve the reliability of the damage tolerance
approach, and it can unite SHM and damage tolerance. Particularly if pre-crack damage can
be monitored and related to crack formation by an analytical fatigue damage procedure, very
substantial safety benefits can be gained.
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A systematic approach to continuous damage detection and its incorporation in a proba-
bilistic fatigue damage analysis is illustrated in Fig. (1). As seen from Fig. (1), the structural
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Figure 1: Continuous Lifetime Diagnostic System

health monitoring system measures the damage in the component using a NDE technique.
The measured damage along with the probability of detection of the system, the stress level
and the damage growth characteristics are incorporated in an appropriately chosen damage
model. The probability distribution of the number of cycles to failure is then calculated from
the damage model. If the probability of failure within a preset interval is high, the component
is sent to a maintenance facility for a detailed inspection.

Acoustic Nonlinearity

To quantify the damage accumulation taking place in a component undergoing fatigue, it is
first necessary to relate the accumulated damage to an observable variable. The accumulated
damage leads to changes in the microstructure of the component which in turn leads to changes
in the ultrasonic wave propagation through the specimen. The acoustic nonlinearity A2/A1,
defined as the ratio of the second harmonic amplitude A2 to the fundamental amplitude A1,
quantifies the extent to which an ultrasonic wave is distorted as it propagates through a
nonlinear material (see e.g. [4]). Ogi et. al [5] have observed that the acoustic nonlinearity
increases nearly monotonically, and shows a distinct peak at the point of macrocrack initiation.
Similar increases in the acoustic nonlinearity have also been observed in preliminary tests done
in our laboratory for Aluminum specimens. A 5MHz PZT transducer is used to generate the
fundamental surface acoustic wave and the second harmonic is detected using a 10MHz PZT
transducer. It has been found that for a fixed A1, the amplitude A2 increases with increasing
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cycles, reaches a maximum, and then decreases.
The above experiments suggest that the state of damage in a fatigue specimen can be

quantified by expressing it as a function of the acoustic nonlinearity.

Damage Model

This section presents a damage model whose evolution is similar to the evolution of the
nonlinearity up to the point of macrocrack initiation. The state of damage in a specimen
at a particular cycle during fatigue is represented by a scalar damage function D(N). The
magnitude D = 0 corresponds to no damage, and D = 1 corresponds to the appearance of the
first macrocrack. The following phenomenological model (see [6]) is assumed to represent the
evolution of the damage

dD

dN
=















1

Nc

(

∆σ/2 − rc(σ̄)

rc(σ̄)

)m
1

(1 − D)n
if ∆σ/2 > rc(σ̄)

0 if ∆σ/2 < rc(σ̄)

(1)

Here, Nc is a normalizing constant, ∆σ is the stress range in a cycle, rc(σ̄) is the endurance
limit when the mean stress in a cycle is σ̄, and m > 0 and n > 0 are parameters which depend
on the material and the loading conditions and are calculated by correlating the evolution of
the nonlinearity A2/A1 to the evolution of D. It is assumed that rc(σ̄) follows the Goodman
relation (see [7]), i.e.

rc(σ̄) = rc(0)

(

1 −
σ̄

σult

)

where, σult is the ultimate tensile strength of the material. Assuming that ∆σ and σ̄ are
constant during cycling and that ∆σ/2 is always greater than rc(σ̄), Eq. (1) can be solved to
obtain

D(N) = 1 −

[

(1 − D0)
n+1 −

N

Nc

(

∆σ/2 − rc(σ̄)

rc(σ̄)

)m

(n + 1)

]

1
n+1

(2)

Here D0 is the initial damage present in the specimen. To find the number of cycles needed
for macrocrack initiation, D = 1 is substituted in Eq. (2) to obtain

Nini =
Nc

n + 1
(1 − D0)

n+1

(

rc(σ̄)

∆σ/2 − rc(σ̄)

)m

(3)

Probability of Macrocrack Initiation

This section describes the procedure for calculation of the probability of macrocrack initia-
tion and is based on the model described in the previous section. Depending on the prob-
lem under consideration, the quantities appearing in Eq. (3) are suitably randomized. Let
X = [X1 X2 . . . Xk]T denote the random quantities (for example, for a problem with known
constant stress cycles, the quantities rc(σ̄), D0, m and n can be considered random with
known probability distribution and X = [X1 X2 X3 X4]

T = [rc(σ̄) m n D0]
T ). Let fX(x)

denote the joint probability distribution of X. To determine the probability of macrocrack
initiation Pma, i.e. the probability that the number of cycles to macrocrack initiation, Nini,
will be less than a specified number of cycles Ns, one first defines a limit state surface given
by

g = Nini − Ns
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To account for the inspection process, let Ninsp denote the cycle number at which an
inspection is carried out and let Dinsp denote the damage at that cycle. If no macrocrack is
observed at Ninsp then it follows that Dinsp < 1. To account for the inherent scatter in the
damage measurements, the following inequality

Dinsp < Dactual < 1 (4)

is assumed, where Dactual is the actual damage in the specimen at Ninsp. Note that this is
a conservative approach and it is possible that Dactual < Dinsp. Also note that since it is
assumed that the model represents the evolution of the damage exactly, one has D(Ninsp) =
Dactual, where D(Ninsp) is the damage predicted by the model (see Eq. (2)) at N = Ninsp.
Therefore the inequality in Eq. (4) can be replaced by

Dinsp < D(Ninsp) < 1 (5)

Let E denote the event Dinsp < D(Ninsp) < 1. Then the probability of macrocrack initiation
Pma, taking into account the inspection at Ninsp, is given by

Pma ≡ Pr(Nini < Ns|E) =
Pr((Nini < Ns) ∩ E)

Pr(E)
(6)

To calculate this probability, the two probabilities occurring on the right hand side of Eq. (6)
are evaluated separately. To do this, it is first necessary to represent the event E in the space
of random variables. This is achieved by defining a function h(x), such that

h(x) =

[

(1 − D0)
n+1 −

Ninsp

Nc

(

∆σ/2 − rc(σ̄)

rc(σ̄)

)m

(n + 1)

]

1
n+1

From Eq. (2) it follows that Eq. (5) is equivalent to Dinsp < 1 − h(x) < 1. This statement
is equivalent to

0 < h(x) < 1 − Dinsp

which represents the event E in the space of random variables. Eq. (2) shows that at N =
Ninsp, the surface h(x) = 0 corresponds to D(Ninsp) = 1, and the surface h(x) = 1−Dinsp
corresponds to D(Ninsp) = Dinsp. The probability of the event E is now given by

Pr(E) =

∫

0<h(x)<1−Dinsp

fX(x)dx (7)

and

Pr((Nini < Ns) ∩ E) =

∫

(g(x)<0)∩(0<h(x)<1−Dinsp)

fX(x)dx (8)

To evaluate the integrals appearing in Eqs. (7) and (8), the random variables are first mapped
via a Rosenblatt transformation (see [8]) into a standard Gaussian space where the random
variables denoted by U = [U1 U2 . . . Uk]T are independent, normally distributed and have
zero mean and unit standard deviation. The modified Hasofer-Lind, Rackwitz-Fiessler (HL-
RF) algorithm described in [9] is used to obtain the point closest to the origin on the surface
g(u) = 0, u

∗. In the modified HL-RF algorithm, one adjusts the step size during each
iteration to obtain a sufficient decrease in the merit function which is based on the first order
optimality conditions. Monte Carlo integration with importance sampling, with the sampling
density centered at u

∗ (see [10]) is then used to calculate the integrals in Eqs. (7) and (8).
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Sample Problem

To demonstrate the application of the ideas presented here, the probability of macrocrack
initiation is calculated for a sample problem. The data, i.e. the acoustic nonlinearity as a
function of the number of cycles, is obtained from [5]. Ogi and his co-authors have performed
a rotating bending fatigue test with a four point bending configuration on a 0.25% C (mass)
steel and have obtained the variation of the acoustic nonlinearity with the number of cycles.
The yield strength of the material is 333 MPa specimen and it is subjected to a maximum
bending stress of 280 MPa. The endurance limit of the material at zero mean stress, rc(0), is
assumed to be 180 MPa.

To simulate the inspection process, the acoustic nonlinearity is obtained from [5] at differ-
ent numbers of cycles with the interval between the cycles getting progressively shorter. Table
(1) shows the acoustic nonlinearity measured as a function of number of cycles. It is observed

Table 1: Measured Values of Acoustic
Nonlinearity during Successive Inspections

j Ninspj (A2/A1)j × 10−3

0 0 0.90
1 11200 0.80
2 22400 0.90
3 26880 1.50
4 30800 2.00
5 33040 2.50
6 34000 3.10

Table 2: ‘Measured’ Values of Damage
during Successive Inspections

j Ninspj Dinspj

0 0 0
1 11200 0.2462
2 22400 0.2769
3 26880 0.4615
4 30800 0.6154
5 33040 0.7692
6 34000 0.9539

that the evolution of the acoustic nonlinearity is not strictly monotonic during the initial
stages of fatigue. The damage is obtained by normalizing the nonlinearity measurements by
the expected maximum value of the nonlinearity. For the given problem the maximum value
is assumed to be 3.25×10−3. It is also assumed that the specimen is initially undamaged, i.e.
Dinsp0 = 0. The ‘measured’ damage which is calculated from the corresponding nonlinearity
measurements is tabulated in Table (2). Using the values of damage given in Table (2), the
constants m and n are calculated using nonlinear regression (e.g. see [11]). The values are
calculated starting from the third inspection. It is assumed that the damage values from 0 . . . j
inspections are available to calculate m and n at the j inspection. The probability of macro-
crack initiation is then calculated by assuming that ∆σ, σ̄, Nc and D0 are fixed quantities
while rc(0), m and n are independent random variables each having a lognormal distribution.
The following values are used for the fixed quantities: ∆σ = 2× 280 MPa, σ̄ = 0 MPa, Nc =
10000, rc(0) = 180 MPa and D0 = 0. The random variable rc(0) is assumed have a mean of
180 MPa with a standard deviation of 5.4 MPa. The probability of macrocrack initiation is
calculated as described in Section after each inspection for different Ns and is given in Table
(3).

Note that for the fatigue problem described, the first macrocrack is observed at approx-
imately 34160 cycles (see [5]). As seen from Table (3), the formation of the macrocrack is
predicted quite well in spite of using a simple damage model and making simple assumptions
regarding the parameters involved in the model.
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Table 3: Calculation of Pma

Cycles Pma

Ns 3rd Insp 4th Insp 5th Insp 6th Insp
(Ninsp = 26880) (Ninsp = 30800) (Ninsp = 33040) (Ninsp = 34000)

30000 0.03630 0.00000 0.00000 0.00000
31000 0.05274 0.05528 0.00000 0.00000
32000 0.07142 0.31742 0.00000 0.00000
33000 0.09305 0.54063 0.00000 0.00000
34000 0.11695 0.70945 0.83558 0.00000
35000 0.14302 0.82748 0.992680 1.00000
40000 0.30510 0.99570 1.00000 1.00000

Conclusions

Acoustic nonlinearity has been used to quantify the fatigue damage for a damage model which
is coupled with reliability analysis. Probabilistic fatigue lives are evaluated for a sample
problem.
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