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Abstract. The steady state propagation of nonlinear diffusive waves that are a solution of the Boundary
Value Problems (BVP) —su_ +b(x,u)u, =0 is studied. When ¢ approaches a critical value, standard

numerical methods used in a uniform mesh with a reasonable stepsize, fail to converge. Using a coordinate
transformation we associate to the initial BVP a mesh equation, which leads to an accurate and extremely
efficient numerical method. Numerical simulations that show the effectiveness of our approach are
included.

1. Introduction. Nonlinear differential equations arise frequently in formulating
problems of Science and Engineering. In the framework of the propagation of nonlinear
diffusive waves, as in problems involving sound waves in a viscous medium, waves in
fluid-filled viscous elastic tubes or magnetohydrodynamic waves in a medium with finite
electrical conductivity, the steady state behavior is described by nonlinear Boundary
Value Problems of type

{— su, +b(x,u)u, =0,

(1.1)

u(0)=4,u(l)=B.

Problems of type (1.1), depending on a small parameter &, change abruptly in
layers because their solutions approach a discontinuous limit as the small parameter
approaches some critical value. These problems are called Singularly Perturbed BVP.
When conventional descritization techniques are used to compute the numerical solution
of (1.1) in an uniform mesh with a reasonable stepsize, results are very inaccurate when
the small parameter is close to such a critical value.

Many authors have studied in these last years numerical methods for singularly
perturbed boundary value problems. Essentially two alternative ways of dealing with
such problems can be found treated in the literature: (i) the use, on equidistant meshes, of
elaborate schemes based on exponential fitting or flux corrected approaches; (ii) the use
of conventional methods, on highly non equidistant meshes a priori defined or defined by
some adaptive procedure. In the case of meshes a priori defined, or meshes defined by
some adaptive procedure the information coming from a previous computation of an
approximated solution on a given mesh should be used.

In this paper we suggest a new approach to solve Singularly Perturbed Boundary
Value Problems, in highly non equidistant meshes well adapted to the behavior of the
solution, while avoiding an “a priori“ knowledge of the qualitative properties of the
solution. The idea underlying our procedure is that to solve a problem with a mesh of
high density in the layer(s) is equivalent to solving a modified equation with a more
regular solution in an equidistant mesh. We consider problems of type (1.1). We then
look for a mesh generating function such that the initial BVP is equivalent to a modified
problem, which solution is a first order polynomial. This corresponds to the selection of a
mesh with a density proportional to the gradient of u. In fact, let u(x) be the solution of

(1.1) and let x=g(&) be the mesh generating function. We have u(x)=u(g(£)) that is
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u(x)=(B-A);,+A4 for x=g(&). We also show that the approximated solution u,at
x =x,obtained by this procedure that is u, =(B- A4)¢ + A, where u, represents an
approximation of u(x) at x, =g(&), is the solution of (1.1) when solved in a non

equidistant mesh and with a certain numerical method.

The paper is organized as follows. In Section 2 we define a mesh density function
and construct the mesh equation. In Section 3 a discretization of the mesh equation is
studied, and finally in Section 4 some numerical simulations are presented.

2. The mesh equation.
Let us consider the singularly perturbed BVP
—su_ +b(x,u)u, =0,
{ u(0)=A4,u(l)=8B,
If we solve (2.1) with a standard numerical method like centered (CFD) or
upwind finite-difference approximations results are very inaccurate (Fig.1) when & is
very small.

2.1) B# A

li\/ \/ \
0.2 0.4 \016 Aols/\i

Fig.1 Exact and numerical solutions of (1.1) with
A=1,B=—1,6=10"2, b(x,u) =u , N=10, using CFD.

To obtain accurate solutions, presenting no numerical dispersion, centered-finite
differences should be used with N=50. In fact it can be proved that to obtain non

oscillatory solutions the stepsize must satisfy 4 < . In the case of upwind methods

max| b|
as u changes sign at x = x with xe [O,l] and x is not a priori known, we don’t know
where to switch the discretization of u_ from forward to backward or from backward to

forward.

In our approach we begin by changing the independent variable by means of a
function g:[0,1]—[0,1] such that g(0)=0,g(1)=1 and g.#0 in [0,1]. The modified
problem takes then the form

f— (C,._ e 1

2.2) e

u(0)=A4, u(l)=B5B,

8 U I
#l e D). 80D fus =0, B#4,

S S
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where u(&) = (u - g)(&). We now select g such that uz =0 that is such that g is a solution
of
_ , -
2.3) {}g§0%n®+b@¢nggB—A>—m
g(0)=0, gM=1,

where b(S,g) =b((B—A)S + 4,8(S)).

If B# A, we can rewrite (2.3) in the form

(2.4) {gggg +b(§,g)g§ =0,

g(0)=0, gM=L

To clarify the meaning of this change of variable let us consider b constant, A=0,
B=1. The solution of (2.4) is then

b
PRI
n§+(be 1) .

(e" =1
Fig. 2 shows the plot of g for £=107, >0 and »<0. The mesh defined by (2.5),

2.5) y@=§1

X, = g(%), i=1,.., N —1, locates accurately the boundary layers. In Fig.3 we present the

solution of (2.1) for the previous meshes.
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Fig.2a. The plot of g for b=1. Fig.2b. The plot of g for b=-1.
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Fig.3a. The solution of (2.1) in the Fig.3b. The solution of (2.1) in the
mesh defined by (2.5) with b=1. mesh defined by (2.5) with b=-1.

In Tablel we can conclude that for b=1, g(&)=1-0(¢), where &, :% and N is

the number of nodes considered in the discretization. We observe that all nodes are
located in [ g(fl),l].
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£ g(s)
107 0.9770
10° 0.9977
10 0.9998

Tablel. The first node for different values of €.

An interpretation of the meaning of the mesh function g is also possible in a
general case. In fact from (2.4) we have

gff b s
(2.6) 8 o8
g: £
Let us represent by d(&) the function L . As I __u function d(&)
g: g; B—-A4
represents a mesh density proportional to the gradient of . From (2.6) we have
b(¢,
@.7) 4.6 =228,

If b(&,g)>0,VEe [0,1] then d is an increasing function of &, which means that a
boundary layer exists at x=1. On the other hand if b(&, g)<0,V§e[O,1], then d is a

decreasing function of & and the boundary layer is located at x=0. In the case that &
changes sign in [0,1] for some £, then d is not a monotone function. Let us consider for
instance that b(&,g)>0,vEe[0,& [ and b(&, g)<0,VEe]E 1], As before we conclude
that d is an increasing function in [0,£[ and a decreasing function in ]&.,1], which
indicates the existence of an internal layer at ¢&=¢&¢.. If we consider
b(£,2) <0,V E e [0,£] and b(&E,2) >0, vEe]é 1], we will expect two boundary layers
located at x=0 and x=1.

In any case, the mesh generating function defined by (2.4) provides us a good
localization of the boundary layers.

Let us return to equation (2.4). In most cases that equation cannot be solved
exactly. In the next section we propose a discretization of (2.4) in uniform meshes.

3. Discretization of the mesh equation.

We begin by considering a discretization of the mesh (2.4) in [0,1] using a
uniform stepsize k:

(3.1) 8gi+l _2%i+gi—] +E[ (gi+] _gi)(zgi_gi—l) 20’ i=1, ...,N—l,
k
where g, stands for an approximation of g(&,) and b =b(&, g).
Discretization (3.1) is equivalent to
(3.3) &(g,., —2g,+8,.)+bi(g, —g)g —g.)=0.
Method (3.3) is locally stable because it can be considered as an upwind type
method. We can write (3.3) in the form
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(3.4) o 8 28+ 80
(g — &g — &)
Noting that win —uia =(B— A, —(B - A)¢, |, we have i —uis =2k(B — A). On the
other hand, as g, —g, =h +h,.,g,. —-2g +g. ,=h, —h,g,. —g =h, we conclude
that (3.4) is equivalent to

(3.5) f

(2k)(B — A) +b;(2k)(B — A) =0.

i+l

o —h - - (1 "

T+l

Finally remarking that u(&) is a first order polynomial, u: —2u: +u:;1 =0 and we
can establish that (3.5) is equivalent to

T N Iy T P
3.6) €|:—(M[+1 —2ui +ui) i +(Uin —ui)—H b +bi (Ui —uia)=0
iVl 7T+l
and therefore to
(3.7) e hiui+l I_(h’ + hi+l )ui +hiu,-_1 +Bl_ u]:_] _hui—l :O
7hihi+l (hl + hiﬂ) i + i+l

We have then proved that the approximation u; of u(x,) defined by
ui =(B—A)&, + A is the central finite difference discretization computed in the mesh
given by (3.3). Following this approach, instead of solving (2.1) we solve the mesh
equation (3.2) obtaining g, and consequently an approximation u; of u(g(&)), that is
u(x,). As we have mentioned before if we solve directly (2.1) with centered finite
difference we must use a very refined mesh.

4. Some properties of the mesh generating function.

In this section we prove that function g generates a mesh that satisfies g>0.
Define the nonlinear mapping F : IR"™" — IR"™" by the symmetric of the left-
-hand side of (3.4). Equation (3.4) is then equivalentto and g,,, >g,, i=1,..,N—1.

4.1) F(g,,g2,,---8y)=k,

where k is defined by k" = [0 0 .. g]T , because g, =0,g, =1.

To prove that the solution g,,7i=1,..., N, is positive it is enough to show that F'is
an inverse monotone function ([1]) that is if Fg >0 then g > 0. If the Jacobian matrix of
F, JF, is inverse monotone, it is obvious, using the Mean Value Theorem for each
coordinate function F, of F, that F is inverse monotone.

The elements of JF are defined by
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- j=i—1,
(g[ - gi—l)z
g(g[+1_gi)2+(gi_g[—l)2 =
(4'2) (gi+l _gi)z(gi _gi—])z
S Jj=i+l1
(g[+1 - gi)2 ’
0 in other cases.

To establish that JF is inverse monotone we need the following definitions.

Definition 4.1. The matrix 4=[a, ] is called an M-matrix if
(4.32) a,>0,foralliel,a; <0,forall i+ ;.
(4.3b) A is nonsingular and 4™ >0 .

The index i e/ is said to be directly connected with j e/ if a,; # 0. We said
that i el is connected with je [l if there exists a “connection” (chain of direct
connections) i=iy,i,..,i, =j, witha, ., #0 (1< p<k). The index set / together

Ip-1lp

with the direct connection form the graph of A. In the case that 4 has a symmetrical
structure , we have a; # 0 if and only if a, #0. In this case i is (directly) connected

with j if and only ifj is (directly) connected with i.

Definition 4.2. A matrix A is said to be irreducible if every i€l is connected
with every jel.

Definition 4.3. a) 4 is said to be diagonally dominant if

(4.4a) Z‘al.j ‘ < |% |, forall ie/.

J#I
jel

b) A is said to be irreducibly diagonally dominant if 4 is irreducible and the
inequality (4.4a) holds for at least one index i € / and

(4.4b) Z‘ a, ‘ < |an. , foralliel.
i
jel

In next theorem we prove that JF is inverse monotone.

Theorem 4.1. The matrix JF is inverse monotone.

Proof. Let /={l,..,N—1}. JF is a tridiagonal symmetric matrix. We have

a, #0,ay, v, #0,a,, ,a,,,#0,1<i<N-2, which means that every iel is

ii+l

connected with every j € I . Therefore JF is irreducible.
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From (4.2), we notice that (4.3a) holds for the matrix JF. We have also
(4.5) (R > 2 [(F),

Jj#l
Jjel

which means that (4.4b) holds for i=1. Therefore JF is irreducibly diagonally dominant.

On the other hand, the entries of JF satisfy (4.3a). Following [3] if a matrix has property
(4.3a) and is irreducibly diagonally dominant then it is an M-matrix.

We conclude then that JF is an M-matrix and then JF is invertible and (JF)™' >0.
If JF is an M-matrix, then JF is invertible and (JF)™' >0.

b

To guarantee that g generates a mesh we must prove firstly that
g, >0, i=1..,N-1, and secondly that g, <g,,, i=0,..,N—1. In fact

Theorem 4.2. The mesh function g is positive.

Proof. Since Fg=[0 0 --- 0 ] >0 and JF is inverse monotone, F is an
inverse monotone operator and Fg >0 implies g >0.

Using the previous proposition we easily establish that

Theorem 4.3. The mesh function g satisfies g, <g.,,, i=0,..,N—1.

Proof. Let v, = g, — g, ,. From (3.3), we have
4.6) (v, —v)+byyv, =0,
or, equivalently,

i+1

@7y Jmve_ b
V.V &

17+l

7 . V.., — V.
If b; >0, since € >0, we have “—~-<0, and consequently v,, —v, <0 and
Vivi+l

v, >0 or v, —v,>0 and v,v,, <0. As we already proved that g, >0 we easily
conclude after some computations that g, <g,.,.

If b; <0 then the same result holds.
In both cases we have v,>0 for all ie/, which means that

0=g,<g <..<gy, <gy =1. Therefore g is an increasing function.
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5. Numerical results.

Example 1. Let us consider

{— au,, +u—ayu, =0,
(5.1)
u(0)=0, u(l)=1,

with 0<a<1 and £=10". For a=0, we have the Burgers equation. Fig.4 shows the
behavior of the solution for different values of a, using the mesh equation (3.3). We can
observe, for some values of a, two boundary layers located at x=0 and x=1. If we take
a=0, then we have only one boundary layer located at x=1.

a:Oove 08 1 02 a:6.25

a=0.5 a=0.75
Fig.4 The numerical solution of (5.1) for a=0, 0.25, 0.5, 0.75,using the mesh obtained by (3.4).

In Table2 we indicate the mesh obtained by solving (5.1) for a=0.5, £=107,
using (3.4).

Mesh
0.0097, 0.0257, 0.0562, 0.1347,
a=0.5 0.5000, 0.8653, 0.9438, 0.9743,
0.9903
Table2. The mesh obtained to the problem (5.1) using (3.4).
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Example 2. Let us consider

{— eu,  +(05-uu, =0,
(5.2)
u(0)=0, u(l)=1.

Fig.5 shows the behavior of the solution of (5.1) using the mesh obtained using
(3.4). In this case, we can observe an internal layer.

0.4 0.6 0.8 1

0.2
Fig.5 The numerical solution of (5.2), using the mesh obtained by (3.4).

In Table3 we indicate the mesh obtained by solving (5.2) for £ =107, using (3.4).

Mesh
0.4420, 0.4656, 0.4795
0.4903, 0.5001, 0.5099,

0.5207, 0.5345, 0.5582
Table2. The mesh obtained for the problem (5.1) using (3.4).
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