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Summary 

Efficiency of induction heating processes can be improved considerably when 
designed in accordance with a respective optimal control problem solution. In order to 
achieve a required temperature field evolution in a heated workpiece efficiently, 
considering both, minimization of the input energy and time needed for the 
accomplishment of the heating process, while respecting all technological limitations, the 
process parameters must be correspondingly tuned. Since a highly demanding numerical 
approach is needed, in general, for the optimal solution of the considered physically 
coupled problem, any trustful initial estimation, though based on a physically simplified 
model, is beneficial and advantageous. As a first attempt to shorten the computational 
time the investigation of a corresponding radial problem is performed. Conditions, that 
characterize two specific classes of induction heating processes, surface and volume 
heating, respectively, are addressed.  

Introduction 

Induction heating is a convenient method used in industrial processes for surface and 
through volume heating of metal workpieces [1]. It relies on the fact that by 
electromagnetic induction, which results from an independent  alternating electric source 
applied to an inductor, heat is generated in an electrically conducting workpiece, thus 
giving rise to a corresponding temperature distribution in it. Evidently, the problem is 
physically coupled, with thermal problem being dependent directly on the induced 
electric power, while electromagnetic problem being dependent indirectly through the 
established temperature dependence of the respective material physical properties. Due to 
the latter characteristic, particularly in regard to passing of the temperature beyond the 
Curie temperature and consecutive abrupt change in magnetic permeability, the problem 
could become also highly non-linear. To find a solution to the considered problem, 
considering actual boundary conditions as imposed by the geometry of practical inductor-
worpiece assembly, is definitely a hard task even in the case, when a direct problem is 
considered. The only feasible and really efficient way is a numerical approach, in 
particular a combination of two powerful methods, FEM and BEM, respectively. This 
was clearly demonstrated for the assumed axisymmetrical cases, which are, fortunately, 
dominating in industrial applications [2].  
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When trying to find optimal solutions to the above addressed problems, considering a 
chosen set of process parameters that are subject to optimization, the usual strategy is to 
perform corresponding sensitivity analyses, and based on those analyses to iteratively 
approach to the optimal solution in a suggested direction. Concerning numerical 
evaluation of respective parameter sensitivities, which is mostly done by the finite 
difference approach, difficulties often arise. Since, in addition, such computations are 
also very time consuming, it is rather important to be able to predict good initial guess for 
the optimal design. Practical technological experience is undoubtedly the basis, which we 
can rely on. Unfortunately, this support can not assist us in more complex cases. In 
consequence, further estimations, relying on simplified but still physically objective 
mathematical models, could be sought for the optimal solution.  

As an approximation to a real axisymmetrical case we consider in the sequel a radial 
case, which is most elementary. Taking characteristic heat source distributions as evolved 
by the eddy currents into account, analytic expressions can be obtained for the respective 
temperature field evolutions. This definitely reduces the effort needed for the optimal 
design solution. 

Solution of the Radial Thermal Problem 

We consider an infinite cylinder of external radius Re, which is exposed along its axis 
to radial thermal loading. The cylinder domain will be denoted by Ω, including the 
interval Ri≤r≤Re, where Ri≠0 stays for the case of a hollow cylinder. Accordingly, the 
respective domain boundary, including both external and eventual internal radius, will be 
denoted by Γ. In order to cover both, high and low frequency induction with respective 
surface and volume developed heat generation, the respective heat agents are considered 
in the governing heat conduction equation for the temperature field evolution T(r,t) 
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where r is the radial coordinate, t is time, κ and λ are respectively thermal diffusivity and 
thermal conductivity, and qV is the volume heat source. A physically consistent solution 
to the above equation is obtained by taking associated initial and boundary conditions 
into account  
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( ) Γ∈=+
∂
∂ rt,rfT

n
T       ;       αλ  (3)  

In Eq. (3), which expresses convective type of boundary conditions with α being heat 
transfer coefficient, the first term is actually covering the surface heat source qS, when 
specified.  
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When assuming material properties as temperature independent the solution T(r,t), 
that fulfils the above problem equations, can be efficiently derived in terms of the 
corresponding Green's functions G(r,t|r’,τ) [3]. For the considered problem the following 
expression can be derived for the temperature field evolution 
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where individual summands include consecutively the effects of initial conditions, 
volume heat source and surface direct or indirect heat source.  

Because, due to space limitation, only a specific boundary heating case will be 
considered in the sequel, we write down the Green's function which is covering the 
convective radiative boundary condition in case of solid cylinder (Re=R) 
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where Bi is the Biot number and βm are the roots of the equation 
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Considering Eqs. (4) and (5), the following analytical expression is obtained for the 
temperature field evolution in case of prescribed ambiental temperature which is assumed 
sectionally constant in time, i.e. in the i-th time interval t∈[ti-1,ti] ⇒ T∞(t)= Ti
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Here, functions Am(r) and coefficients Bm, Cm and Dm are defined in terms of Bessel 
functions and roots βm in the following way 
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The Optimal Problem Definition 

With respect to the above considered thermal problem and adopted assumptions we 
formulate the following optimization problem, which consists in finding the shortest time 
τ at which an arbitrary axisymmetric layer r∈[rin, rout] of the solid cylinder is heated into 
a pre-defined temperature range T(r)∈[Tlow, Thigh]. The heat source being acting from the 
outside of the cylinder, the heat is conducted from the surface r=R inwardly during the 
heating period, causing lagging of the temperature rise of inner layers.  

The minimization will be focused to such cases, where due to high heat flux rate 
from the heater the prescribed temperature range [Tlow, Thigh] can not be obtained by a 
single heating. In this particular case the surface temperature is approaching material 
temperature limit Tmax/Thigh, even before the temperature T(rin) reaches the lower 
prescribed temperature Tlow. In consequence, the heat supply has to be turned off, causing 
cooling of the surface. Meanwhile, the cylinder core is still heating due to conduction of 
the heat stored in the outer layers. The described heating-cooling sequences are continued 
considering the above material constraint, till prescribed temperature values are obtained.   

The minimization procedure is conducted in two steps. In the first step a rough 
approximation of the shortest process time τ (heating + cooling) is found, succeeded by a 
refined minimum search in the second step. In this step not the whole domain of interest 
0≤rin≤r≤rout≤R is checked against the allowable temperature range T(r)∈[Tlow, Thigh]. 
Instead, only temperatures T(rin), T(rout) at the inner and outer radius are examined. 
Times, when those temperatures fall within the required temperature range, are denoted 
as τin and τout. In general heating-cooling sequences those two times are not equal, thus 
the greater is the time, when temperature requirements in the investigated layer are 
satisfied, τ=max[τin,τout]. 

This is true only, if in the continuation of the heat transfer, when t>τ, the 
temperatures T(rin) and T(rout) become equal, and if this equal temperature Tsect is still 
inside the prescribed temperature range   

( ) ( ) [ ]highlowtsectsecoutin T,TTtTt,rTt,rT ∈∧>==          ,   τ  (9) 

In the minimization procedure all relevant parameters, which govern the heat transfer 
in the cylinder, except heating and cooling times ti, are kept constant. The subscript i 
stays for the number of a treatment period, regardless the nature of treatment, i.e. heating 
or cooling. Cumulative number of heating plus cooling periods is n. The cost function 
W(x), which is to be minimized by a proper selection of parameters vector x, is written as 

( ) ( ) ( )1 1 1,..., ,...,p nW W x x t tτ −= =x  (10) 

where minimization parameters xi are actually times ti, corresponding to the termination 
of the i-th heating or cooling period. The end of the last cooling period is in fact time τ, 
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which is to be minimized in the ongoing optimization. Thus, it does not represent an 
optimization parameter, but the cost function itself.  

The aforementioned minimization problem constraints, i.e.: prohibited overheating of 
the cylinder surface at the end of each heating period, increasing values of subsequent 
heating and cooling period times, and holding temperature Tsect inside the prescribed 
temperature range, are written in a normalized form as 
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Subject to the above constrains the minimization problem is finally solved by using a 
quadratic programming routine [4].  

Since in the first step of the minimization procedure only temperatures at two radii 
T(rin) and T(rout) are taken into consideration, it is possible, that some layers within rin and 
rout at time τ may fall out of the prescribed temperature range, defined by Tlow and Thigh. 
This happens actually in the case, when cylinder's surface is gradually cooled while 
T(rout)=Thigh. At this instant, the maximum temperature can be found at a certain depth 
from the surface, say at radius rx. To find this radius, the spatial derivative of the 
temperature field ∠T/∠r is equalized to zero. With the third checking radius introduced 
into minimization procedure a new loop of iterations, representing in fact the second step 
of the considered optimization, is started.  

Numerical Example 

Infinite solid cylinder of radius R=117mm is initially at uniform temperature of 20oC. 
The desired final temperature is confined between Tlow = 205oC and Thigh = 220oC for the 
whole cylinder, r∈[rin=0,rout=R], while maximum material temperature is Tmax=285oC. 
The heating protocol provides two heating and two cooling periods, given in the form of 
alternating surrounding air temperature: T∞1=2000oC, T∞2=20oC, T∞3=2000oC, T∞4=20oC. 
Since the first heating period t1 can be calculated directly by imposing the maximum 
temperature to be obtained on the surface, while time t4 is actually the sought time τ, 
there are only two remaining parameters which act as optimization design variables, 
namely x1=t2 and x2=t3. The respective material data considered in the numerical 
investigation are respectively, density ρ=7800kg/m3, specific heat c=460J/kgK, 
conductivity λ=5.95W/mK and surface convection film coefficient α=10W/m2K. 
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Starting from initial values of x1=2586s and x2=2869s, and using computer program 
NLPQL [4] optimal solution x1

opt=2489s and x2
 opt=2743s is found in 5 iterations. The 

respective temperature time evolution at rin=0, rout=R is displayed in Fig. 1, where in the 
part of the diagram under the abscissa, the history of the imposed heating regime is also 
plotted. Graphic representation of the time evolution of the temperature field distribution, 
represented in Fig. 2, clearly exposes the need for a second minimization step. White and 
black regions of the diagram represent temperatures, which are (in terms of radius and 
time) higher than Thigh and lower than Tlow. A minimum time τ is found by pushing a 
vertical line crossing the gray shadowed region of the diagram to the most left position.  
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Figure 1: Surface and axis temperature evolution 
by optimized heating regime 
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Figure 2: Time evolution of the temperature 

field distribution 
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