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Summary

The nonlinear dynamic stability of structure due to vertical and horizontal ground mo-
tions is investigated in this paper. The structure is ideally shown as a plane frame, and the
ground motion activity is described with vertical and horizontal components of the ground
acceleration. The regions of unstable oscillations due to horizontal and vertical excitation
are determined numerically. The results of some particular solutions are shown in Poincaré
maps. They reveal periodic, quasi-periodic and chaotic vibrations.

Introduction

The design of building structures is generally carried out within the framework of static
stability analysis, to assure stability. This paper deals with simple structure type in which
the parametric load arises from the inertia force due to the ground motion. Earthquake
activity is described with two components of the ground acceleration. The horizontal com-
ponent of the acceleration is the primary cause of the vibrations in the structure calculus.
The vertical ground motions component, although often disregarded in the calculations,
has two separate effects: it causes axial vibrations (in the column axis direction) and, at the
same time, has a parametric influence on lateral vibrations. Parametric influence depends
on the earthquake activity conditions and on the characteristics of the given structure. This
influence, in specific conditions, becomes dominant - it can cause parametric resonance and
jeopardize the structure stability. In the frame structures, the first axial vibration frequency
is much higher than the first lateral vibration frequency (bending of the columns). Because
of this we can separate the instability analysis of the lateral vibrations caused by parametric
resonance in the main area from the vertical (axial) vibrations.

Model Description

The structure is modelled as a plane frame (Fig. 1). Frame columns are absolutely
elastic, have the lengthh, constant bending stiffnessEI, constant distributed massm, and
are connected with an absolutely stiff beam whose total mass isM = 2hm. The lateral
deflection of the column is described with the functionv(y, t), wherey is the coordinate on
the column axis.

v(y, t) =
n

∑
i=1

qi(t)ϕi(y) (1)

The model vibration equations are derived using Lagrange’s equations. The shape functions
ϕi(y) were derived from a solution of model free vibration analysis. The uniform mass
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Figure 1: Frame model

column with rigid lumped beam mass on the top was considered, as shown in Fig. 1. The
boundary conditions to be satisfied are:

ϕi(0) = 0, ϕ′i(0) = 0,

ϕ′i(h) = 0, 2EIϕ′′′i (h)+ω2Mϕi(h) = 0 (2)

The free lateral frame vibration mode shapes and frequencies are determined analytically,
with respect of the border conditions and the assumed beam mass:

ϕ1(y) = −1.06206 cos

(
1.71888y

h

)
+1.06206 cosh

(
1.71888y

h

)
+

+1.29446 sin

(
1.71888y

h

)
−1.29446 sinh

(
1.71888y

h

)

ϕ2(y) = −0.63923 cos

(
4.89277y

h

)
+0.63923 cosh

(
4.89277y

h

)
+

+0.63143 sin

(
4.89277y

h

)
−0.63143 sinh

(
4.89277y

h

)

ϕ3(y) = −0.66230 cos

(
7.96446y

h

)
+0.66230 cosh

(
7.96446y

h

)
+

+0.66271 sin

(
7.96446y

h

)
−0.66271 sinh

(
7.96446y

h

)
(3)

The vertical component of the ground motion is described by an ideally harmonic force
N(t) and is added to the constant longitudinal forceP0 (which is caused by static load). The
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horizontal component of the earthquake is described with a similar harmonic forceH(t).

N(t) = P0 +Pt cos(2ψ t)
H(t) = A cos(β t) (4)

The beam mass vibrates vertically due to the column deflections. This movement generates
an additional inertia force, which is a second order value and depends on the frequency and
amplitude of the lateral vibrations. It is clear that this force has a periodic longitudinal
effect, e.g., a parametric influence on the lateral deflections. Further, this means that this
influence can cause self-induced parametric resonance.

∆y = h−
Z h

0

√
1− (

∂v(y, t)
∂y

)2dy=
Z h

0

1
2
(

∂v(y, t)
∂y

)2dy (5)

The mechanical system kinetic energyT consists of the column lateral vibration kinetic
energy and the kinetic energy of the beam massM. The linear influence of lateral deflection
of the massM and the non-linear vertical deflection are included.

T = 2
Z h

0

1
2

m(
∂v(y, t)

∂t
)2dy+

1
2

M(
∂v(h, t)

∂t
)2 +

1
2

M(
∂∆y
∂t

)2 (6)

The potential energyV is given as the flexural strain energy in the column.

V = 2
Z h

0

1
2

EI(
∂2v(y, t)

∂y2 )2dy (7)

Generalized forces caused by the vertical forcesN(t) and horizontal forceH(t) are:

Qi =−N(t)
∂∆y
∂qi

+H(t)
∂v(h, t)

∂qi
(8)

After substituting equation (1) into the equations (5) - (8) and then into Lagrange’s equa-
tionsn differential equations of the model motion are determined:

1
ωi

q̈i −N(t)
n

∑
j=1

q j(t)αi, j +
n

∑
j=1

q j(t)αi, jΓ(q, q̇, q̈) = Aγicos(β t), (i = 1,2, . . . ,n) (9)

In the equations (9)ωi are the free vibration frequencies,αi andγi are the constants, andΓ
is a function.

αi, j =

R h
0 ϕ′jϕ′idy

EI
R h

0 ϕ′′2i dy
(10)
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γi =
hϕi(h)+

R h
0 ϕi(y)dyR h

0 ϕ′′2i dy
(11)

Γ(q, q̇, q̈) =
n

∑
p=1

n

∑
k=1

Z h

0
ϕ′p ϕ′kdy(q̇p q̇k +qp q̈k) (12)

The coordinatesqi in the equations (9) are re–scaled into non-dimensional variables
ui using the column lengthh, and timet is re-scaled using the fundamental model fre-
quencyω1. The re-scaled frequenciesξ of the forceH, andθ of the forceN and two
non-dimensional parametersµ and Ω are introduced. The parameterµ is related to the
Pt and the critical axial forcePc, and the parameterΩ is the re-scaled fundamental free
vibration frequency reduced by the influence of the constant axial forceP0.

Ω =
√

1− P0

Pc

µ =
Pt

2(Pc−P0)
(13)

By setting

ui = ui , for i = 1, · · · ,n
ui = u̇i−n for i = (1+n), · · · ,2n, (14)

the system ofn equations (9) can be replaced with the system of the2n equations.

u̇ = f (u, u̇,µ,ξ,θ,A) (15)

The obtained system of non-linear differential equations for selected small values ofP0 =
0.2Pc has been solved numerically.

Unstable Regions

The solution unstable areas (for certain parameter values) are investigated in a Lia-
punov sense, by checking the energy increase over time. The numerical integration of the
differential equation systems was repeated for each successively determined group of pa-
rameters. For the first parameter group, the areas of unstable forced lateral vibrations and
parametric vertical vibrations were investigated separately. The parametric unstable re-
gions are shown on Fig. 2 a) and the lateral force unstable regions are shown on Fig. 2 b).
The main linear unstable region and a secondary, non-linear area caused by a higher value
of the horizontal force amplitudeA are shown on Fig. 2 b. Poincaré maps of the responses
within the nonlinear unstable parameter area are shown on Fig. 2 c) and Fig. 2 d). The
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valuesx andvx on the map’s axis correspond to the displacementv(h, t) andv̇(h, t) respec-
tively. The map shows chaotic response for higher value of the horizontal force amplitude
A.
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Figure 2: Unstable regions and Poincaré maps

The interactions between the forced lateral vibration and vertical force, are investigated
for the different values of the force amplitudeH and for the different parameter valuesµ.
The unstable response areas due to this interactions, for the low horizontal force amplitude,
and two values of the parameterµ are shown on the Fig. 3).

The areas of harmonic resonance ( nearξ = Ω) can be seen in both cases. The para-
metric resonance for the low value ofPt is visible for the main area (Fig. 3 a). For the
higher value ofµ, the parametric resonance is visible for both the main and the secondary
area (Fig. 3 b). Both pictures show the unstable regions for the simultaneously applied
horizontal and vertical forces when the vertical force frequency is twice as high as the hor-
izontal force frequency. These regions are caused by the parametric instability. The force
frequency ratios related with the other shown unstable response areas, result with the un-
stable sub–harmonic and super–harmonic vibrations. Poincaré maps for the two marked
solutions are shown on Figure 3 c) and d).
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Figure 3: The interaction of horizontal and vertical force

Conclusion

The dynamic stability problems of a real structure subjected to ground motions is com-
plicated by the fact that real structures are too complex and usually designed to respond
inelastically during the earthquake. This paper shows that the effect of the interaction be-
tween vertical and lateral excitation can, for some parameter values, be significant. The
results indicate that the further investigations should be made for the inelastic model with
non-linear deformations.
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