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Summary

Plane cyclic shearing of an infinite strip of sand located between two parallel plates
with rough boundaries under constant vertical pressure is numerically investigated using
a micro-polar hypoplastic continuum approach. The constitutive equations for the stress
and the couple stress are non-linear tensor-valued functions of the rate type taking into
account the current density, stresses and couple stresses, and the mean grain diameter as the
characteristic length. Finite element calculations are carried out to investigate the influence
of the initial density and the magnitude of the shear amplitude on the evolution of the
density within the shear layer.

Introduction

It is experimentally evident that shearing of cohesionless granular materials like sand
or broken rock leads to a concentration of the deformation within a narrow zone called
shear band. The evolution of shear bands is accompanied by volume changes and the slid-
ing and rotating of particles against each other [1] -[3]. Recently, the influence of micro-
polar effects on shear localization under plane monotonic shearing was investigated within
the framework of a micro-polar hypoplastic continuum or so-called Cosserat continuum
[4]-[6]. The evolution equations for the stress tensor and the couple stress tensor take into
account the current void ratio, stresses and couple stresses, the rate of deformation and rate
of curvature, and the mean grain diameter as the characteristic length. With respect to pres-
sure dependent maximum, minimum and critical void ratios the micro-polar hypoplastic
model captures the behavior for dense and loose states using a single set of constants. Due
to the presence of a characteristic length the model can simulate the formation of shear
zones with a certain thickness. Finite element calculations show that the thickness of the
localized zones does not depend on the mesh discretization if the size of the finite elements
in the shear zone is small enough. It is worth noting that the thickness of the localized zone
is not a material constant and strongly depends on the initial density, the pressure and the
boundary conditions [4]-[6].
The focus of the present paper is on studying the behavior under cyclic shearing. Numeri-
cal calculations are carried out for quasi-static cyclic shear deformations of an infinite strip
of a micro-polar hypoplastic material located between two parallel rigid plates with rough
boundaries and a constant normal pressure. Attention is paid to the influence of the initial
void ratio, the magnitude of the shear amplitude and the number of cycles on the evolu-
tion of the void ratio across the height of the shear layer. With respect to the boundary
conditions for an infinite shear layer the results are independent of the co-ordinate in the
direction of shearing.
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Micro-polar Hypoplastic Material Model

In a micro-polar continuum a material point possesses displacement degrees of free-
dom and rotational degrees of freedom which are called Cosserat rotations. The gradient
of the Cosserat rotations, ∂ωc

i /∂x j, corresponds to the curvatures κi j which are associated
with the couple stresses µi j. The rate of deformation and the rate of curvatures are defined
as ε̇i j = ∂u̇i/∂x j +Eki j ω̇c

k and κ̇i j = ∂ω̇c
i /∂x j , respectively Herein ∂u̇i/∂x j denotes the ve-

locity gradient and Ei jk denotes the permutation tensor. The micro-polar hypoplastic model
proposed includes three state variables, i.e. the non-symmetric Cauchy stress tensor σ, the
couple stress tensor µ and the current void ratio e. The evolution of these state variables is
described by the following rate type equations [4]:

σ̊i j = fs

[

â2 ε̇i j +(σ̂kl ε̇kl + µ̂kl κ̇kl) σ̂i j + fd â(σ̂i j + σ̂∗
i j)

√

ε̇kl ε̇kl + κ̇kl κ̇kl

]

, (1)

µ̊i j = fs d50

[

â2 κ̇i j + â2 µ̂i j (σ̂kl ε̇kl + µ̂kl κ̇kl)+2 fd âac µ̂i j

√

ε̇kl ε̇kl + κ̇kl κ̇kl

]

, (2)

ė = (1+ e) ε̇kk , (3)

with the normalized quantities: σ̂i j = σi j/σkk , σ̂∗
i j = σ̂i j −δi j/3 , κ̇i j = d50 κ̇i j and µ̂i j =

µi j/(d50 σkk) . Herein δi j denotes the Kronecker delta and d50 denotes the mean grain
diameter, which is used as an internal length. The influence of the mean pressure and the
current void ratio on the incremental stiffness, the dilatancy behavior and the peak stress
ratio are taken into account with the stiffness factor fs, i.e.

fs =
hs

n

(

1

c2
1

+
1
3
−

1

c1
√

3

( eio − edo

eco − edo

)α
)−1

(ei

e

)β (1+ ei)

ei

(

−
σkk

hs

)1−n

(4)

and the density factor fd , i.e.

fd =

(

e− ed

ec − ed

)α
. (5)

Herein α , β , n an hs are constitutive constants. In (4) and (5) the current void ratio e
is related to the maximum void ratio ei, the minimum void ratio ed and the critical void
ratio ec. These limit void ratios decrease with an increase of the mean pressure σkk, i.e.
ei/ei0 = ed/ed0 = ec/ec0 = exp[−(−σkk/hs)

n] , where ei0, ed0, ec0 are the corresponding
values for σkk = 0. Factors â and ac in (1) and (2) are related to critical states, i.e. ac is
assumed to be a constant and â depends on the so-called angle of internal friction ϕc and
the normalized stress deviator, σ̂∗ , according to:

â−1 = c1 + c2

√

σ̂∗
kl σ̂

∗
kl

[

1−
√

6 σ̂∗
kl σ̂

∗
lmσ̂∗

mk/(σ̂∗
klσ̂

∗
kl)

3/2 ]

, (6)
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with c1 =
√

3/8(3− sinϕc)/sinϕc and c2 = (3/8)(3 + sinϕc)/sinϕc . Altogether the
constitutive model includes ten constants, which can be calibrated based on the data of stan-
dard element tests and simple index tests [7]. For the the numerical calculations presented
in the present paper the following quantities are used: ϕc = 30◦, ei0 = 1.3, ed0 = 0.51,
ec0 = 0.82, n = 0.5, hs = 190 MPa, α = 0.3, β = 1.0, d50 = 0.5 mm, ac = 1.0.

Numerical Simulation of Plane Cyclic Shearing of an Infinite granular Strip

For numerical simulations of the plane cyclic shearing of an infinite granular strip
between two parallel plates with free dilatancy and under plane strain conditions the micro-
polar hypoplastic model was implemented in a finite element program [4]. For the present
paper the calculations are performed with a section of an infinite shear layer discretised
by quadrilateral elements composed of four diagonally crossed triangles with linear shape
functions for the displacements and the Cosserat rotation. The symmetry condition of an
infinite shear layer is modeled by the lateral boundary conditions, i.e. displacements and
rotations along both sides of the column are constrained by the same amount [6]. As a
consequence of the symmetry condition the width of the section chosen for the numerical
simulation is arbitrary if an initially homogeneous state is considered. With an updated
Lagrange formulation large deformations are taken into account. The height of a finite
element was chosen to be five times the mean grain diameter d50, which was found to be
sufficiently small to ensure that the predicted thickness of the localized zone was mesh
independent. At the bottom and top of the layer the sliding and rotating of particles against
the bounding structure is excluded by the boundary conditions [4],[6]. In all calculations a
shear layer with an initial height of ho = 20 mm is considered. It is first compressed under
the pressure p = −500 kPa applied at the top of the layer and then subjected to shearing in
one direction up to an almost stationary stress state at u1T /ho = −1. Herein u1T denotes
the horizontal displacement of the top of the layer. Afterwards, the direction of shearing is
repeatedly changed with a prescribed horizontal displacement amplitude at the top. In the
following the behavior of the shear layer is discussed for an initially dense and an initially
loose state and for two different shear amplitudes.

The results obtained for an initial void ratio of e0 = 0.6 (e = 0.582 after consolidation)
and a shear amplitude of u1T /ho = ±1 is shown in Figure (1) and Figure (2). In contrast to
a classical continuum the horizontal shear displacements are no longer linear in the micro-
polar continuum (Figure 1). For large shearing the deformation localizes in the middle
of the layer and leads to a displacement field with an S-shape. A similar behavior was
observed in experiments with sand specimens in a ring shear apparatus [8]. When the top
plate returns to the initial position, i.e. u1T = 0, the horizontal displacements shows a zig-
zag distribution across the height of the localized zone (Figure 1b). The darker strip in
the middle of the shear layer indicates a higher void ratio as a consequence of a strong
dilatancy. A comparison of Figure (1a) with Figure (1d) indicates that the thickness of
the localized zone grows with the number of cycles. In particular the thickness is about
14xd50 after the initial shearing and 18xd50 after six full shear cycles. Figure (2) shows the
evolution of the void ratio for four elements along the height of the layer from the bottom
(x2/ho = 0.03) up to the symmetry plane in the middle of the layer (x2/ho = 0.5) versus
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(a)

u1T /ho = −1

(b)

u1T = 0

(c)

u1T /ho = +1

(d)

u1T /ho = −1

Figure 1: Section of a plane infinite layer subjected to a cyclic shearing. Deformed
finite element mesh: (a) after the first shearing, (b) in the reversed initial state, (c)
after the first full reversed shearing, (d) after the sixth shear cycle.
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Figure 2: Cyclic shearing for e0 = 0.6 and u1T /ho =±1. Evolution of e in the shear
layer at: (a) x2/ho = 0.03, (b) x2/ho = 0.2, (c) x2/ho = 0.3 and (d) x2/ho = 0.5.
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Figure 3: Cyclic shearing for e0 = 0.9 and u1T /ho =±1. Evolution of e in the shear
layer at: (a) x2/ho = 0.03, (b) x2/ho = 0.2, (c) x2/ho = 0.3 and (d) x2/ho = 0.5.
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Figure 4: Cyclic shearing for u1T /ho = ±0.01 and (a) e0 = 0.6, (b) e0 = 0.6.
Evolution of e in the shear layer at x2/ho = 0.03, 0.2, 0.3, 0.5.
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the shear displacement u1T /ho at the top. It is clearly visible that close to the boundaries
of the shear layer the void ratio decreases with the number of cycles (Figures 2a,b). Within
the localized zone (Figures 2c,d) the void ratio slightly decreases right after a change of
the shear direction but then strongly increases. After several cycles a closed stationary loop
round the so-called critical void ratio is reached.
For an initial void ratio of e0 = 0.9 (e = 0.837 after consolidation) and a shear amplitude of
u1T /ho =±1 the evolution of the void ratio is shown in Figure (3). The material as a whole
undergoes contractancy which is most pronounced in the first shearings. The void ratio in
the mid-point of the layer (Figure 3d) decreases and reaches the pressure-dependent critical
value of ec = 0.75. At the beginning of each reversal shearing, an additional compaction
takes place in the entire layer. After this compaction, the void ratio in the middle of the
shear zone increases with continuous shearing and reaches a stationary state again. A
comparison of Figure (3d) with Figure (2d) shows that the critical void ratio is independent
of the initial void ratio as it is assumed in the concept of critical state soil mechanics.
After an initial shearing of u1T /ho = −0.1 the behavior under a small shear amplitude of
u1T /ho =±0.01 is demonstrated in Figure (4a) for e0 = 0.6 and in Figure (4b) for e0 = 0.9.
Independently of the initial void ratio the material only behaves in a contractant way and
with an increasing number of cycles the void ratio tends towards the pressure dependent
minimum value.
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