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Summary 

In recent years, the post-buckling behavior of thin walled cold-formed steel members 
under compressive or bending loads has been the object of several research studies. For 
the most relevant situations in practice the problem is assumed to be conservative, so that 
the system’s behavior can be described from a total potential energy (TPE) function. In 
order to apply the Rayleigh-Ritz method, a discretization procedure is needed and the 
TPE becomes a function of a load parameter P and of a set of nC generalized coordinates 
ia. The post-buckling analysis concerns the search of alternative equilibrium paths in the 
neighborhood of the critical states – the one associated with the lowest critical load 
parameter having physical interest. The paper presents a set of numerical techniques 
required to study the stability behavior of thin-walled members in the context of an 
extended formulation of GBT (Generalized Beam Theory). An application to the study of 
the equilibrium and buckling behavior of cold-formed members is also presented.  

Introduction 

The GBT (Generalized Beam Theory) was invented in the sixties by Schardt [1] and 
it is based on the characterization of the response of a prismatic thin-walled member – 
whose dimensions and displacements are show in Fig. 1 – as a linear combination of pre-
established cross section deformation patterns, henceforth called modes of deformation. 
Within the scope of an extended GBT formulation recently developed by the authors [2], 
there are five types of modes of deformation, each type related to the relevant 
deformation pattern considered in the mode: (i) main nodes warping modes, (ii) plate 
bending modes, (iii) inner nodes warping modes, (iv) plate transversal extension modes, 
and (v) plate distortional modes. After an orthogonalization procedure [1,2], these basic 
modes of deformation are combined in such a way that some matrices of the linear 
equilibrium system become diagonal, thus giving a mechanical meaning to some modes 
of deformation. For example, the 1st mode becomes the axial elongation and the 2nd and 
the 3rd ones become the bending modes about the principal axes. The resulting modes of 
deformation associated with no transversal bending neither transversal extension of the 
plates are called rigid body modes, while the remaining ones are designated by 
distortional modes. The relevant displacements are computed as  [1]: 

                                                             

1 Department of Civil Engineering, University of Coimbra, Portugal 

2079
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



( ) ( ) ( )∑
=

′⋅=
MDn

1k

kk xVsus,xu  (1,a-c) 

( ) ( ) ( )∑
=

⋅=
MDn

1k

kk xVsfs,xf  

( ) ( ) ( )∑
=

⋅=
MDn

1k

k
s

k
s xVsms,xm  

where ku (s), kf (s) and kms(s) are the displacements and transverse moments pre-established 
unitary configuration for mode k and kV (x) is the k-mode amplitude function, which 
depends only on the longitudinal coordinate x and is yet unknown (note that all 
displacements in the cross section plane and the transversal bending moments are a 
function of kV, while the longitudinal displacements depend of kV’ [1]). 
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a) the cross section dimensions 
b) the displacements for a generic 

plate 

Fig. 1 – Definition of dimensions and displacements for the thin-walled cross section 

In order to deal with all modal interaction phenomena between local plate behavior, 
distortional behavior and global response (flexural, torsional and flexural torsional), a 
GBT energy formulation [2,3] was derived and applied to the study of thin walled 
members with open or closed cross section in the post-buckling range [2,4]. 

It is the purpose of the present paper to present the numerical strategies used to 
analyze the equilibrium of a thin walled member in the context of a GBT energy 
formulation, mainly in the post-buckling domain. Finally, an application to the stability 
analysis of a compressed thin-walled RHS column is presented. 
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The TPE, the discretization procedure and the equilibrium system 

From the classical definition of internal strain energy, 
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and potential energy of the external loading at a generic section xx = , 
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where Qr, Qs and Qx denote, respectively, the loading through the Or, Os and Ox axis, 
one obtains the total potential energy A as a function of the load parameter P and the nmd 
amplitude modal functions kV [2]. In order to analyze the member’s equilibrium the 
Rayleigh-Ritz method is applied, approximating each amplitude modal function kV by a 
linear combination of pre-established coordinate functions kgi: 
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coefficients kai becoming the unknowns of the problem and henceforth being designated 
by generalized coordinates of the system (a global numbering can be used and so 
subscript i may disappear). In the context of the present work, the functions kgi are 
polynomials in x and are computed through a sequential procedure that derives the 
coordinate functions from the relevant modal boundary conditions, based on the concepts 
of orthogonality and normalization of functions [4]. The TPE can thus be defined as: 

( )P,a,,aAA Cn1 Κ=  (5) 

where nC denotes the total number of generalized coordinates, and P represents the 
external control parameter, appearing in (5) in a linear form.  

It is taken as axiomatic [5] that equilibrium states are associated with stationary 
values of A with respect to the generalized coordinates, and stable equilibrium states are 
related to complete relative minimums of the TPE with respect to the generalized 
coordinates. So, the equilibrium system is defined as: 

( ) 0
a
AP,a,,aF i

n1
i

C =
∂
∂

=Κ , i=1,…, nC (6) 

where Fi are polynomials in ia and P, and the concepts related to the classical problem of 
the succession of shapes in a system can be applied [6]. Therefore, the problem consists 
in determining the values of ia and P that satisfy system (6) and, subsequently, at each 
point in the ia–P space that satisfies (6), in analyzing the stability of the corresponding 
equilibrium state. 
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From the unloaded state to the critical state 

Due to the physical properties of the system, the unloaded state, defined by: 

0P =  and 0ai = , i=1,…, nC, (7) 

is a particular and stable solution of (6), and the equilibrium path emerging from it  - the 
fundamental path (FP) – is derived through the power series method [7] by assuming that 
it can be expressed as a Taylor expansion in the neighborhood of the unloaded state in the 
following form (for most situations in practice this assumption is not restrictive, since the 
FP is almost linear in the range of interest): 
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where coefficients ia(j) are yet unknown. Expression (8) is then introduced into the 
equilibrium system (6) and all coefficients ia(j) are determined by rendering to zero all 
coefficients of the powers in P, since along an equilibrium path all polynomials Fi of (6) 
must be identically equal to zero. In practice, expansions until third order terms enable 
sufficient precision for most situations. The FP will intersect other equilibrium paths – 
post-buckling paths, yet unknown – at points of bifurcation, which are to be found.  

Associated with FP, a coordinate transformation is introduced in the form [5,8,9]: 

( ) qPaa i
FP

ii +=  , i=1,…, nC, (9) 

this transformation being valid outside the regions of the FP lying in the neighborhood of 
limit points – for thin-walled prismatic members under compression or bending this 
assumption is not restrictive because, as it was said above, the FP is usually almost linear 
in the range of interest. It is very important to remember that the FP is given, in the iq–P 
space, as a trivial solution in terms of the sliding coordinates iq. Afterwards, a new TPE 
function W is defined in terms of the sliding coordinates as: 

( ) ( )( )P,qPaAP,qW i
FP

ii += , (10) 

and, in general, the linearity in P disappears in expression (10) [5]. The equilibrium and 
the stability conditions pass over unchanged to the W function, with respect to the 
generalized coordinates iq [8]. 

The fundamental path remains stable until it reaches a critical point, which is 
associated with the zeroing of the second variation of W with respect to the generalized 
coordinates. The critical points along the FP are thus found by rendering to zero the 
determinant of the Hessian matrix of W along the FP: 
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qq
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Due to the shape of HFP [3], equation (11) can be presented in the following form: 
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FP =++++⇔= ΚPFPFPFPF HHHHH , (12) 

giving rise to a non-linear eigenproblem that can be solved through the UISM technique 
[10], thus enabling the calculation of the eigenvalues, which are the critical loads – the 
lowest one having the most relevant physical interest – and their corresponding 
eigenvectors – the critical modes. The lowest eigenvalue, PCR, and its correspondent 
eigenvector, { }CR

i q , define the relevant critical state around which the post-buckling 
equilibrium paths will be searched. Also, through expression (8), PCR defines the values 
of all coordinates ia at the critical state, henceforth called iaCR, and { }CR

i q  determines, in 
a unique way, the set of active and passive coordinates at the critical state: its nA non-zero 
coefficients – each one, after a normalization procedure, is a measure of the participation 
of the corresponding coordinate in the bifurcational phenomenon – correspond to the set 
of active coordinates (thus defining the co-rank nA [6]), and the remaining ones become 
the passive coordinates, thus defining the rank of the critical state as nC – nA.  

Searching post-buckling equilibrium paths near the critical state 

The classical procedures for searching post-critical equilibrium paths in perfect 
elements [5,8,9,11] are based on perturbation methods [12] that imply the definition of 
the post-buckling equilibrium paths as Taylor expansions around the critical state. This 
procedure becomes very cumbersome if a high number of coordinates is required and 
introduces a sometimes restrictive assumption to the post-buckling analysis of structural 
members subjected to bending and/or compression, by imposing to each coordinate along 
the post-buckling equilibrium paths to be a function of an adopted control parameter [13]. 
In the present work an alternative procedure is applied, based only in the definition of an 
equilibrium path – any path that respects the equilibrium system (6). Among all 
equilibrium paths, one searches the one that intersects the FP at the relevant critical state 
determined in the above paragraph. So, from the above paragraph some information 
about this path can be obtained: this post-buckling equilibrium path (PBP) contains the 
critical state defined by iaCR–PCR,, and it is already known which coordinates are active - 
these will bifurcate in the post-buckling domain. Let’s denote ja the most participative 
coordinate. The task is simply to track the PBP in the ia–P space in the neighborhood of 
the critical state iaCR–PCR, as it can be seen in Fig. 2-a) for a simple 3D case. Adopting the 
relevant numerical techniques for solving non-linear equations systems [14,15] and 
expressing all coordinates in their transformed shape (9), one starts from the hyper-
surface normal to the hyper-plane ja–P that contain the FP, and moves this hyper-surface 
to both sides by imposing non-zero values to jq, as it can be seen in fig. 2-b). Then, one 
simply finds the points near the critical state that respect equilibrium system (6) and that 
belong to the hyper-surfaces thus generated – see points A, B and C in Fig. 2-a). The 
unknowns of the resulting equation system are then all sliding coordinates iq (with the 
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exception of jq, whose value was imposed) and the load parameter P. After having found 
the first non-fundamental equilibrium point, it is possible to opt between proceeding with 
this scheme, which forces the equilibrium points to be outside of the FP and is valid as 
long as the equilibrium points move away from the FP in the ja-P hyper-plane, or by any 
other path-searching method [16]. 
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a) General overview b) Finding equilibrium points in the 
neighborhood of FP (plane ja-P) 

Fig. 2– Searching post-buckling paths in the neighborhood of the critical point 

Example: the analysis of a simply supported RHS column 

The numerical techniques shown above were employed to study the post-buckling 
behavior of the RHS presented in Fig. 3 in the context of the extended GBT formulation 
[2], with L=250 mm. The lowest critical load for this problem is PCR=35.42 kN and the 
buckling mode is related to the local plate buckling of the webs – walls between nodes 1 
and 3. The post-buckling paths are shown in Fig. 4, in a load-displacement 
representation, presenting the longitudinal displacement of node 1 (associated mainly 
with a passive coordinate) and the horizontal displacement of node 2 (associated mainly 
with a active coordinate). For the adopted discretization, which considered polynomials 
with up to 4 half-waves per mode, coordinate 31, related to local plate symmetrical web 
buckling mode, was the most active coordinate in the critical state, with a participation 
factor of 95.6%. Fig. 5 shows the member’s deformed configuration for P/PCR=2.54. 

Conclusions 

The paper presented a numerical scheme to find post-buckling equilibrium paths for 
the analysis of perfect structural systems. It is just based on the fact that the sought 
equilibrium points fall outside the FP, and the only assumption is that the PBP, in the 
hyper-plane ja-P of the most active coordinate at the bifurcational state, moves away 
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from the FP, independently of the values of the remaining coordinates and the loading 
parameter, which can take reversible values. 
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a) cross section properties and nodal 
discretization 

b) member overview 

Fig. 3 – The analyzed RHS 

  

a) longitudinal displacement of node 1 at x=250 mm b) horizontal displacement in the cross section 
plane for node 2 at x=93.75 mm 

Fig. 4 – Displacements in the post-buckling range 

31q>0  
31q<0  

Fig. 5 – Member’s configuration for P/Pcr=2.54 
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