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Summary 

This work concerns the experimental modal identification of a small physical model 
of a building structure, measuring the structural response to an unknown ambient 
excitation. Different system identification methods, in frequency and in time domain, are 
applied and the results are compared. The model has the particularity of having two 
modes with close frequencies, which is an interesting challenge for the identification 
methods. 

Introduction 

Civil engineering structures, because of size, are very difficult to be artificially 
excited. So the best approach, to identify their modes shapes and natural frequencies, is to 
apply methods that use only the response (output) of the structure under ambient 
excitation. These methods are called output-only methods. The most commonly used 
output-only method in civil engineering applications is the Peak-Picking (PP). However, 
this method has some limitations, as it is shown in the paper. In the last years, some more 
powerful methods, like the Frequency Domain Decomposition (FDD) and the Stochastic 
Subspace Identification (SSI), have been developed and applied with success [1]. 

In this paper, the implementation of the PP and FDD methods was done in MatLab 
[2] and their limitations and potentialities are shown using an application to a small 
laboratory model. The SSI method was applied using a toolbox for MatLab developed at 
the University of Leuven (MACEC) [3].                

Description of the model and tests 

The analyzed model, represented in Figure 1, is formed by three slabs connected by 
four columns. The slabs are made of steel and have a square shape with a width of 15 
centimeters and a thickness of 1 centimeter. The columns are aluminum blades with a 
height of 17 centimeters between floors. 

The accelerations were measured using 6 piezoelectric accelerometers in 2 setups as 
represented in Figure 2 (the arrows represent the measured direction). In each setup, 
acceleration time series of 140 seconds were collected with a sampling frequency of 256 
Hz. The three accelerometers in the top slab (reference sensors) were kept in the same 
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position during the two setups, while the other 3 (moving sensors) were located at the 
second floor, in the first setup, and were moved to the first floor, in the second setup.     
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Figure 1 – Perspective of the model 
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Figure 2 – Placement of accelerometers in each 

setup 

Output-only modal identification methods 

Output-only modal identification methods can be classified in two groups: the ones 
that work in the frequency domain, as the PP and FDD, and those that work in the time 
domain, as the SSI methods. 

For frequency domain methods the first step consists in the estimation of the spectral 
density functions of the structural response. Those estimates can be obtained using the 
Welch procedure [2], which involves: (i) division of the response records in several 
segments (eventually with some overlap), (ii) application of a signal processing window 
to the data segments in order to reduce leakage (usually a Hanning window), (iii) 
computation of the discrete Fourier transform (DFT) of the windowed segments, (iv) 
computation of the auto and cross spectra using the DFT of the windowed segments and 
finally average the spectra of the segments of the same records. 

In the PP method, all the auto-spectra are normalized and averaged in order to obtain 
an averaged normalized power spectral density function (ANPSD), which shows all the 
resonance peaks of the structure. If the excitation doesn’t contain any particular periodic 
contribution, the damping is small and the natural frequencies are well separated, these 
peaks are in correspondence with the frequencies of the dynamic system. The mode 
shapes are identified looking at the amplitude and phase of the transfer function between 
the responses which are calculated using the auto and cross spectra [4]. In fact, doing this, 
instead of obtaining mode shapes, we obtain operational deflection shapes, which for 
closely spaced modes are the superposition of multiple modes.  
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In the FDD method, a spectral matrix is constructed, in which the number of lines is 
equal to the number of measured points and with as much columns as the measured 
reference points. Each column contains the cross spectrums between the structure 
response in all the measured points and the structure response in one of the reference 
sensors. This matrix is decomposed, at each frequency, in singular values and vectors 
using the SVD algorithm. The singular values of the spectral matrix, under some 
assumption (white noise excitation, low damping and orthogonal mode shapes for close 
modes), are auto spectral density functions corresponding to single degree of freedom 
systems that are associated with the different modes of the structure [5]. As it is stated in 
reference [5], the frequencies of the structure are identified looking at the peaks of the 
singular values of the spectrum matrix and the mode shapes are estimated by the singular 
vector of the spectrum matrix calculated at the resonance frequency and associated to the 
singular value where the peak is present. 

An interesting alternative to these frequency domain methods is the stochastic 
subspace identification method. This method relies on a stochastic state space model that 
is represented by the following equations [6], assuming the excitation as a white noise: 

kkk

kkk

vxCy
wxAx

+⋅=
+⋅=+1  (1) 

where yk is a column vector, with l lines (number of measured outputs), that characterizes 
the output of the system at the instant of time k , xk is the state vector, which has n lines 
(dimension of the state space model), wk represents the noise used to simulate the ambient 
excitation and the model inaccuracies, and vk is the noise that simulates the error 
introduced by the measurement system and also the ambient excitation. The matrix A 
( nn× ) is the state transition matrix and completely characterizes the dynamics of the 
structure, the matrix C ( nl × ) is the output matrix and specifies how the internal states 
are transformed in outputs. 

The identification of the state space model, by determination of matrices A and C, can 
be done using the correlations of the outputs or using the time series. Both procedures 
(SSI-COV and SSI-DATA, respectively) are described in reference [6]. In the present 
application, the SSI-DATA, implemented in MACEC, was used.     

After the identification of the state space model, the modal parameters are obtained 
from the matrices A and C. The eigenvalue decomposition of A gives:  

1−Ψ⋅Λ⋅Ψ= dA  (2) 

where Ψ ( nn× )  is the eigenvector matrix and Λd ( nn× ) is a diagonal matrix containing 
the eigenvalues, µi, of the discrete state space model.  
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The eigenfrequencies, ωi, and the damping ratios, ξi, are found from:   

t
i

ie ∆= λµ                   iiiiii j ωξωξλλ 2* 1, −±−=  (3) 

where λi are the eigenvalues of the continuous sate space model and t∆  is sampling time. 
The mode shapes V ( nl × ) are calculated with the following formula: 

Ψ⋅= CV  (4) 

Application 

The time series of acceleration measured at the instrumented points were used as 
inputs for the different identification methods, after trend removal (elimination of DC-
component). 

The application of the PP method gives the ANPSD represented in Figure 3. From 
the peaks of this plot, it is possible to identify 7 natural frequencies. 
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Figure 3 – Averaged normalized power 
spectral density function 

Figure 4 – Singular values spectra 

From the transfer functions between the outputs, it is also possible to obtain the 
operational deflection shapes, in correspondence with the identified natural frequencies, 
represented in Figure 5. It is clear that the second operational deflection shape has the 
contribution of two mode shapes: the second bending mode in x direction and the first 
bending mode in y direction.  

The SVD of the spectrum matrix at each frequency gives 3 singular values (number 
of reference sensors) that are plotted in Figure 4. Now, the natural frequencies are 
identified looking at the peak of the singular values. Looking at Figure 4, it is possible to 
identify 8 frequencies. Seven of them are very similar to the ones identified using the PP, 
but a new frequency of 14.625 Hz appears. This frequency wasn’t identified in the 
application of the PP method, because it is relatively close to the frequency of 13 Hz. 
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Figure 5 – Operational deflection shapes obtained with PP method 

 

       
Figure 6 – Mode shapes of closely spaced frequencies identified with FDD method 

 
Table I – Identified frequencies (Hz) 

Mode PP FFD SSI-DATA 
1 4.500 4.500 4.512 
2 13.000 13.000 13.076 
3 - 14.625 14.439 
4 18.375 18.375 18.406 
5 33.250 33.250 33.265 
6 82.500 82.500 82.360 
7 100.875 100.875 100.747 
8 124.375 124.125 124.428 
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The singular vectors of the spectrum matrix calculated at the closely spaced 
resonance frequencies (13 Hz and 14.625 Hz), and associated to the first singular value, 
are represented in Figure 6. Now, the coupled mode shapes are uncoupled. The mode 
shapes obtained with this method and associated with the other frequencies are similar to 
the ones obtained with the application of PP. 

The application of the SSI-DATA method confirmed the results of the FDD method: 
the identified frequencies, displayed (in Table I), are similar and the mode shapes are 
almost equal.   

Conclusions 

By implementation in MatLab of PP and FDD methods, and its application to a small 
physical model of a building structure, it was possible to show the limitations and 
potentialities of each one. It was demonstrated that the FDD method is able to identify 
modes with close frequencies, overcoming the strongest limitation of the PP method. 
Beyond that, the comparison between the results of the FDD and SSI-DATA methods 
shows that they lead to similar results.  
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