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Summary 

The present study shows the analysis for pneumatic structures, which has high-rise 
and large volume for their floor space. An incremental technique of 'the simultaneous 
control' is applied to the computational program that is based on the tangent stiffness 
method. The method is a clear and strict analytical theory to be able to solve the problems 
with large deformational behavior. Therefore, it makes possible to find initial shapes for 
the pneumatic structures as the precise equilibrium solutions. Moreover, ‘the 
simultaneous control’ gives the shapes of curved surfaces with large volume. Results are 
presented as the computational example in which the behavior of high-rise pneumatic 
structures becomes evident. 

Introduction 

The development of the finite element method made it possible to overcome some 
problems when designing pneumatic structures, and a number of papers have proposed 
about that. Pneumatic structures have been used for large span structures, for example, air 
domes for ballparks, gymnasiums, stadiums, and so on. However, as for such large 
pneumatic structures, there remained some problems of maintenances and its running 
costs. Therefore, it becomes rare that such a large-scale pneumatic structure is built 
recently. On the other hand, the pneumatic structures have been also used for temporary 
and/or smaller structures. It may be demanded that these structures have high-rise for 
small floor area depending on a purpose of use. In this case, some other problems may 
exist because of its surface shape. One is how to find the isotonic shape with such large 
volume, and another is how to keep its elastic stability against the external forces.  

The authors’ former paper has concluded that it is very rational to use both of the 
tangent stiffness method and the simultaneous control for the form finding of high-rise 
pneumatic structure. The simultaneous control is an incremental technique that can find 
solutions even in the state of post-buckling under distributed load. By the technique, one 
has to calculate the average of converted inner pressures of all nodes, and adopt it as the 
load intensity for next iteration step. Moreover, the converted inner pressure is to be 
balanced against the element edge forces at every node. As a result, the technique 
provides sure convergence and precise equilibrium solutions, even when the surface has 
so large volume.  
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In those cases where the aim is to design the pneumatic structures with high-rise for 
their small floor space, another problem is their elastic stability. The form finding by the 
soap film elements, essentially, is to be used for determination of initial form without 
stress concentrations. The soap film element, however, has no stiffness to the tangent 
direction of its surface, so the real membrane elements replaced on the high-rise 
pneumatic structure may have the stress difference. Furthermore, the high-rise pneumatic 
structure may have compression stress, in some conditions, because of its larger self-
weight comparing with its inner pressure.  

This study verifies the stress state of the high-rise pneumatic structure whose shape is 
determined by the simultaneous control. The numerical example shows that the 
determined shape has enough rationality to be applied to real structures. 

The tangent stiffness method for pneumatic structures 

The tangent stiffness method uses common tangent stiffness matrix in both cases of 
form finding analysis and real membrane analysis. Therefore, it makes so easy to deliver 
numerical data from the form finding to the deformational analysis. Here the tangent 
stiffness equation is expressed when the method applied to 3-D finite element structures 
consistent of the triangle membrane elements. 

Let the vector of the element edge forces independent of each other be indicated by N, 
and let matrix of equilibrium which relates N to the general coordinate system be J. Then 
the nodal forces U expressed in the general coordinate follow the equation: 

=U JN   (1) 

The tangent stiffness equation is expressed as the deferential of Eq.(1), as follow. 

0( )Gδ δ δ δ= + = +U J N JN K K u   (2) 

in which, Ko is the element stiffness which provide the element behavior in element 
(local) coordinate, and KG is the tangent geometrical stiffness that can be commonly used 
both in the case of form finding and of the analyses for real membrane structures. In case 
of a triangular membrane element, the form of KG becomes as follow: 
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in which, Ni is the element edge force whose direction is side of the triangle, and Li is 
the current side length. Further, α, β, and γ are the components of cosine vector along 
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side direction. (Fig. 1 shows the size of a triangular element.) Using this geometrical 
stiffness, the form finding analysis doesn’t need the element stiffness of Ko.  

Moreover, after the shape has been determined, adding Ko (in Eq.(5)) to KG makes it 
easy to switch to deformational analysis for the real membrane structures. 
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    E: Young’s module,   t: thickness of membrane   ν: Poisson’s ratio 

2
0 0 0 0( ) / , 1, 2,3i i i i iS a b c L i= − =  (7) 

in which, B is the compatible matrix between the each side length and the global 
coordinate. Before switching to the real membrane analyses, the non-stressed sizes 
should be converted as follows: 

0 1 (1 ) , 1, 2,3s
i iL L i

E
σ ν = − − = 

 
  (8) 

in which, σs is tensile of the soap film. The a0i, b0i, c0i, and A0 are obtained form L0i. 

Form finding by the simultaneous control 

When a soap film with a boundary is inflated under inner pressure, there is a 
maximum point on its pressure-volume path. The simultaneous control is effective to find 
shapes, which are over the maximum point and have high-rise. In this case, the inner 
pressure intensity is renewed every iteration step, and calculated as follows: 

 

 

 

 

 

 

 

  (a) Element edge forces along side of a triangle       (b) Non-stressed size of a triangular element 
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1) Calculation of the converted inner pressures on all of free nodes and the control 
point. The converted inner pressure should be balanced with the resultant of 
element edge forces at every node. 

2) The average of the converted inner pressures is adopted as external forces for 
next iteration step. 

In the paper [3], details around the simultaneous control have been described.  

Numerical examples 

Fig. 2 shows the flow chart of the program developed. The program uses several 
common algorithms for both of the form finding and the real membrane analyses, and 
realizes efficiency. For conditions of numerical example, Table1 shows the physical 
values, and Fig.3 shows hexagonal primary boundary shape and its mesh division pattern. 

 

 

 

 

 

 

 

 

 

 

Fig. 2  Flow chart of the program for both of form finding and real membrane 

 

    Table 1  Physical values for example  

 

 

 

 
Fig.3  Primary boundary shape  
and its mesh division of example 
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 The calculation program starts the isotonic surface analysis by the simultaneous 
control, in which the control point is set at the center node in Fig.3. Fig.4 is the Inner 
pressure-Volume curve, and there is a peak of inner pressure. In this analysis, four 
solutions of ‘Shape A’ to ‘Shape D’ are chosen as the initial shapes for pneumatic 
structures. After that, the stiffness of real membrane, in which defined in Eq.(5)~(8), is 
added to all the elements. The unbalanced forces, remained only to the tangent directions, 
are absorbed by the real membrane stiffness. Therefore, the perfect equilibrium solutions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4   Inner Pressure-Volume curve and shapes (solutions) to be discussed 

 

 

 

 

 

 

 

 

        (a) Weightless equilibrium                  (b) Self-weight of membrane = 15N/m2 

Fig.5   Principal stress difference per mean principal stress 
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are obtained after several times of iterations. Here, the stress conditions of five typical 
elements, indicated as �~� in Fig.3, are discussed. Figures 5-(a)&(b) shows the ratios of 
principal stress difference σd for mean principal stress σa inside each element, under the 
conditions of weightless equilibrium(a) and under the 15kN/m2 of self-weight(b). 
According to these figures, comparatively high stress is recognized in the elements where 
its curvature changes suddenly (for example �). However, the ratio of σd/ σa is around 
1.6% to the utmost, even the structure has so high-rise. Furthermore, there is no 
compression stress under dead load conditions. 

Conclusions 

In this study, a computational program for high-rise pneumatic structures has 
developed. The program can easily switch from the form finding analysis to the real 
membrane analysis because of using the common geometrical stiffness matrix in the both 
analyses. By the computational example, even if it was the high-rise shape which 
exceeded the extreme value of the pressure-volume curve, the equilibrium shape could be 
found in stability. Furthermore, the advantage of the isotonic surface as a prototype for 
pneumatic structures was recognized even if it had such a high-rise. 

The problems to be investigated in future are as follows: 

1) Application to the deflation analysis of high-rise pneumatic structures. 

2) Verification about some live loads such as wind load. 

3) Processing when compressive stress occurred, in conjunction with 1) and 2). 

Some of above will be presented in the conference. 

Reference 

1 Ishii,K.(1976): “Analytical shape determination for membrane structures”, Proc. of 
IASS Congress of Sept.,�, pp.67-74. 

2 Yagi,T.,Ohmori,H. and Ishihara, K.(1997): ” Study on shape determination of 
membrane structure by using minimal surface method“ J. Strut. Constr. Eng. , 
AIJ.,No.502, pp.99-104. 

3 Obiya, H., Ijima, K., Yamashita,S. (2002): “Application of the simultaneous control 
to post buckling analysis ”, Proc. of ICCES’02 Advances in Computational 
Engineering & Sciences, in CD-ROM 

4 Obiya, H., Ijima, K., Noriaki, K.. (2000): “Strict compatibility in 3-D Large 
Deformational Analyses for Shell and/or Frame Structures ”, Proc. of ICCES’00 
Advances in Computational Engineering & Sciences, Vol.1, pp.843-848 

2064
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal


