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Summary

Linear elastic open model of interface cracks between two isotropic materials is considered in the
plane strain state. A new simple equation relating the two measures of fracture mode mixity: thelocal
phase angleψK based on the Stress Intensity Factor (SIF) and theenergetic angleψG based on the Energy
Release Rate (ERR), is presented and analysed. An oscillatory behaviour of the components of ERR with
unexpected slightly negative values for certain intervals of the finite virtual crack extension is observed and
studied. Applying the equation obtained it is now possible to work with both measures in as near–equivalent
a manner as possible. This is illustrated by a Boundary Element Method (BEM) analysis of the fibre/matrix
debonding growth in a glass fibre reinforced composite material subjected to a transversal load.

Introduction

Oscillatory behaviour is an inherent feature of a linear elastic solution of theopen modelof interface
cracks [1] for Dundurs parameterβ 6= 0. Stresses and displacements start to oscillate when the crack tip is
approached. A consequence of these oscillations is that this solution predicts an infinite number of zones,
where the crack faces interpenetrate. As was shown in [2], this oscillatory behaviour is avoided assuming
a contact zone adjacent to the crack tip in thecontact modelof interface cracks. However, in practice the
region of these oscillations is frequently physically non-relevant (due to its atomic or subatomic size). The
concept ofsmall-scale contact(SSC), introduced in [3] to characterize such a situation, provides a theoret-
ical base for applications of the open model to interface crack growth predictions in many problems [4].

An interface crack, assuming a non-vanishingβ, is growing inherently in a mixed mode independently
of the load applied, with both normal and shear stresses acting at the interface ahead of the crack tip. In
order to measurefracture mode mixity, the SIF and ERR based approaches have been traditionally used.

Whereas the SIF based measure of mode mixityψK is easy to identify from the singular asymptotic
term of the linear elastic solution of the open model of interface cracks [3,4], the ERR based mode mixity
measureψG is obtained through complex integrals, which in some way have obscured the relation between
these two mode mixity measures. Although several fundamental works were previously published with
regards to this relation [5,6,7,8,9,10], this question has only recently been clarified in [12], some results of
this work being shortly introduced in the present article. Finally, these theoretical results are applied in a
BEM analysis of a fibre/matrix debonding subjected to a transversal load.

Near-Tip Solution of the Open Model

Let the local cartesian system(x,y) and polar coordinate system(r,θ) be defined at the interface crack
tip as shown in Fig. 1. LetGk denote the shear modulus andνk the Poisson ratio of materialk = 1,2. Then
the Dundurs bi-material mismatch parameterβ is given as:

β =
G1(κ2−1)−G2(κ1−1)
G1(κ2 +1)+G2(κ1 +1)

, |β| ≤ 0.5, κk = 3−4νk. (1)

The oscillation index of a bi-material is expressed in terms ofβ as:

ε =
1
2π

ln
1−β
1+β

, |ε| ≤ ln3
2π

.= 0.175. (2)
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Figure 1: Local coordinate systems at the interface crack tip.

The near-tip tractions along the bonded interface part(θ = 0) are expressed as

σyy(r,0)+ iσxy(r,0) =
K(r/l)iε
√

2πr
, for r → 0, (3)

wherer is the distance from the tip,i =
√−1, andK = K1+ iK2 is the complex SIF, associated to a reference

lengthl according to [3].

The near-tip relative displacements across the crack∆ui(r) = ui(r,π)−ui(r,−π) are expressed by:

∆uy(r)+ i∆ux(r) =
8

1+2iε
K(r/l)iε

cosh(πε)E∗

√
r

2π
, for r → 0,

1
E∗

=
1
2

(
1
E′1

+
1
E′2

)
, (4)

E′k = Ek/(1−ν2
k), Ek being the Young elasticity modulus of materialk.

SIF Based Fracture Mode Mixity

The fracture mode mixity measure based on the SIFis given by the so-calledlocal phase angleψK

defined byK = |K|eiψK or equivalently as:

ψK = argK = arg{σyy(l ,0)+ iσxy(l ,0)}= arg{∆uy(l)+ i∆ux(l)}+arctan(2ε), (5)

wherearg is the argument function and a sufficiently smalll is considered.|K| is independent ofl . Ac-
cording to (5),ψK is anl -dependent measure of the fracture mode mixity, andK is rotating whenl → 0. In
particular, (3) implies thatψK andψ̃K associated to two different reference lengthsl andl̃ are related by [3]:

ψ̃K = ψK + ε ln(l̃/l). (6)

ERR Based Fracture Mode Mixity

Application of the virtual crack closure method to an interface crack, considering a small but finite
length∆a of a virtual crack extension along the interface, gives ERR associated to this crack extent [5,6,7]:

Gint(∆a) = Gint
I (∆a)+Gint

II (∆a), (7)

Gint
I (∆a) =

1
2∆a

∫ ∆a

0
σyy(r,0)∆uy(∆a− r)dr, Gint

II (∆a) =
1

2∆a

∫ ∆a

0
σxy(r,0)∆ux(∆a− r)dr. (8)

The total ERRGint, associated to an infinitesimal virtual crack extension, in terms ofK writes as [11]:

Gint = lim
∆a→0

Gint(∆a) =
|K|2

cosh2(πε)E∗
. (9)
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Thus, Gint depends only on|K| and not onψK . The minimum value of ERR at a prescribedψK that
originates an interface decohesion is calledinterface toughnessat this fracture mode mixity,Gint

c (ψK).

Due to the oscillatory character of the near-tip elastic field,Gint
I ,II (∆a) oscillate as well and consequently

their limits do not exist as∆a→ 0. This oscillatory behaviour was studied by several authors [5,6,7]. The
following new explicit expressions of the individual components of the energy release rate associated to∆a,
considering only singular terms in (3) and (4), has recently been deduced in [12] developing a result in [7]:

Gint
I ,II (∆a) = 0.5Gint [1±F(ε)cos{2(ψK +ψ0(∆a/l ,ε))}] , (10)

where the amplitude functionF(ε) and the phase shift angleψ0(∆a/l ,ε) are expressed as

F(ε) =

√
sinh(2πε)

2πε(1+4ε2)
= 1+

(
π2

3
−2

)
ε2 +O(ε4), (11)

ψ0(∆a/l ,ε) = ε ln(∆a/2l)+ϕ(ε)−0.5arctan(2ε) = ε ln(∆a/4el)+(ζ(3)+4/3)ε3 +O(ε5), (12)

ϕ(ε) = 0.5arg[Γ(0.5+ iε)/Γ(1+ iε)] =−ε ln2+ζ(3)ε3 +O(ε5), (13)

Γ(·) and ζ(·) respectively denoting the gamma and Riemann zeta functions,ζ(3) .= 1.2020569being
Apéry’s constant ande

.= 2.718being the base of the natural logarithm.

A consequence of oscillations inGint
I ,II (∆a) is that theenergetic angleψG defined as:

tan2 ψG =
GII (∆a)
GI (∆a)

, 0≤ ψG ≤ π
2
, (14)

depends on∆a. The fact that, for smallε, ψG is a gentle function of∆a inside of a physically relevant
interval of∆a (in a similar way asψK is a gentle function ofl ), is used by some authors as a justification
for application of thisERR based fracture mode mixity measureto predict interface crack behaviour.

A relevant aspect of the oscillatory behaviour ofGint
I ,II (∆a) according to (10) is associated to the some-

what unexpected property of the amplitude functionF(ε), clearly seen from its series expansion in (11):
F(ε) > 1 for ε 6= 0. A crucial consequence of this fact is that there is an infinite number of intervals of
values of∆a, as∆a→ 0, where one ERR component is slightly negative. The maximum negative value
of one ERR component is an increasing function of|ε| and is less than 2% ofGint(∆a). Fig. 2 illustrates
this phenomenon for the maximum value ofε = 0.175in logarithmic and standard scales of∆a/l . Follow-
ing (8), the different signs that stresses and associated relative displacements may have at both sides of the
interface crack tip are responsible for the negative value of eitherGI (∆a) or GII (∆a).

Figure 2: Variation of ERR with virtual crack extension length (K = 1, ε = 0.175).
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It is useful to observe thatψ0(∆a/l ,ε) = 0 when∆a/l = 2exp[(0.5arctan(2ε)−ϕ(ε))/ε], which gives
the following interval for such values of∆a/l : 10.1169< ∆a/l < 10.8731. Thus, the value of∆a/l giving
a vanishing shift angleψ0 is found to be quite independent ofε.

The following fundamental relation betweenψK andψG is obtained by substituting (10) into (14):

cos(2ψG) = F(ε)cos{2(ψK +ψ0(∆a/l ,ε))} , (15)

which implies that

ψ′K = 0.5arccos
[
F(ε)−1cos(2ψG)

]
, (16)

ψG = 0.5arccos[F(ε)cos{2(ψK +ψ0(∆a/l ,ε))}] , (17)

whereψ′K = |ψK +ψ0(∆a/l ,ε)+nπ|, n being an integer number (usuallyn = 0,±1) giving 0≤ ψ′K ≤ π/2.
Fig. 3 illustrates the explicit relation obtained betweenψK and ψG. As can be seen, values ofψ′K are
relatively well approximated by values ofψG excepting zones whereψG is close to0 or π/2. This is
true in particular for small values ofε. However, a ‘strange’ behaviour can be observed in Fig. 3: for the
extremal values ofψ′K near0 andπ/2 there are no corresponding real values ofψG. In fact, values ofψG

corresponding to these values ofψ′K are pure imaginary or complex numbers because in such a situation
eitherGI (∆a) or GII (∆a) is negative (see Fig. 2), and consequently, in view of (14),tan2 ψG is negative. For
further details of this behaviour and also of other aspects of the relation betweenψK andψG, see [12].

Figure 3:ψ′K as a function ofψG.

BEM Analysis of Fibre/Matrix Debonding

Fibre reinforced composites subjected to loads perpendicular to the direction of the fibres suffer failures
known as matrix or inter–fibre failures. These failures typically involve debondings between matrix and
fibre, which can be considered as interface cracks. A simple micromechanical model of this kind of damage
is studied in this section with the aim to contribute to the understanding of the mechanism of its propagation.

The configuration of a single fibre surrounded by matrix with a partial debonding subjected to the unit
far–field tensionσ perpendicular to this debonding is represented in Fig. 4. The following properties of the
glass (fibre)–epoxy (matrix) bimaterial system are considered:Gf = 29GPa, Gm = 1.05GPa, ν f = 0.22,
νm = 0.33, which in plane strain state yieldβ = 0.229andε =−0.0742. The glass fibre radius isr f = 7.5µm.
For more details about this problem see [13,14]. In the BEM model developed, using continuous linear
elements [15] with analytical integrations, the possibility to detect a near tip (frictionless) contact zone
between crack faces is applied. A strong refinement of the boundary element mesh is used to this aim near
the crack tip.
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Figure 4: The single fibre model employed.

Although the interface crack between fibre and matrix is curved, it is supposed that locally the open
model theory, developed originally for a straight crack, is applicable with a reasonable accuracy.

Values ofGint(∆a) and its components, obtained by BEM using (7-8) for∆a corresponding to0.5◦,
are shown in Fig. 5a as functions of the debonding angleθd. The maximum ofGint(∆a) coincides with
the maximum ofGint

II (∆a) at approximatelyθd = 60◦ ∼ 70◦, whereGint
I (∆a) vanishes. Starting from this

debonding angle the near tip contact zone becomes of a physically relevant size and the open model is
then not valid for larger debondings. Therefore, the subsequent considerations will be limited to smaller
debondings.

Values ofGint
I ,II (∆a) shown in Fig. 5a are used to evaluateψG(θd) using definition (14), see Fig. 5b.

Taking the characteristic lengthl in such a way thatψ0(∆a/l ,ε) = 0, (16) is applied to evaluateψK . For
comparison purposesψK(θd) is also evaluated using values of stresses ahead of the crack tip and relative
displacements between crack faces, both taken at the distancel from the crack tip. It can be observed
in Fig. 5b thatψG and ψK are almost coincident up toθd ' 45◦. Then, as could be expected in view
of Fig. 3,ψG starts to be larger thanψK due to the fact thatψG is relatively close to90◦. Fig. 5b shows a
very good agreement betweenψK values obtained fromψG and from stress and displacement values up to
θd ' 50◦. The major difference atθd ' 60◦ is possibly related to the fact that at thisθd a physically relevant
contact zone appears and the open model solution does not fit well the BEM solution obtained.

Conclusions

The present work contributes to clarify an existing natural duality between SIF and ERR based con-
cepts in the linear elastic open model of Interfacial Fracture Mechanics. The significance of the simple
equation relatingψK andψG introduced is associated to the fact that these angles are key parameters in
the characterization of interfacial fracture toughnessGint

c [4], which is given as a function of one particular
angle (ψK or ψG). The present equation makes it possible to transform easily a toughness function of one
angle to the toughness function of the other angle. This possibility will be used in a BEM study of the
fibre/matrix debonding growth in a composite lamina subjected to a transversal load, which will be pre-
sented in a forthcoming work. It is expected that the procedure ofψK evaluation fromψG through (8), (14)
and (16) provides a higher accuracy, due to integrations present in (8), in comparison with an application
of point values of either stresses or relative displacements according to (5). A comparison with analytical
values of fracture mode mixity will be required to confirm this hypothesis.
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14. Paŕıs, F. Correa, E. and Cañas, J. (2003): “Micromechanical View of Failure of the Matrix in Fibrous
Composite Materials”,Composites Science and Technology, 63, 1041-1052.
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