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Summary

Material instabilities for fiber-reinforced nonlinearly elastic solids are examined under
plane deformation. The materials under consideration are isotropic nonlinear elastic models
augmented with a function that accounts for the existence of unidirectional reinforcing (the
so-called reinforcing model). The onset for failure is associated with the loss of ellipticity
of the governing differential equations. Previous work has dealt with the analysis of specific
reinforcing models and it has been established that the loss of ellipticity for the augmented
isotropic materials concerned requires contraction in the reinforcing direction. The loss of
ellipticity was related to fiber kinking. Here we describe generalizations of these results in
respect of both compressible and incompressible materials. The incipient loss of ellipticity
is interpreted in terms of fiber kinking, fiber de-bonding, fiber splitting and matrix failure
in fiber-reinforced composite materials.

Introduction

Failure mechanisms in unidirectionally reinforced composite materials have received
increased attention in the last few years. These failure mechanisms include fiber kinking
[1–4], fiber splitting [5], fiber de-bonding [6] and matrix failure [7] in particular. The anal-
yses in these contributions provide different theories that capture and explain the failure
modes for the materials under consideration. However, a unified derivation that enables
prediction of fiber instability or fiber failure in fiber-reinforced composite materials has
only recently been established, for incompressible [8] and compressible materials [9], re-
spectively.

Many factors affect the mechanical interaction between the fibers and the matrix. In
this paper, we focus on a continuum-mechanical model based on nonlinear elasticity that
addresses the material instabilities mentioned, specifically fiber kinking, fiber splitting,
fiber de-bonding and matrix failure. The onset for failure is signalled by the loss of el-
lipticity of the governing differential equations [2–4]. The goal is to capture and predict
the failure mechanisms associated with particular fiber-reinforced materials. A sufficiently
general strain energy depending on deformation invariants that penalize deformation in a
particular direction serves as the material model. The loss of ellipticity condition enables
both the deformation associated with the existence of surfaces of weak discontinuity and
the normal to that surface to be identified for any particular strain-energy function. Sur-
faces of weak discontinuity (or weak surfaces) are surfaces across which at least one of the
second derivatives of the displacement field is discontinuous, whereas a strong surface of
discontinuity is one across which the displacement gradient is discontinuous.
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In the present analysis, for a given strain energy, we relate the angle between (the
normal to) a weak surface and the direction of the fiber reinforcement to a particular failure
mechanism. The argument is as follows. Under fiber contraction the onset of fiber kinking
is associated with a weak surfaces close to the normal to the direction of fiber reinforcement
[1]. Thus, if loss of ellipticity is associated with a weak surface perpendicular to the fiber
under fiber contraction, then the associated fiber failure mechanism is identified as fiber
kinking. On the other hand, for fiber de-bonding, the angle between the weak surface and
the fiber reinforcement direction is close to zero [6]. For fiber kinking combined with
fiber splitting, the simultaneous existence of weak surfaces close to and normal to the fiber
direction is required [5]. In fiber extension, matrix failure is associated with weak surfaces
perpendicular to the direction of fiber reinforcement [7].

Constitutive equations that suffer a loss of ellipticity have been studied in a variety of
contexts [2–4]. In particular, [3] and [4] deal with the loss of ellipticity of some particu-
lar transversely isotropic nonlinearly elastic materials under plane deformation. In these
analyses an isotropic base material is augmented with a uniaxial reinforcement in the fiber
direction, which lies within the considered plane of deformation. Here, following the gen-
eral analysis in [8,9] we adopt this approach and define the strain energy in terms of an
isotropic base augmented with a reinforcing model.

In three dimensions, two invariants are sufficient to characterize the anisotropic nature
of a transversely isotropic material model. These invariants are deformation measures, one,
denoted I4, being related only to the stretch in the direction of the fiber reinforcement. The
so-called standard reinforcing model is a quadratic function that depends only on this in-
variant. The second invariant, denoted I5, also responds to changes in the stretch in the fiber
direction but introduces an additional effect that may be associated with the behavior of the
reinforcement under shear deformations. For plane deformations with the fiber direction
lying in the considered plane the invariants are not independent. Nevertheless, we consider
the influence of each invariant separately since each invariant adds a distinct anisotropic
character to the isotropic base material.

The Material Model and Ellipticity

For homogeneous transversely isotropic nonlinear elastic solids the most general strain-
energy function (measured per unit undeformed volume) may be expressed in the form
W = W (I1, I2, I3, I4, I5) (see Spencer [10]). Here I1, I2, I3 are the principal isotropic invari-
ants of the Cauchy-Green strain tensor C = FT F, where F = ∂x/∂X is the deformation
gradient tensor defined on the region occupied by the body in its undeformed configura-
tion, X being the position vector of a particle in the undeformed configuration and x the
corresponding position vector in the deformed configuration. These invariants are given by

I1 = trC, I2 =
1
2
[(trC)2 − tr(C2)], I3 = detC = (detF)2. (1)

The invariants I4 and I5 account for the existence of the fiber reinforcement. Let the unit
vector A denote the fiber direction in the undeformed configuration. Then, I 4 and I5 are
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defined by

I4 = FA ·FA = F · (CA), I5 = F · (C2A). (2)

Let a = FA, which is the image of A under the deformation (for a homogeneous deforma-
tion). It is clear from (2) that

√
I4 is the stretch in the direction of the fiber reinforcement.

The invariant I4 therefore registers only deformations that modify the length of the fiber.
For example, if the vector A = i1, where i1 is a Cartesian coordinate axis, is the direction of
reinforcement in the undeformed configuration, then I 4 = C11, while I5 = C2

11 +C2
12 +C2

13.
Thus, in this case the invariant I5 registers changes in the fiber length through the indicator
C11 and also shearing deformations through the indicators C12 and C13.

For augmented isotropic nonlinearly elastic material models with unidirectional rein-
forcing the most general strain-energy function is given by

W = Wiso(I1, I2, I3)+Wfib(I4, I5). (3)

The first term in (3) represents the isotropic base material, while the second term is the
so-called reinforcing model. The strain energy is normalized so that it is zero in the unde-
formed configuration and the stress vanishes there. These two conditions put restrictions
on the forms of Wfib and Wiso. We restrict Wfib further to functions that depend on only one
invariant, i.e. we consider reinforcing models of the forms F(I 4) and G(I5) for appropriate
choices of the functions F and G. Since the strain energy is normalized to zero in the un-
deformed configuration they satisfy F(1) = 0 and G(1) = 0. The assumption that the stress
vanishes in the undeformed configuration yields the restrictions F ′(1) = 0 and G′(1) = 0.
Additional restrictions are imposed by taking the strain energy to be non-negative, and we
assume that F ′′(1) ≥ 0 and G′′(1) ≥ 0.

Our concern here is with the ellipticity of these material models under plane deforma-
tions. The fiber reinforcement is taken to lie in the plane of interest. We obtain conditions
on F(I4) and G(I5) that provide a qualitative understanding of the ellipticity status of the
model (3). For planar deformations in a fiber containing plane, the displacement field u is
of the form u = x−X = u1(X1,X2)i1 +u2(X1,X2)i2, so that F13 = F23 = F31 = F32 = 0, and
F33 = 1. Therefore, the components of C satisfy C13 = C23 = 0, and C33 = 1. Henceforth,
Greek indexes take the values 1 and 2. The governing partial differential equations of equi-
librium for the displacement field u(X) in a homogeneous compressible elastic material
can be written in the standard form

Aαβγδuγ,δβ = 0, (4)

where

Aαβγδ =
∂2W

∂Fαβ∂Fγδ
. (5)

The quasi-linear system of differential equations (4) is elliptic at the solution u and at
a point X if and only if

detQ(n) �= 0, (6)
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for every unit vector n = (n1,n2), where

Qαγ = Aαβγδ(F(X))nβnδ, (7)

Q being the acoustic tensor (which is symmetric).

Similarly, the equilibrium equations for the displacement field u(X) in a homogeneous
incompressible elastic material can be written as

Aαβγδuγ,δβ − p,β = 0, (8)

where p(X) is a scalar pressure field associated with the incompressibility constraint detF =
1. Now, the quasi-linear system of differential equations (8) is elliptic at the solution u and
at a point X if and only if

det

[
H(n) −n
nT 0

]
�= 0 (9)

for every unit vector n = (n1,n2), where

Hαβ = FγαQγδFδβ. (10)

Analysis of equation (6) (for a compressible material) and (9) (for an incompressible
material) for a specific form of the strain-energy function W enables its ellipticity status
to be determined for every unit vector n. If (6) (or (9)) is satisfied the deformation in
question is said to be elliptic for the considered strain energy. If, for a given strain energy,
all admissible deformations are elliptic, then the material itself is said to be elliptic. On
the other hand, for a given strain-energy function, if, for a specific deformation gradient F,
equation (6) (or (9)) is not satisfied for some unit vector n, then the deformation is said to be
non-elliptic for that material model. Any unit vector n for which ellipticity fails identifies
the normal vector to a weak surface, across which one or more of the differentiability
requirements required in the derivation of the strong form (4) (or (8)) of the field equations
are not satisfied.

The Effect of I4 or I5 Reinforcement

Here we summarize briefly results for reinforcing models of the forms Wfib(I4, I5) =
F(I4) and Wfib(I4, I5) = G(I5). In particular, if the reinforcement is strong then the terms
in F(I4) and G(I5) are dominant in the respective strain energies and stresses. It there-
fore suffices to focus on these contributions in the analysis of the ellipticity and failure of
ellipticity.

Beginning with F(I4), following [8], we take F to satisfy F(1) = F ′(1) = 0 and
F ′′(1) ≥ 0, as already noted. Moreover, we assume that F ′(I4) > 0(< 0) for I4 > 1(< 1),
so that the contribution of F to the stress in the fiber direction is tensile (compressive) for
extension (contraction) of the fiber length. Then, if the isotropic part W iso(I1, I2, I3) (for a
compressible material) or Wiso(I1, I2) (for an incompressible material) of the strain energy
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is taken to be strongly elliptic, the inequalities

F ′(I4) ≥ 0, F ′(I4)+ 2I4F
′′(I4) ≥ 0 (11)

are sufficient to guarantee overall strong ellipticity of the strain energy, whether the material
is compressible or incompressible. Thus, necessary conditions for failure of ellipticity are

either F ′(I4) < 0, or F ′(I4)+ 2I4F ′′(I4) < 0. (12)

Since F ′(I4) < 0 in compression it follows (for both compressible and incompressible ma-
terials) that fiber failure is to be expected in fiber compression. Under compressive loading
in the fiber direction the associated incipient loss of ellipticity may be related to fiber kink-
ing, the weak surface (of discontinuity) being (almost) normal to the fiber directions. In
fiber extension we have F ′(I4) > 0 so that a necessary condition for loss of ellipticity in ex-
tension is that F ′′(I4) < 0, which corresponds to loss of convexity of the reinforcing model.
In this case the weak surface associated with loss of ellipticity is (close to) parallel to the
fiber direction and we may identify the failure mode as fiber de-bonding.

The situation in respect of the reinforcing model G(I5) is somewhat different. While
G(I5) is taken to satisfy conditions analogous to those given above for F(I 4), the resulting
strong ellipticity and loss of ellipticity conditions are more complicated than those for F(I 4)
given in (11) and (12) and are not described here. A detailed account, beyond the basic
plane-strain analysis given in [8] and [9] for incompressible and compressible materials
respectively, will be provided elsewhere. Note that in [9] the argument of G was taken to
be a simplified modification of I5 rather than I5 itself.

The results show that loss of ellipticity is to be expected regardless of the particular
form of the reinforcing model G(I5). Under compressive loading in the fiber direction,
fiber kinking is again possible, as for F(I4), but, additionally, a weak surface parallel to the
fiber direction is possible, in which case the associated failure mode may be interpreted as
fiber splitting. Moreover, for certain specific deformations fiber kinking and splitting may
be predicted to occur simultaneously. This is so for both compressible and incompressible
materials. Under tensile loading in the fiber direction for compressible materials, weak
surfaces parallel to the fiber direction (again associated with de-bonding) or normal to the
fiber direction may arise, the latter being associated with a failure mode identified as matrix
failure. These possibilities do not depend on G losing convexity. Such failure mechanisms,
however, do not arise in tension in the incompressible case if G is convex. Failure for
incompressible materials in tension is associated with weak surfaces that are neither parallel
to nor perpendicular to the fiber direction.
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