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Summary 

The classical laminated plate theory (CLPT) is extended to study the nonlinear 
electromechanical coupling in smart electrostrictive composite materials. Both numerical 
and analytic solutions are obtained to predict the in-plane strains, stresses, and electric 
displacements of electrostrictive laminated composites subjected to through-the-thickness 
electric fields. Both solutions give almost identical results, which shows that a higher-
order nonlinear term in the constitutive relation of electrostrictive materials is negligible. 

Introduction 

Electrostrictive materials, like piezoelectric materials, can be regarded as smart 
materials because they exhibit mechanical and electrical response under mechanical or 
electrical excitation[1]. The differences between piezoelectric and electrostrictive 
materials are that electrostrictive materials, such as lead magnesium niobate (PMN), 
exhibit nonlinear electromechanical coupling without hysteresis[2].  

In view of high precision positioning, quick response, low driving power, and 
miniaturization of devices, new transducers such as electrostrictive materials are 
candidates for advanced actuator materials. The present work conducts a feasibility study 
on combining PMN with ductile alloys or compliant polymers to make the transducer 
more compliant. 

Lamina Analysis 

The constitutive relations for three-dimensional electrostrictive materials can be 
expressed by[3] 

 

,ij ijkl kl ijkl k lS Q D Dε σ= +  (1) 

2i ij j jkli jk l ,E P Q Dβ σ= −  (2) 

where i, j, k and l = 1, 2, 3, εis the strain tensor, S is the compliance tensor and is the 
inverse of the stiffness tensor C, σ  is the stress tensor, Q are the electrostrictive 
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constants, D is the electric displacement vector, E are the electric fields, and β is the 
permittivity tensor. The summation convention is used.  

The plane stress condition can be assumed for a thin lamina lying in the x1-x2 plane: 
 

33 23 31 0,σ σ σ= = =  (3) 

1 2 0.E E= =  (4) 
 

Eq. (1) and Eq. (2) can be reduced to 
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Laminate Analysis 

Based on CLPT[4], one assumes that 
 

{ } { } { }zε ε= + ρ  (14) 

 

where z = x3, { }  are the laminate strains, { }11 22 12, ,2 Tε ε ε ε= { } { }11 22 12, ,2
T

ε ε ε ε=  are the 

laminate midplane strains, and { }  are the laminate curvatures. The 
resultant forces and moments per unit length acting on a laminate are given by 

{ }11 22 12, ,2 Tρ ρ ρ ρ=
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where t is the laminate thickness, n is the number of lamine, zk and zk-1 are the z-
coordinates of the top and the bottom surface of the kth lamina, respectively. Substituting 
Eq. (14) and Eq. (5) into Eq. (15) and Eq. (16) gives 
 

[ ]{ } [ ]{ } { } { },eA B N Nε ρ+ = +  (17) 

[ ]{ } [ ]{ } { } { },eB D M Mε ρ+ = +  (18) 

 

where the extensional stiffness [A], the coupling stiffness [B], the bending stiffness [D], 
and the loading {Ne} and {Me} due to electric fields are given by 
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respectively. One can solve the combination of Eq. (22), (23), (17), (18), (14), and (5) 
numerically to determine the mechanical and electric response of electrostrictive 
composite laminates due to actuation. If the term 2 jkli jk lQ σ  in Eq. (2) is ignored, 

{Ne}and {Me} given in Eq. (22) and Eq. (23) can be computed for a given E3. Thus Eq. 
(17) and Eq. (18) can be solved analytically.  

Results 

Consider a [brass/PMN] laminate subjected to E3 = 1 KV / mm. The ply thickness is 1 
mm. The stresses 1 2( )σ σ=  as a function of z are shown in Figure 1. Figure 2 shows the 
effect of the thickness of brass on strains. The relationship between the electric 
displacement  and the electric field E  is shown in Figure 3. The effects of material 
properties on the electromechanical coupling in electrostrictive composites are shown in 
Figure 4, where [aluminum/PMN], [epoxy/PMN] and [brass/PMN] are considered. 

3D 3

 

Figure 1: Stress 11 22( )σ σ=  as a function of z  
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Figure 2: Strain 11 22( )ε ε=

3 1 /
 at the bottom, interface, and top of brass/PMN, subjected to 

E kV= mm , as a function of the thickness of brass 

 

Figure 3: Electric displacement D3 as a function of electric field  in brass/PMN 3E
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Figure 4: Strain 11 22( )ε ε=  in brass/PMN, Al/PMN, and epoxy/PMN as a function of  3E

Conclusions 

CLPT is extended to study the nonlinear electromechanical coupling in 
electrostrictive composite laminates. The effects of ply thickness, constituent properties 
on the elastic and electrical behavior of electrostrictive composites are studied. A higher-
order nonlinear coupling term in the constitutive relation of electrostrictive materials is 
shown to be negligible. 
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