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Summary 
 
This paper presents a finite element procedure for modelling the behaviour of 
postbuckling structures undergoing mode-switching. The arc-length method is 
combined with an explicit pseudo-dynamic algorithm and the routine automatically 
switched between these two algorithms, based on changes detected in the factored 
tangential stiffness matrix.   

Introduction 
 

Numerous experimental investigations of stiffened composite panels loaded in 
uniaxial compression have shown their load carrying capability beyond the initial 
skin-buckling load [1-3]. By allowing certain structural components to buckle 
between the design limit and ultimate loads, and in some cases even below the 
design limit load, significantly lighter structures may be achieved. Buckling in 
stiffened composite aerostructures gives rise to a dramatic increase in the 
interlaminar stresses at the skin-stiffener interface which are only resisted by the 
relatively weak through-thickness strength at these interfaces. Damage initiation 
and progression in these vulnerable regions is still difficult to predict and this has 
resulted in conservative composite designs in aerostructures. 
 
The postbuckling behaviour of stiffened composite structures is further 
complicated by the observed phenomenon of mode-switching where a postbuckled 
panel will dynamically snap to a higher mode-shape. The I-stiffened panel shown 
in Figure 1, for example, was loaded in uniaxial compression until failure. Initial 
buckling was characterised by five half-waves in the skin bays and a dynamic 
mode-switch to six half-waves was observed at a loading of 240 kN followed by a 
further mode-switch in the outer skin-bays to seven half-waves at a loading of 487 
kN. The panel failed catastrophically at a loading of 525 kN. Experimental 
evidence has shown that damage initiates at either a buckling node or an anti-node 
line [1-4]. Mode-switching results in sudden shifts in these critical locations and 
may even release enough energy to cause damage. Hence analytical tools used to 
predict structural response must be able to capture this phenomenon.  
 
The arc-length method has been shown to be able to capture mode-switching under 
certain circumstances but it is by no means robust [5]. A more effective strategy is 
to use a combined static-dynamic analysis for modelling this behaviour and this 
was demonstrated by Riks et. al [6]. In this study, as in most that are currently 
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available in the literature, the switching from one solution procedure to the other is 
performed interactively using restarting schemes available in most finite element 
packages.  
 
 
 
 
 
 
 
 
 
 
 
 
In this paper an automated static-dynamic procedure is presented. The static part of 
the solution process uses the arc-length constraint and a modified explicit dynamic 
routine, which is more computationally efficient than standard implicit and explicit 
dynamic schemes, is used for the transient phase. Bracketing procedures for 
determining the location of critical points along an equilibrium path and eigenmode 
injection to switch to a secondary path were also incorporated in the algorithm. 
This negated the need of introducing imperfections in the panel to reduce 
bifurcation points to limit points. This is usually done to allow arc-length routines 
to proceed past these critical regions but assumes that if a mode-jump occurs, the 
pre- and post-jump stable equilibrium paths are statically connected by an unstable 
equilibrium path. As pointed out by Riks [6], this is not necessarily the case and 
hence path-following procedures are liable to fail. 
 

Numerical Scheme 
 

The governing quasi-static non-linear equilibrium equations may be expressed as: 
 

(1) 
 
where ( ),λg u is the vector of residual forces, qi(u) is the vector of internal forces, 
qe is a fixed external load vector andλ  is a load parameter. The arc-length method 
uses an incremental constraint which is a function of both the incremental 
displacements and load increment: 
 

(2) 
 
∆ i+1u and i+1∆λ are the incremental displacements and load, respectively, after the 
ith iteration and ψ is a scaling parameter. Crisfield [7] advocated setting ψ to zero 

190 kN  240 kN 487 kN 525 kN 

Figure 1: Moiré fringe patterns of an I-stiffened postbuckling panel 
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since the loading terms were shown to have little effect in practice. The iterative 
change in displacement is expressed as the sum of two parts: one corresponding to 
the iterative change that would arise out of a standard Newton-Raphson scheme 
and the other as the product of the load increment, δλ , and the displacement 
corresponding to a fixed external load vector. This yields a quadratic in δλ and it 
follows that two solutions are possible. The choice of the correct load increment, 
notably at the start of the increment (the predictor solution), is central to this 
method’s effectiveness. Various strategies have been proposed in the literature for 
determining the correct sign ofδλ for the predictor solution to avoid the solution 
from doubling-back on itself [5] but these methods have been shown to encounter 
difficulties in the presence of bifurcation points or sharp limit points. 
 
Mode-Switching is a transient dynamic event and it is therefore not surprising that 
the use of continuation methods, such as the arc-length method outlined above, 
often lead to difficulty. In modelling postbuckling stiffened composite structures 
undergoing mode-switching, we are often only interested in locating a stable post-
mode-switching equilibrium path without the need of accurately representing the 
behaviour during the transient phase. A modified explicit procedure is proposed [8] 
which aims to solve a first order explicit pseudo-dynamic equation where the 
damping matrix is replaced by an estimate of the tangent stiffness matrix 

-1
tK : 

 
  (3) 
 
The velocity is assumed to vary linearly over the time-step. 

-1
tK is computed at the 

start of this transient phase and will be equal to tK and t iK u represents the internal 
load vector. Once the displacements are calculated for a given load increment and 
time-step, a check for convergence is made and if the out-of-balance norm is above 
the set tolerance the solution process is advanced to the next time-step. If the ratio 
of this norm and that for the previous time step is greater than 1.2, 

-1
tK is updated. 

This ratio was chosen arbitrarily and may be changed by the user.   
  
An automated static-dynamic procedure was developed for the modelling of 
postbuckling structures. The arc-length method is invoked while the response is 
quasi-static, characterised by a positive definite stiffness matrix. Using an LTDL 
decomposition for the stiffness matrix tK , where L is a lower triangular matrix and 
D a diagonal matrix, a positive definite matrix will have all diagonal terms in D 
greater than zero. When a critical point is passed, a negative diagonal term will 
result. At this point in the analysis, a ‘bracketing procedure’ is used to determine 
the location of this critical point more accurately.  Once this has been located with 
sufficient accuracy, the load increment which is just above this point is used to 
initiate the transient phase of the analysis. To assist the solution in seeking the 
correct secondary path, use is made of eigenmode injection. Close to this critical 

380
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



point, the eigenvalue, λC, will be nearly zero and the corresponding eigenvector, υC, 
is scaled and used as the displacement increment. It is worth noting that while 
eigenvalue extraction for large problems is computationally expensive, it was 
recently shown [9] that λC and υC may be extracted directly from the LTDL 
decomposition of Kt : 

( )ii min i
C C2

ii

d l
ll

λ ν= =                                       (4)  

where (dii)min is the smallest diagonal entry in D and li is the corresponding column 
of (LT )-1. This transient phase is stepped through time until convergence is reached 
within a set tolerance and then the solution procedure switches back to the arc-
length method. By identifying the critical points directly and using eigenmode 
injection, there is no longer the need to introduce initial imperfections into the 
geometry to reduce bifurcation points to limit points in the hope that continuation 
methods will be able to represent the structural response. The nature of the critical 
point may be deduced by noting that υC

Tqe = 0 for a bifurcation point and a non-
dimensional current stiffness parameter κ, which relates the current stiffness to the 
initial stiffness may be used to indicate a limit point as κ → 0.   
 

Numerical Examples 
 

Example 1: This method is demonstrated by the example of a beam on a non-linear 
elastic foundation as shown in Figure 2. Under axial compression, this beam is 
observed to undergo several mode-switches and serves as a good test for assessing 
the robustness and efficiency of the algorithm. 
 
 
 

 
Figure 2: Beam on a non-linear elastic foundation. 

 
Figure 3 shows a comparison of different numerical schemes for capturing the 
response of this structure and a comparison of CPU times is given in Table 1.  

 
Table 1: CPU time (in seconds) for a beam on a non-linear elastic foundation. 

No. of Elements Arc-Length Modified Explicit Full Implicit Full Explicit Static-Dynamic 
10 *** 3.641 1.953 77.766 0.797 
20 1.438 5.703 5.344 311.064 1.516 
40 3.359 8.594 9.625 1244.256 3.328 
80 4.141 12.719 27.562 4977.024 4.469 
160 6.141 28.656 112.062 19631.328 7.797 
320 9.266 38.578 662.047 78525.312 15.547 

    *** denotes convergence difficulties 

P
∆ 
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Example 2: A seminal experimental study by Stein [10] investigated the behaviour 
of a rectangular aluminium plate, subdivided into eleven skin bays and loaded in 
uniaxial compression. These results have been used by numerous investigators as a 
a benchmark for validating analytical/numerical methods. A skin-bay was 
modelled using the present algorithm. Material non-linearity was not accounted for 
and the unloaded edges were fixed from moving in-plane. These boundary 
conditions differed from those in the actual test where the central skin-bay, in 
which attention was focused, had unloaded edges which remained straight but 
allowed to move in-plane. Figure 4 shows the first three mode-switches (3 – 4 – 5 
half-waves) using the present analysis. Mode-switching is highly sensitive to 
boundary conditions and the first three mode-shapes reported in the experiment 
were (4 – 5 – 6 half-waves). The panel underwent plastic deformation at higher 
mode-switches. 
 

Concluding Remarks 
 
A robust and efficient algorithm for capturing the postbuckling behaviour of 
structures undergoing secondary instabilities has been presented. This method 
requires no user-intervention, such as restart schemes, to capture this phenomenon. 
By using a bracketing procedure to locate critical points and followed by 
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Figure 3: Load vs end-displacement for beam 
on a non-linear elastic foundation showing  
mode-switches. 

Figure 4: Deformation of aluminium skin-
bay with increasing load showing mode-
switches, 
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eigenmode injection to ‘point’ the displacement increment in the right direction, no 
initial imperfections need to be introduced in the initial geometry.  
 
The example of the beam on a non-linear elastic foundation showed that this 
method was able to capture numerous mode-switches and was computationally 
more efficient than the full dynamic routines. While the arc-length routine was 
shown to be the most computationally efficient, convergence difficulties were 
encountered for one of the test-cases. The second example of the aluminium skin-
bay, loaded in uniaxial compression, shows that the method had no difficulty in 
capturing mode-switching for plated structures and work is currently underway for 
the modelling of full stiffened composite panels. 
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