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Summary 
 
Computational modeling of human performance can help anticipate the response of 

air traffic controllers to changing roles, but its use has been hindered by the difficulty in 
constructing models in complex domains. We have previously reported a method for 
constructing extended behavioral sequences automatically from a simple underlying 
cognitive architecture [1,2]. Here we report on efforts to extend that method to the 
complex domain of air traffic control operations. 

 
Introduction 

 
Automation is changing the role of air traffic controllers, generating the need to 

evaluate human performance under new concepts of operation. Computational modeling 
of the human air traffic controller could be valuable in anticipating the response of the 
controller to new automation, displays, or procedures. Unlike current empirical 
evaluation methods, modeling and simulation permits the exploration of a large number 
of scenarios and designs. To generate accurate predictions (zero-parameters fit) from a 
model that supports reuse across applications, it is necessary to construct detailed models 
of the fundamental mental operations underlying task performance (e.g., [4,5]). Models at 
this level of granularity are difficult and time consuming to develop, limiting their 
applicability to complex domains. We have previously reported success in automating 
demanding aspects of constructing such detailed mental models in the CPM-GOMS 
cognitive architecture [1,2] using the Apex computational architecture [1,2,6]. In this 
approach, behavioral sequences are constructed from templates, which model the 
elementary cognitive, perceptual, and motor operations underlying primitive task 
behaviors, such as typing, moving and clicking a mouse, or speaking a string of words. 
Because such behaviors occur in many domains, templates can be stored in libraries and 
reused from one model to the next. Here we report on an extension of the template 
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approach that begins to address multitasking, a common feature of complex domains. We 
first discuss the requirements for modeling multitasking, then compare predictions of an 
Apex model of air traffic controller performance when executing sector handoffs to data 
from a simulation conducted by the Federal Aviation Administration. 

 
Modeling Human Multitasking 

 
Thus far, detailed predictions of human performance using the Apex/CPM-GOMS 

architecture [1] have been confined to human-computer-interaction tasks. These models 
have emphasized the execution-level aspects of multitasking, by which we mean the 
manner in which efficient behavior is accomplished. Once it is decided which tasks to 
perform, the cognitive architecture determines the efficiency with which they are 
executed, i.e., their duration and resource requirements. The treatment of multitasking 
was restricted to parallel execution of operations from two successive actions. Indeed, a 
critical accomplishment was the development of a theory of the constraints on scheduling 
cognitive, perceptual, and motor resources. The scheduling of human resources (e.g., 
eyes, hands, speech) necessary to meet task demands is critical, as it underlies such 
phenomena as workload and throughput, and is important in understanding how 
efficiently two or more tasks can be done concurrently. In dynamic domains, such as air 
traffic control, other components of multitasking behavior emerge. The agent is 
embedded in a dynamically changing world, over which other agents also exert control. 
The agent must now have policies for servicing multiple tasks, including responding to 
unexpected events initiated by external agents, as in interruption [6,7]. This requires an 
extensive treatment of the decision-level aspects of multitasking, by which we mean the 
rules and knowledge that specify how the agent services the several tasks active at any 
moment. An extension of the Apex/CPM-GOMS compositional approach to handle the 
integration of decision and execution levels would represent a significant advance in the 
utility of the cognitive architecture. 

 
Apex models an agent engaged in multiple tasks, deciding how to allocate limited 

resources to accomplish them. Thus, it includes support for modeling a wide range of 
multitasking behaviors common to complex domains [6,7]. The high-level architecture of 
Apex is shown in Figure 1. The Resource Architecture specifies the characteristics of the 
resources, including necessary preconditions, parameters for the time to complete actions, 
and the effect of the action. The Action Selection Architecture implements the policy for, 
and constraints on allocating resources, critical factors in determining how efficiently two 
task can be done concurrently. It assumes unary resources, but is otherwise neutral with 
respect to the resource model (it has even been used to model a simulated helicopter). It 
determines which tasks are active and how resources should be allocated. Tasks become 
active when the agent detects events that match the conditions on a procedure in Apex’s 
Procedure Library. The Action Selection Architecture implements a reactive plan 
execution mechanism [6] that recursively decomposes high-level goals into subgoals, 
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creating a task hierarchy, consistent with most cognitive task analytic methods. The 
hierarchy is not generated all at once. Instead, the planner defers subgoal expansion until 
all preconditions are satisfied. Deferring goal decomposition until near execution time 
enables the planner to choose how to decompose (i.e. which procedure to use) with as 
much situation information as possible. This strategy is essential for tasks such as air 
traffic control where uncertainty about future world state can be high. The reactive 
planner also supports interruption by external events. 
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Figure 1. The Architecture of Apex 
 

(procedure 
 (index (do-domain)) 
 (step s (air traffic control)) 
 (step t (end-of-simulation) (waitfor (end-sim-signal))) 
 
 (procedure 
 (index (air traffic control)) 
 (step s1 (monitor radar) (priority 0)) 
 (step s2 (initiate handoff for ?ac-symbol)  
               (waitfor (initiate-handoff ?ac-symbol))   
               (priority 4)) 
 (step s3 (receive handoff request for ?ac-symbol)  
               (waitfor (receive-handoff ?ac-symbol))  
               (priority 2)) 
 (step s4 (detect metering violation for ?ac-symbol)  
               (waitfor (detect-metering-violation ?ac-symbol))  
               (priority 6)) 
 (step s5 (detect conflicts and resolution for ?ac-1 and ?ac-2)  
               (waitfor (detect-conflict ?ac-1 and ?ac-2))  
               (priority 8))) 

 
Figure 2. Top Level Procedure of ATC 

 
A Simple Apex Model of Handoff 

 
Figure 2 shows the multitasking features of Apex used in two high level procedures 

of our air traffic control model. Every Apex procedure includes at least an index clause 
and one or more step clauses. The index identifies the procedure and specifies the class of 
goals for which it is appropriate. Each step clause describes a subgoal or auxiliary 
activity. Here the procedure “air traffic control” specifies five component controller 
activities. Steps are concurrently executable unless otherwise specified. In essence, at any 
moment Apex attempts to do as much as it can (in this respect it represents an upper 
bound on what humans are likely to do). Figure 2 shows two mechanisms for ordering the 
execution of steps, the waitfor clause and the priority clause. A waitfor clause is used to 
indicate preconditions, including ordering constraints. Goals created with waitfor 
conditions become enabled for execution only when all the events specified in the waitfor 
clause have occurred. Since step s1 (monitor radar) has no waitfor preconditions it is 
enabled immediately. The remaining steps begin in a pending state, becoming enabled 
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events match their preconditions. This procedure, then, describes the air traffic controller 
as continually monitoring the situation, suspending that activity when circumstances 
dictate one of the four specific activities indicated.  

 
The priority clause enforces ordering when there is a conflict for a resource. For 

example, subgoals of s1 (monitor radar) and s4 (detect metering violation) involve eye 
fixations, which require the gaze resource. The metering subgoal has higher priority (6) 
than monitoring (0). Thus, when one of its subgoals requiring gaze becomes enabled it 
will seize the gaze resource, interrupting any active subgoal of monitoring requiring gaze, 
which will be suspended. Resumption of suspended tasks can occur in multiple ways 
once the high priority task is terminated. In the model described below, priority is the 
only basis for deciding which task to service. While overly simple, the examples below 
will show that it provides a good first approximation.  

 
We have developed a simplified controller model focused on receiving and initiating 

handoffs to explore operator performance with new systems for automated handoff. The 
model predicts time and resource usage, both of which are necessary to provide insight 
into the mental demands placed on the controller in routine operations to permit estimates 
of workload, throughput, and suggest efficient ways to structure tasks. The agent 
communicates vocally with the pilot of each aircraft in its sector, and must wait to receive 
acknowledgement from the downstream controller when handing off an aircraft. Thus, 
we also provide simplified pilot and downstream controller agents. The sector controller 
model implements the flow chart of the handoff procedure shown in Figure 3, taken from 
existing task analyses [8,9]. To accept a handoff, the agent 1) detects the flashing aircraft 
symbol, 2) acquires the necessary situation awareness (3 sec), and 3) decides to accept (.5 
sec), 4) executes acceptance by slewing the trackball cursor on the target and clicking the 
center button (time calculated by Fitt’s Law). Durations were estimated from existing 
theory and analyses [8] and represent zero-parameter predictions of performance. It 
should be noted that the code in Figure 2 is sufficient to generate time estimates and 
switch between tasks based on priority. With additional Apex control statements the 
model could function as an agent in a dynamic simulation. 

 
Figure 4a plots observed and predicted execution times for 10 of the 19 acceptances 

observed in an air traffic control simulation conducted by the Federal Aviation 
Administration. We derive the observed execution time by measuring the time from first 
fixating the aircraft to acceptance. The model prediction compares favorably to the 
observed times, with a Root Mean Square (RMS) error of 1.55 sec. Not shown are model 
predictions of parallel execution of monitoring and handoff subtasks. Consistent with 
those predictions, the data show instances of controllers communicating vocally with the 
pilot of an aircraft while sequentially fixating data blocks or aircraft symbols, or 
executing handoff acceptances from other aircraft.  
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The model’s decision policy for accepting handoffs is very simple. Since accepting 
handoffs has a higher priority than monitoring, perception of the flashing icon causes the 
agent to suspend the monitoring task and begin the steps to accept the aircraft. We do not 
yet predict quantitative disengage and shift times. However, assumptions of the simple 
policy agree qualitatively with the total handoff times shown in Figure 4b, measured from 
the onset of flashing to the acceptance. 
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Figure 4-a. Comparison of Model Prediction 
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Figure 3. Task Analysis of a Handoff Task 
 

Figure 4-b. Total Time to Accept Handoffs 

As Figure 4b shows, some of the acceptance times are quite long because of the 
delays in responding to flashing symbol despite fast execution once fixated. Thus, the 
variability is largely in suspending ongoing tasks to service the entering aircraft. 
Specifically, for the aircraft AAL191, USA999, COA225 and AWE276, when each of 
these symbols began flashing the controllers were engaged with higher priority tasks. For 
example in the case of AAL191 the R-side controller was aiding D-side controller to 
accept another aircraft while removing the interim altitude. In another case with COA225 
their attention was drawn to a potential conflict which is given higher priority over 
accepting the aircraft. We expect the accepting handoff task would be suspended for 
higher priority tasks and resumed only after completing those tasks. In the case of 
AWE276 the controllers attended to a technical problem with a data link. Thus, cases of 
delay in responding to a handoff are consistent with priorities used by the model for 
selecting which task to undertake. 
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Conclusion 
 
We have presented a framework for developing human performance models in 

complex domains and demonstrated performance predictions from a simple model of air 
traffic controllers accepting and initiating handoffs. Our results show that without 
estimating parameters from the task our Apex model was able to make accurate estimates 
of the time taken to execute the acceptance of a handoff. We have also shown how the 
design of Apex can support sophisticated policies for scheduling multiple concurrent 
tasks. It remains an important problem to characterize the policies used by experienced 
controllers in sequencing between concurrent tasks.  
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