
Modeling Patterns of Performance in Air Traffic Control
Operations

Roger W. Remington1, Seung Man Lee2, Ujwala Ravinder2,

Ben Willems3, Michael Freed4

Summary

Computational modeling of human performance can help anticipate the response of

air traffic controllers to changing roles, but its use has been hindered by the difficulty in
constructing models in complex domains. We have previously reported a method for
constructing extended behavioral sequences automatically from a simple underlying
cognitive architecture [1,2]. Here we report on efforts to extend that method to the
complex domain of air traffic control operations.

Introduction

Automation is changing the role of air traffic controllers, generating the need to

evaluate human performance under new concepts of operation. Computational modeling
of the human air traffic controller could be valuable in anticipating the response of the
controller to new automation, displays, or procedures. Unlike current empirical
evaluation methods, modeling and simulation permits the exploration of a large number
of scenarios and designs. To generate accurate predictions (zero-parameters fit) from a
model that supports reuse across applications, it is necessary to construct detailed models
of the fundamental mental operations underlying task performance (e.g., [4,5]). Models at
this level of granularity are difficult and time consuming to develop, limiting their
applicability to complex domains. We have previously reported success in automating
demanding aspects of constructing such detailed mental models in the CPM-GOMS
cognitive architecture [1,2] using the Apex computational architecture [1,2,6]. In this
approach, behavioral sequences are constructed from templates, which model the
elementary cognitive, perceptual, and motor operations underlying primitive task
behaviors, such as typing, moving and clicking a mouse, or speaking a string of words.
Because such behaviors occur in many domains, templates can be stored in libraries and
reused from one model to the next. Here we report on an extension of the template

1NASA Ames Research Center, MS 262-4, Moffett Field, CA 94035, (650) 604-6243, rremington@mail.arc.nasa.gov
2 NASA Ames Research Center & San Jose State University Foundation, {smlee, uravinder}@mail.arc.nasa.gov
3 William J. Hughes Technical Center Atlantic City International Airport, NJ 08405, ben.willems@faa.gov
4 NASA Ames Research Center & University of West Florida, mfreed@mail.arc.nasa.gov

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

122

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

approach that begins to address multitasking, a common feature of complex domains. We
first discuss the requirements for modeling multitasking, then compare predictions of an
Apex model of air traffic controller performance when executing sector handoffs to data
from a simulation conducted by the Federal Aviation Administration.

Modeling Human Multitasking

Thus far, detailed predictions of human performance using the Apex/CPM-GOMS

architecture [1] have been confined to human-computer-interaction tasks. These models
have emphasized the execution-level aspects of multitasking, by which we mean the
manner in which efficient behavior is accomplished. Once it is decided which tasks to
perform, the cognitive architecture determines the efficiency with which they are
executed, i.e., their duration and resource requirements. The treatment of multitasking
was restricted to parallel execution of operations from two successive actions. Indeed, a
critical accomplishment was the development of a theory of the constraints on scheduling
cognitive, perceptual, and motor resources. The scheduling of human resources (e.g.,
eyes, hands, speech) necessary to meet task demands is critical, as it underlies such
phenomena as workload and throughput, and is important in understanding how
efficiently two or more tasks can be done concurrently. In dynamic domains, such as air
traffic control, other components of multitasking behavior emerge. The agent is
embedded in a dynamically changing world, over which other agents also exert control.
The agent must now have policies for servicing multiple tasks, including responding to
unexpected events initiated by external agents, as in interruption [6,7]. This requires an
extensive treatment of the decision-level aspects of multitasking, by which we mean the
rules and knowledge that specify how the agent services the several tasks active at any
moment. An extension of the Apex/CPM-GOMS compositional approach to handle the
integration of decision and execution levels would represent a significant advance in the
utility of the cognitive architecture.

Apex models an agent engaged in multiple tasks, deciding how to allocate limited

resources to accomplish them. Thus, it includes support for modeling a wide range of
multitasking behaviors common to complex domains [6,7]. The high-level architecture of
Apex is shown in Figure 1. The Resource Architecture specifies the characteristics of the
resources, including necessary preconditions, parameters for the time to complete actions,
and the effect of the action. The Action Selection Architecture implements the policy for,
and constraints on allocating resources, critical factors in determining how efficiently two
task can be done concurrently. It assumes unary resources, but is otherwise neutral with
respect to the resource model (it has even been used to model a simulated helicopter). It
determines which tasks are active and how resources should be allocated. Tasks become
active when the agent detects events that match the conditions on a procedure in Apex’s
Procedure Library. The Action Selection Architecture implements a reactive plan
execution mechanism [6] that recursively decomposes high-level goals into subgoals,

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

123

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

creating a task hierarchy, consistent with most cognitive task analytic methods. The
hierarchy is not generated all at once. Instead, the planner defers subgoal expansion until
all preconditions are satisfied. Deferring goal decomposition until near execution time
enables the planner to choose how to decompose (i.e. which procedure to use) with as
much situation information as possible. This strategy is essential for tasks such as air
traffic control where uncertainty about future world state can be high. The reactive
planner also supports interruption by external events.

monitors

matcher

Waiting
monitor

Task
Handler

match

task cogevent

agenda

Procedures
retrieved
procedure

ne
w

 ta
sk

en
ab

le
d

ta
sk

add/remove monitors

Audition Vision Gaze/Attn Memory Hands Voice

Action
Selection

Architecture

Human
Resource

Architecture

perception
cogevent

start
activity

Simulated World Environment

monitors

matcher

Waiting
monitor

Task
Handler

match

task cogevent

agenda

Procedures
retrieved
procedure

ne
w

 ta
sk

en
ab

le
d

ta
sk

add/remove monitors

Audition Vision Gaze/Attn Memory Hands Voice

Action
Selection

Architecture

Human
Resource

Architecture

perception
cogevent

start
activity

Simulated World Environment

Figure 1. The Architecture of Apex

(procedure
 (index (do-domain))
 (step s (air traffic control))
 (step t (end-of-simulation) (waitfor (end-sim-signal)))

 (procedure
 (index (air traffic control))
 (step s1 (monitor radar) (priority 0))
 (step s2 (initiate handoff for ?ac-symbol)
 (waitfor (initiate-handoff ?ac-symbol))
 (priority 4))
 (step s3 (receive handoff request for ?ac-symbol)
 (waitfor (receive-handoff ?ac-symbol))
 (priority 2))
 (step s4 (detect metering violation for ?ac-symbol)
 (waitfor (detect-metering-violation ?ac-symbol))
 (priority 6))
 (step s5 (detect conflicts and resolution for ?ac-1 and ?ac-2)
 (waitfor (detect-conflict ?ac-1 and ?ac-2))
 (priority 8)))

Figure 2. Top Level Procedure of ATC

A Simple Apex Model of Handoff

Figure 2 shows the multitasking features of Apex used in two high level procedures

of our air traffic control model. Every Apex procedure includes at least an index clause
and one or more step clauses. The index identifies the procedure and specifies the class of
goals for which it is appropriate. Each step clause describes a subgoal or auxiliary
activity. Here the procedure “air traffic control” specifies five component controller
activities. Steps are concurrently executable unless otherwise specified. In essence, at any
moment Apex attempts to do as much as it can (in this respect it represents an upper
bound on what humans are likely to do). Figure 2 shows two mechanisms for ordering the
execution of steps, the waitfor clause and the priority clause. A waitfor clause is used to
indicate preconditions, including ordering constraints. Goals created with waitfor
conditions become enabled for execution only when all the events specified in the waitfor
clause have occurred. Since step s1 (monitor radar) has no waitfor preconditions it is
enabled immediately. The remaining steps begin in a pending state, becoming enabled

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

124

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

events match their preconditions. This procedure, then, describes the air traffic controller
as continually monitoring the situation, suspending that activity when circumstances
dictate one of the four specific activities indicated.

The priority clause enforces ordering when there is a conflict for a resource. For

example, subgoals of s1 (monitor radar) and s4 (detect metering violation) involve eye
fixations, which require the gaze resource. The metering subgoal has higher priority (6)
than monitoring (0). Thus, when one of its subgoals requiring gaze becomes enabled it
will seize the gaze resource, interrupting any active subgoal of monitoring requiring gaze,
which will be suspended. Resumption of suspended tasks can occur in multiple ways
once the high priority task is terminated. In the model described below, priority is the
only basis for deciding which task to service. While overly simple, the examples below
will show that it provides a good first approximation.

We have developed a simplified controller model focused on receiving and initiating

handoffs to explore operator performance with new systems for automated handoff. The
model predicts time and resource usage, both of which are necessary to provide insight
into the mental demands placed on the controller in routine operations to permit estimates
of workload, throughput, and suggest efficient ways to structure tasks. The agent
communicates vocally with the pilot of each aircraft in its sector, and must wait to receive
acknowledgement from the downstream controller when handing off an aircraft. Thus,
we also provide simplified pilot and downstream controller agents. The sector controller
model implements the flow chart of the handoff procedure shown in Figure 3, taken from
existing task analyses [8,9]. To accept a handoff, the agent 1) detects the flashing aircraft
symbol, 2) acquires the necessary situation awareness (3 sec), and 3) decides to accept (.5
sec), 4) executes acceptance by slewing the trackball cursor on the target and clicking the
center button (time calculated by Fitt’s Law). Durations were estimated from existing
theory and analyses [8] and represent zero-parameter predictions of performance. It
should be noted that the code in Figure 2 is sufficient to generate time estimates and
switch between tasks based on priority. With additional Apex control statements the
model could function as an agent in a dynamic simulation.

Figure 4a plots observed and predicted execution times for 10 of the 19 acceptances

observed in an air traffic control simulation conducted by the Federal Aviation
Administration. We derive the observed execution time by measuring the time from first
fixating the aircraft to acceptance. The model prediction compares favorably to the
observed times, with a Root Mean Square (RMS) error of 1.55 sec. Not shown are model
predictions of parallel execution of monitoring and handoff subtasks. Consistent with
those predictions, the data show instances of controllers communicating vocally with the
pilot of an aircraft while sequentially fixating data blocks or aircraft symbols, or
executing handoff acceptances from other aircraft.

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

125

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

The model’s decision policy for accepting handoffs is very simple. Since accepting
handoffs has a higher priority than monitoring, perception of the flashing icon causes the
agent to suspend the monitoring task and begin the steps to accept the aircraft. We do not
yet predict quantitative disengage and shift times. However, assumptions of the simple
policy agree qualitatively with the total handoff times shown in Figure 4b, measured from
the onset of flashing to the acceptance.

Situation
Monitoring

Initiate
Handoff

Receive
Handoff

Receive
Response

Request HO
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Wait for Pilot’s
Initial

Contact

Wait for RC’s
Response

Accept
Handoff

Delay
Handoff

Reject
Handoff

No
Response

Issue Frequency
Change to Pilot

Accept
Handoff

Delay
Handoff

Reject
Handoff

Receive Pilot
Readback

Mark AC
Shipped

Receive Pilot
Callin Contact

Acknowledge to
Pilot

via Voice

TC request handoff via voice
or RC detect handoff from radar

AC approaches a particular point
(30nm from its sector boundary)

Task Completed

Situation
Monitoring

Initiate
Handoff
Initiate

Handoff
Receive
Handoff
Receive
Handoff

Receive
Response
Receive

Response

Request HO
via Voice or

Enter Keystrokes

Request HO
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Respond to TC
via Voice or

Enter Keystrokes

Wait for Pilot’s
Initial

Contact

Wait for Pilot’s
Initial

Contact

Wait for RC’s
Response

Wait for RC’s
Response

Accept
Handoff
Accept
Handoff

Delay
Handoff
Delay

Handoff
Reject

Handoff
Reject

Handoff
No

Response
No

Response

Issue Frequency
Change to Pilot
Issue Frequency
Change to Pilot

Accept
Handoff
Accept
Handoff

Delay
Handoff
Delay

Handoff
Reject

Handoff
Reject

Handoff

Receive Pilot
Readback

Receive Pilot
Readback

Mark AC
Shipped
Mark AC
Shipped

Receive Pilot
Callin Contact
Receive Pilot
Callin Contact

Acknowledge to
Pilot

via Voice

Acknowledge to
Pilot

via Voice

TC request handoff via voice
or RC detect handoff from radar

AC approaches a particular point
(30nm from its sector boundary)

Task CompletedTask Completed

0

2

4

6

EGF5141 USA639 DAL511 AAL191 AAL795 USA999 COA225 USA487 N316LA AWE276

Aircraft

Du
ra

tio
n

in
 s

ec
on

ds

Model predictions Task data

Figure 4-a. Comparison of Model Prediction

and Task Data

0

10

20

30

40

50

60

70

EGF5141 USA639 DAL511 AAL191 AAL795 USA999 COA225 USA487 N316LA AWE276

Aircraft

To
ta

l t
im

e
to

 a
cc

ep
t i

n
se

co
nd

s

Figure 3. Task Analysis of a Handoff Task

Figure 4-b. Total Time to Accept Handoffs

As Figure 4b shows, some of the acceptance times are quite long because of the
delays in responding to flashing symbol despite fast execution once fixated. Thus, the
variability is largely in suspending ongoing tasks to service the entering aircraft.
Specifically, for the aircraft AAL191, USA999, COA225 and AWE276, when each of
these symbols began flashing the controllers were engaged with higher priority tasks. For
example in the case of AAL191 the R-side controller was aiding D-side controller to
accept another aircraft while removing the interim altitude. In another case with COA225
their attention was drawn to a potential conflict which is given higher priority over
accepting the aircraft. We expect the accepting handoff task would be suspended for
higher priority tasks and resumed only after completing those tasks. In the case of
AWE276 the controllers attended to a technical problem with a data link. Thus, cases of
delay in responding to a handoff are consistent with priorities used by the model for
selecting which task to undertake.

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

126

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

Conclusion

We have presented a framework for developing human performance models in

complex domains and demonstrated performance predictions from a simple model of air
traffic controllers accepting and initiating handoffs. Our results show that without
estimating parameters from the task our Apex model was able to make accurate estimates
of the time taken to execute the acceptance of a handoff. We have also shown how the
design of Apex can support sophisticated policies for scheduling multiple concurrent
tasks. It remains an important problem to characterize the policies used by experienced
controllers in sequencing between concurrent tasks.

References

1 John, B. E., Vera, A. H., Matessa, M., Freed, M., and Remington, R. (2002):
"Automating CPM-GOMS," in Proceedings of CHI'02: Conference on Human
Factors in Computing Systems: New York, ACM Press, pp.147-154.

2 Freed, M., John, B., Matessa, M., Remington, R.W., & Vera, A. (2003): How
Apex automates CPM-GOMS. In Proceedings of the International Conference
on Cognitive Modeling, Bamburg, Germany.

3 Card, S. K., Moran, T.P. & Newell, A. (1983): The Psychology of Human-
Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

4 John, B. E. (1996): TYPIST: A Theory of Performance In Skilled Typing.
Human-Computer Interaction, 11 (4), pp.321-355.

5 Gray, W. D., John, B. E. & Atwood, M. E. (1993): Project Ernestine: Validating
a GOMS Analysis for Predicting and Explaining Real-World Task Performance,
Human-Computer Interaction, 8 (3), pp.237-309.

6 Freed, M. (1998): "Simulating Human Performance in Complex, Dynamic
Environments," Doctoral dissertation, Northwestern University.

7 Freed, M. & Remington, R. (1997): Managing decision resources in plan
execution. Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence. Nagoya, Japan.

8 Leiden, K. (2000): "Human Performance Modeling of En Route Controllers,"
Micro Analysis & Design, Inc., Boulder, CO RTO-55 Final Report, Prepared for
NASA Ames Research Center, December.

9 Niessen, C.; S. Leuchter; K. Eyferth. (1998): "A psychological model of air
traffic control and its implementation," In Proceedings of the Second European
Conference on Cognitive Modeling, Nottingham, U.K., pp.104-111.

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

127

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

