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Summary

The present investigation is focused on the solution of a dynamic inverse problem for damage
identification in structures from measured data. The inverse problem is formulated as an optimiza-
tion problem. It is solved using the Alifanov’s variational approach, adapted by frequency domain
measurements. The damage estimation has been evaluated using noiseless and noisy synthetic exper-
imental data, considering a simple spring-mass system.

Introduction

The direct solution of forced vibration problems are concerned with the determina-
tion of the system displacement, velocity and acceleration at timet when the initial con-
ditions, external forces, and time-dependent system parameters, such as stiffness coeffi-
cients and damping coefficients, are specified. On the other hand, the inverse vibration
problems are concerned with the estimation of such quantities (stiffness or damping coef-
ficients, external forces) from the measured vibration data, i.e., natural frequency and/or
mode shape, or displacement measurements. One technique employed for solving in-
verse probems is the conjugate gradient method with the adjoint equation [Alifanov, 1974],
[Chiwiacowsky and Campos-Velho, 2002], [Jarny et al., 1991], and a regularized solution
through the genetic algorithm method [Chiwiacowsky and Campos-Velho, 2002], [Chiwia-
cowsky et al., 2003b].

The structural damage detection is displayed as an inverse vibration problem, since the
damage evaluation is achieved through the determination of the stiffness coefficient varia-
tion, or the stiffness coefficient by itself. Recently this type of problem has already been
solved employing the Alifanov’s approach, i.e. the variational technique, where the results
have been reported concerning lumped-parameter systems with a small number of degrees-
of-freedom (DOFs) [Huang, 2002] or with a higher number of DOFs [Chiwiacowsky et al.,
2003a] . Also, in some works more realistic structures have been considered such as truss
and beam-like structures [Chiwiacowsky and Gasbarri, 2003], [Chiwiacowsky et al., 2004],
[Castello and Rochina, 2002]. In the cited works the time-history of the displacement data
have been adopted as the available experimental data.

In this work, the adjoint method has been applied to the inverse vibration problem
of damage assessment in a lumped-parameter system withN-DOFs, assuming natural fre-
quencies measurements as the available experimental data.

The Inverse Analysis

The goal is to recovered the unknown stiffness coefficients from the synthetic sys-
tem frequency measurements of a spring-mass system withN-DOF. The inverse anal-
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ysis with the conjugate gradient method involves the following steps [Alifanov, 1974],
[Jarny et al., 1991]: (i) the solution of direct problem; (ii) the solution of sensitivity prob-
lem; (iii) the solution of adjoint problem and the gradient equation; (iv) the conjugate
gradient method of minimization; (v) the stopping criteria. Next, a brief description of
basic procedures involved in each of these steps is presented.

The Direct Problem

The undamped free vibration of aN-DOF structural system gives rise to the matrix
eigenvalue problem,

Kφ = λMφ , (1)

which will be considered as the direct eigenproblem in the frequency domain; beingK and
M the stiffness and mass matrices,λ is the eigenvalue (natural frequency squared), andφ
is the eigenvector.

The Sensitivity Problem

Since the problem involvesN unknown time-dependent stiffness parameters, which
constitute the elements of the stiffness matrixK = f [K ], whereK = [K1, ...,KN], in order
to derive the sensitivity problem for each unknown functionKi , each unknown stiffness
coefficient should be perturbed at a time. Supposing that theKi is perturbed by a small
amount4Ki j δ(i− j), where theδ(·) is the Dirac-delta function andj = 1, . . . ,N, it results
in a small change in frequencies and mode-shapes by the amounts4λi j (t) and4φi j (t), re-
spectively. Then, the sensitivity problem is obtained by replacing in the eigenvalue problem
Ki by Ki +4Ki j δ(i− j), λi by λi +4λi j , φi by φi +4φi j , and is given by

(K −λM)φ = 0 ⇒ [(K i +4K j)− (λi +4λi j )M ] (φi +4φi j ) = 0 . (2)

Rearranging the terms of the above equation and subtracting from the resulting expression
the original eigenvalue problem (1), after some algebraic manipulations and neglecting the
second-order terms, the following expression yields

φT
i (4K j −4λi j M)φi = 0 ⇒ 4λi j =

φT
i 4K j φi

φT
i M φi

, (3)

which provides a sensibility analysis where the eigenvectorsφ have been obtained when
the updated stiffness matrix is considered.

The Adjoint Problem and the Gradient Equation

The inverse problem is to solved as an optimization problem, requiring that the un-
known functionK should minimize the functionalJ[K ] defined by

J[K ] =
∥∥λexp−λ

∥∥2
2 , (4)
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whereλ andλexp are the computed and measured frequencies, respectively. For solving
the minimization problem (4), theLagrangemultipliersψ are usually used to associate the
constraints (1) to the functional form.

L(λ,K ,ψ) =
∥∥λexp−λ

∥∥2 −ψT (K −λM)φ . (5)

Knowing that the choice of theLagrangemultiplier is free, for convenience, it has been
choose to be the solution of the adjoint problem:

ψT M φ =−2(λexp−λ) . (6)

Applying the variational theory [Woodbury, 2002], the left term is employed to determine
the gradientJ′[K ], which is given by

J′[K ] =−ψT4K̃ φ , (7)

where4K̃ j refers to thejth perturbed stiffness matrix, i.e.4K̃ j = ∂[4K ]/∂K j .

The conjugate gradient method and the Stopping Criteria

The iterative procedure based on the conjugate gradient method is used for the
estimation of the unknown stiffness coefficientsK given in the form [Jarny et al., 1991]:

K n+1 = K n +βββnPn, n = 0,1,2, ...., (8)

Pn = J′n(t)+ γγγnPn−1, with γγγ0 = 0, (9)

whereβββn is the step size vector,Pn is the direction of descent vector andγγγn is
the conjugate coefficient vector. The step size vectorβββn, appearing in Eq. (8),
is determined by minimizing the functional vectorJ[K n+1] given by Eq. (4) with
respectβββn. The discrepancy principle for the stopping criteria is taken as

J[K n+1] < ε2. (10)

whereε2 =
∥∥ σ

∥∥2
, andσ is the standard deviation of the measurements errors.

The Solution Algorithm

The procedure for the adjoint method can be summarized as:
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Step 1: Choose an initial guessK 0 – for example,K 0 = constant.

Step 2: Solve the direct eigenvalue problem [Eq. (1)], to obtainλ.

Step 3: Solve the adjoint problem [Eq. (6)], to obtain theLagrangemultiplier
vectorψ.

Step 4: Knowing ψ, compute the gradient function vectorJ′(K ) from Eq. (7).

Step 5: Compute the conjugate coefficient vectorγγγn.

Step 6: Compute the direction of descent vectorPn from Eq. (9).

Step 7: Setting4K = Pn, solve the sensitivity problem [Eq. (3)], to obtain4λ.

Step 8: Compute the step sizeβββn.

Step 9: ComputeK n+1 from Eq. (8).

Step 10: Test if the stopping criteria, Eq. (10), is satisfied. If not, go to step 2.

Results and Dicussion

The parameters which define the undamaged configuration of the spring-mass
are taken as:Mi = 10.0 kg, andKi = 2×105 N/m, wherei = 1, . . . ,10. The fol-
lowing damage configuration has been considered: a 10% damage over the element
1; 25% over the element 3; 15% over the element 4; 5% over the element 5; 30%
over the element 7; 20% over the element 8 and a 10% damage over the element
10. All the others elements have been assumed as undamaged for the generation of
the experimental data.

The experimental data (measured frequencies) have been obtained from the
exact solution of the eigenvalue problem (noiseless data) and then adding a random
perturbation (noisy data),

λexp= λ+σR , (11)

whereR is a random variable from a normal distributionR ∼N ormal(0;1). It has
been adoptedσ = 0.01 . Also, the comparison between the estimated and exact
values has been done through the use of the damage factor, defined as

DFi =
Ku

i −Kd
i

Ku
i

i = 1, . . . ,N (12)

whereKu
i andKd

i are the undamaged and damaged parameters, respectively.
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The numerical results have been obtained considering no prior information
about the functional form of the unknown quantities, however undamaged stiffness
values have been assumed as available, taken as initial guess (Step 1). Figure 1
shows estimated and exact damage factor values, for (a) noiseless and (b) noisy
experimental data, respectively. Good estimations are obtained even for noise data.
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Figure 1: Estimated damage factor: (a) noiseless data, (b) noisy data.

Final Remarks

The evaluation of the conjugate gradient method with the adjoint equation on
the estimation of stiffness coefficients (damage identification) has been considered.
A simple dynamical system has been adopted to verify the feasibility of the Ali-
fanov’s method considering damage scenarios and employing synthetic noiseless
and noisy frequencies measurements. Perfect reconstructions have been achieved
for the noiseless data, and satisfactory estimations for the noisy data.

Futute works include more realistic structures, as well as other inverse vibration
problems, such as damping matrix identification.
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