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Summary

In this paper we present and experimentally validate the method of finite element
model updating based on modal parameters with regard to the detection, localisation and
determination of damage in a structure. The experimental modal data is extracted from
measurements with the stochastic subspace system identification. The experimental setup
consists of a cantilever beam excited by a static load and measured with four accelerome-
ters. The structure is progessively damaged with a cutter.

The presented results are the present state of research in the project B4 in the Collab-
orative Research Center 398 “Lifetime oriented design concepts” funded by the German
Science Foundation. The subject of the project is the diagnosis and localisation of discrete
damage by vibration measurement with the aim of lifetime estimation.

Introduction

The monitoring of buildings, engines or general structures is still a wide field of re-
search for engineers. One possibility to detect damage without damaging the structure is
to measure and analyse the modal parameters. The subspace system identification is one
method to extract the modal parameters from measurements that allows a direct interpre-
tation in terms of mechanics. Similarly the finite element method is able to discretise a
structure, to gather their mechanical properties and to simulate their dynamic behaviour.
One enhancement of this method is the finite element model updating which is able to re-
construct system characteristics like modal parameters with balancing of unknown model
parameters like elastic modulus or cross-sectional heights. One of the new aspects of the
paper lies in the experimental validation of the finite element model updating applied on
a progressively damaged structure in combination with an enhanced stochastic subspace
system identification.

Subspace System Identification

The subspace system identification originally arised from system and control theory
with the task to determine a subspace system that is able to reproduce a signal (measure-
ment). The stochastic subspace system identification that we use is a special case of this
method where the system response (output only) is included exclusively and the excitation
(input) is unknown, see [1] and [2]. The theory supposes that the investigated system is
linear and time-invariant for the considered period.

To derive a subspace in terms of mechanics we can use a second order linear ordi-
nary differential equation (1) that describes the dynamic behaviour of the space-discrete
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mechanical structure and an output equation (2) that characterises the connection to the
measurements.

P(t) = Mq̈(t)+Dq̇(t)+Sq(t) = Gu(t) (1)

Y(t) = Cd q(t)+Cvq̇(t)+Caq̈(t)+D′u(t) (2)

In the above equationsP(t) is the excitation force vector that is factorised into the input
location influence matrixG and the time-dependent input force vectoru(t); M, D andSare
the system mass, damping and stiffness matrices;Y(t) represent the measurements;Cd, Cv

andCa are the displacement, velocity and acceleration calibration matrices;D′ is the direct
transmission matrix. Using equation (1), the trivial statement ˙q(t) = q̇(t), the state-space
vectorX(t) = [ q(t) q̇(t) ]T and adding the process noisew(t), we obtain the state-space
equation (3). Inserting equation (1) into equation (2), adding the measurement noisev(t)
and introducing the state-space vectorX(t), we obtain the extended output equation (4).

Ẋ(t) =
[

0 I
−M−1S −M−1D

]
X(t) +

[
0

M−1G

]
u(t)+w(t) (3)

Y(t) =
[
Cd−CaM−1S Cv−CaM−1D

]
X(t) +

[
CaM−1G+D′

]
u(t)+v(t) (4)

The first matrices of equations (3) and (4) are the continuous state-space matrixA and
the input-output matrixC. They contain the basic information about the space-discrete
mechanical structure and have to be identified.

The measurement, taken at discrete times, requires a discontinuous formulation of the
subspace system. Gathering the measurement and the process noise by introducing the
error matrixek and the product with the Kalman matrixK, we define the discontinuous
state-space equation (5) and the discontinuous output equation (6) at the discrete timek.

xk+1 = Axk + Kek (5)

yk = Cxk + ek (6)

In the above equationsA andC are the discontinuous state-space matrix and the output
matrix and can be identified with the stochastic subspace system identification as follows.
At first, we sort the measurement outputs in so-called Hankel form and divide this matrix
into a past reference part and a future part. Secondly, we use the projection to retain all
information of the past that is substantial to predict the future. Next, we apply the singular
value decomposition to estimate the maximum numbern2 of eigenvalues and eigenvectors
that are excited by the input force to reduce the system and to calculate the extended ob-
servability matrixΓn2 that includes the discontinuous state-space matrixA and the output
matrixC.

The result of the above sequence is the discontinuous state-space matrixA which has
to be shifted into continuous domain and which still includes an arbitrary state-space trans-
formation. The knowledge of the state-space transformation matrix allows us finally to
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calculate the undamped modal parameters of the submatrixM−1S. The fact that the finite
element model updating can be performed on the basis of the undamped modal data has
the important advantage that we do not need to define any assumptions about the damping
of the system.

Finite Element Model Updating

So far we have concentrated on one category of finite element model updating al-
gorithms, the iterative ones [3] which have some important advantages. First of all, the
positive definiteness of the (updated) mass and stiffness matrices is retained and the con-
nectivity of the structure is conserved which means that the updated matrices can be still
derived from a finite element model. The possibility to include selected fragments of the
mode shapes and to weight the measured data, the analytical data and the model parameters
are further important advantages.

Assembling the measured eigenvaluesλM and the mode shapesΦM we receive a mea-
surement modal vector (7). Considering a finite element model depending on the model
parametersθ (elastic modulus and/or cross-sectional height and/or ...), we calculate the an-
alytical modal data and assemble an equivalent analytical modal vector (8). The indexi
denotes an iteration index.

ZT
M = (λM1,ΦT

M1,λM2,ΦT
M2, · · · ,λMn,ΦT

Mn) (7)

ZT
F,i = (λF1,i ,ΦT

F1,i ,λF2,i ,ΦT
F2,i , · · · ,λFn,i ,ΦT

Fn,i) (8)

Note that we work here only with the real modal data. Therefore, only the mass and the
stiffness matrix of the finite element model have to be taken into account (the computation
of the damping matrix is avoided). Pre-requisite for the updating algorithm is a correct
mode pairing, e. g. with the modal assurance criterion (9) and mode scaling, e. g. with the
modal scaling factor (10).

MACjk =

∣∣∣ΦT
M jΦFk

∣∣∣2(
ΦT

FkΦFk
)(

ΦT
M jΦM j

) (9)

MSFj =
ΦT

F jΦM j

ΦT
M jΦM j

(10)

The aim of the finite element model updating is to determine the model parametersθ in
such a way that the difference∆Z = ZM−ZF,i between the measurement modal vectorZM

and the analytical modal vectorZF,i is minimised. If we introduce the parameter difference
∆θ between the iteration stepsi and i + 1 and the sensitivity matrixSu, we can define the
analytical modal errorε (11) of the analytical modal vectorZF,i with respect to the model
parametersθ.

ε = ∆Z−Su∆θ (11)
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The sensitivity matrixSu describes the change of the analytical modal data included inZ
with respect to an incremental modification of the model parametersθ evaluated in the
iteration stepi. Using the analytical errorε, we can define the extended weighted penalty
function j(∆θ) (12) which is a non-linear function of the model parametersθ. Inserting the
modal difference∆Z, the parameter difference∆θ and the analytical modal errorε into the
extended weighted penalty functionj(∆θ), we receive an equation that has to be minimised.
Solving the first derivation of this equation to the new parametersθi+1 serves the updating
algorithm (13).

j(∆θ) = εTWεεε + ∆θTWθθ∆θ (12)

θi+1 = θi +
[
ST

uWεεSu +Wθθ
]−1

ST
uWεε (ZM−ZF,i) (13)

The modal weighting matrixWεε in equation (13) considers that (I) the measured mode
shapes are less reliable than the measured eigenvalues and (II) that the measured modal
data of the lower frequencies are more accurate than the ones of the higher frequencies.
If the sensitivity matrixSu indicates that some model parametersθ have little or same
influence on the analytical modal data, the model weighting matrixWθθ can be applied.
Methods concerning the choice of weighting matrices belong to the so-called regularisation
techniques and are treated e. g. in [4].

Experimental validation

The experimental setup is a clamped cantelever beam with a length of 1.6m and a
rectangular cross-section (40x15mm) made of steel. The used measurement technology
(Hottinger Baldwin) consists of four accelerometers (B12), an amplifier (Spider 8) and the
software (catman 3.1). The system is excited by a static displacement and the accelerations
are measured at four positions (Figure 1).

2cm

Damage

40cm 40cm 30cm 10cm 40cm 100cm

Figure 1: Laboratory dimensions

Using the stochatic subspace system identification, we obtain the continuous transformed
state-space matrixA that provides the undamped experimental modal parameters. Similarly
we use a space-discrete finite element model with 16 elements, 33 degrees-of-freedom to
calculate the analytical modal parameters. The updating algorithm is employed to balance
the model parameters like the rotational spring stiffness of the clamping, elastic modulus
and cross-sectional heights. In this way the difference between the measured modal vector
and the corresponding analytical result is minimised (see Table 1).
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Table 1: Initial model updating
Experimental Model Updating

λM1 = 823.3371 - 823.4005
φM1(1) = 1.0000 - 1.0000
φM1(2) = 0.6438 - 0.6442
φM1(3) = 0.3426 - 0.3428
φM1(4) = 0.1075 - 0.1076

λF1,i = 821.1100 (0.3%)
φF1,i(1) = 1.0000 (0.0%)
φF1,i(2) = 0.6596 (2.4%)
φF1,i(3) = 0.3452 (0.7%)
φF1,i(4) = 0.1027 (4.7%)

λM2 = 32277.20 - 32279.56
φM2(1) = 1.0000 - 1.0000
φM2(2) = -0.1774 - -0.1775
φM2(3) = -0.7688 - -0.7691
φM2(4) = -0.4812 - -0.4816

λF2,i = 31819.40 (1.4%)
φF2,i(1) = 1.0000 (0.0%)
φF2,i(2) = -0.1649 (7.6%)
φF2,i(3) = -0.7201 (6.8%)
φF2,i(4) = -0.4419 (9.0%)

Additionally, the structure will be damaged locally and progressively between the first and
second accelerometer by using a cutter (2mm) (Figure 1). The change of the identified first
and second eigenvalue with increasing damage is displayed in Figure 2.
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Figure 2: First and second eigenvalue with increasing damage

Finally we use the iterative finite element model updating again to detect and to localise
the damage. In Figure 3 it is shown that the algorithm detects the damaged area more
precisely, if one increases the number of elements. Beyond a certain discretisation level the
localisation cannot be improved anymore.

Conclusion

The stochastic subspace system identification is able to extract the change of modal
parameters with increasing damage with sufficient accuracy. The reconstruction of the
initial experimental modal parameters includes a certain error. Regardless, the combination

1855

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

1855



of both methods enables us to locate damage in the structure with relatively high accuracy.
The focus of our present research work lies on the quantitative assessment of damage and
the prediction of lifetime.

Damage

129 degree of freedom
64 beam elements

32 beam elements

33 degree of freedom
16 beam elements

65 degree of freedom

17 degree of freedom
8 beam elements

9 degree of freedom
4 beam elements

Figure 3: Damage localisation
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