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Introduction 

This paper presents further verification of the model proposed in (1) for the 
deformation of sand during rotation of principal stress directions. The model has been 
adapted for simple shear loading and has been used to simulate the results of simple shear 
tests on sand reported in (2). The emphasis of the verification is on the prediction of the 
rotation of principal stress directions in simple shear tests. As the formulation was 
developed to model the effects of principal stress rotation, it should be interesting to 
confirm if the model can predict the amount of rotation of principal stresses involved in 
simple shear tests. 

Failure Surface 

A two-dimensional representation will be assumed for simplicity. It is then sufficient 
to represent the state of stress in the stress space 1 2p S S− −  as shown Fig. 1, where 

( ) / 2x yp = σ + σ , ( )1 / 2y xS = σ −σ  and 2 xyS = σ . In this representation, a vector from 

the origin of the 1 2S S−  stress plane has a length equal to the shear stress 2 2
1 2q S S= +   

and makes an angle equal to 2α  from the 1S axis. α  is the angle 1σ  makes from the y-
axis.  Assuming initially isotropic response, the failure criterion can be written as:    

 

fF q r p= −  (1) 
 

where fr is the stress ratio /q p at failure. The failure surface appears as a circular cone 
in the stress space, Fig. 1.  

Flow Rule 

Based on the results of a series of extensive tests (3), the flow of sand in the 1 2S S−  
stress plane is represented by the plastic potential formulation shown in Fig. 2. In this 
figure, the plastic strain increment components ( )p p

y xε − ε& &  and 2 p
xyε&  have been 

superimposed on the 1 2S S−  stress plane. The strain increment vector on this plane has a 
length equal to the plastic shear strain increment p

sε&  and makes an angle to 2β  from the 

( )p p
y xε − ε& &  axis. β is the angle 1

pε&  makes from the y-axis. This direction is evaluated as the 

784
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



normal to the failure surface at the conjugate point ( )1 2,c cS S  which is the intersection of 

the failure surface and the stress increment vector extended from the current stress point 
until it hits the failure surface. This flow rule is based on the experimental observation 
that flow on the 1 2S S− stress plane is dependent on the stress increment direction (3). 
From Fig. 2:    

 

1 21 2

1

1 ,c c

c
p p
y x

fS S S S

SF
S r p

− −

⎛ ⎞⎛ ⎞∂
ε − ε = λ = λ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
& &    ,  

1 21 2

2

2 ,c c

c
p
xy

fS S S S

SF
S r p

− −

⎛ ⎞⎛ ⎞∂
ε = λ = λ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
&  (2)   

 

where λ gives the magnitudes of the plastic strain increments, and can be calculated as:    
 

( ) ( )2 2
2p p p p

s y x xyε = ε − ε + ε = λ& & & &  (3)   

while the direction of 1
pε&  measure from the y-axis can be solved as  

2

1

2
tan 2

p c
xy

p p c
y x

S
S

ε
β = =

ε − ε

&

& &
 (4)   

The plastic volumetric strain increment p
vdε& is assumed to be due to dilatancy, and is 

determined from the following stress-dilatancy relation proposed by [x]:  
 

cos2
p
v

cp
s

qr
p

ε
= − ψ

ε
&

&
 (5)   

where ψ = α −β  is the angle of noncoaxiality [x] and rc is the stress ratio at zero 
dilatancy or phase transformation. Elastic strains are given by the usual linear elasticity 
relations. 

Yield Surface and Hardening Rule 

The yield surface is assumed to have a similar shape as the failure surface, Fig 1, and 
undergoes only kinematic hardening  

 

( ) ( )2 2
1 1 2 2 ef S c p S c p r p= − + − −  (11) 
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where 1c and 1c are the kinematic hardening parameters corresponding to location of the 
center of the yield surface in the S1-S2 stress plane while re is given a very small, finite 
value. When re is very small, 1c p  and 2c p  can be taken as equal to S1 and S2 
respectively. Furthermore, the rotational kinematic hardening rule can now be simply 
given as:  

 

1
1

Sc
p

=
&

& ; 2
2

Sc
p

=
&

&                             (12) 

The scalar quantity λ can be obtained from the consistency condition which gives:  
 

1
kl

p kl

f
H

∂
λ = σ

∂σ
& &     

where Hp is the plastic hardening modulus. Since the elastic region in the S1-S2 stress 
plane is assumed to be very small, the loading direction as given by / ijf∂ ∂σ  can not be 

determined. This is because 1/f S∂ ∂  and 2/f S∂ ∂ can not be evaluated when 0er → . 
However, experiments indicate that flow in the S1-S2 stress plane can be taken as 
associative, i.e., the direction of flow is the same as the loading direction. This can be 
accomplished by replacing the derivatives 1/f S∂ ∂  and 2/f S∂ ∂  with the normals to the 
failure surface at the conjugate stress point.    

 

1 21 2

1

1 1 c c

c

jS S S S

Sf F
S S r p

− ⋅ −

∂ ∂
= =

∂ ∂
   ,     

1 21 2

2

2 2 2c c

c

jS S S S

Sf F
S S r p

− ⋅ −

∂ ∂
= =

∂ ∂
  (15)   

 

Finally λ can now be calculated as:  
 

1 1 21 c c c

x y xy
p j j j

S S Sq q
H p r p p r p r p

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪λ = − − σ + − + σ + σ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
& & &        (16)   

Hardening Functions 

To formulate the variation of the plastic hardening Hp during loading, the concept of a 
field of nesting contours of surfaces of equal plastic hardening modulus very similar to 
the nesting yield surfaces formulation of Mroz [5] is used. The Hp –surfaces after the Ko 
consolidation in simple shear apparatus. The movement of these surfaces is prescribed in 
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a manner that insures their non-intersection. The plastic hardening modulus for a surface 
of radius ri  is calculated as:  

 

2

1 i
pi p

j

rH G p
r

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
          

where  Gp is the initial plastic shear modulus.  

Modifications for Finite Deformation 

 

 

 

Comparison With Experimental Results 

The above formulations are used to simulate the results of drained simple shear tests 
on Leighton Buzzard sand reported in [2]. The predicted and measured stress and strain 
curves are shown in Fig. 4 while the predicted and measured angles α, β and ξ are shown 
in Fig. 5. As can be seen, excellent agreement between predicted and experimental results 
are obtained. The predicted amounts of rotation of principal stress directions in tests of 
three densities of sand are compared to the measured results in Fig. 5. The figure 
illustrates that the model predicts the amount of principal stress rotation in simple shear 
tests very satisfactorily. 
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