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Summary 

In this contribution the two-step plasticity algorithm proposed by Etse et al [1] and 
Macari et al [2] has been modified to allow for update of the hardening/softening 
parameter within the same iteration loop as the effective mean normal p  and the 
deviator stress q  invariants. Two different algorithms are presented. In the first one, the 
correction for the Lode angle is applied by means of a two-step procedure. In the second 
algorithm, all unknown quantities are updated within the same iteration loop. Examples 
of application of the proposed algorithms to a material whose plastic response is 
governed by the so-called Desai surface [3] are described. 

Introduction 

In computational plasticity, the increments of plastic strains and of the hardening 
parameter(s) are determined by integration of the flow rule(s) and the hardening law(s) 
over a time step tD . Because of their improved stability, implicit methods of time 

integration have become very popular. Typically a potential function ( )f ,s a  is utilized 

in the definition of the flow rule  ( )p fe = l ¶ ¶ s&& . If the variables of the potential 

function can not be separated (i.e. ( ) ( ) ( )f , g hs a ¹ s + a ) then, after yield, a set of 

nonlinear equations can be set up consisting of the six strain compatibility equations, an 
equation expressing the change in the hardening parameter and the consistency equation 
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These represent a system of 8 nonlinear equations, which are typically solved via 
Newton-Raphson iterations. Because this set of equations must be solved at every 
integration point of a finite element the process is time consuming. Over the years, 
attempts have been made to reduce the order of the system. For surfaces, which are only 
functions of the effective mean normal stress p  and the deviator stress q , Aravas [5] has 
proposed a very efficient algorithm, which reduces the order of the nonlinear system to 
two. For surfaces which in addition to p  and q  are also functions of the Lode angle, 
Etse et al [1] and Macari et al [2] have proposed an algorithm in which a two step 
procedure is utilized for reduction of the number of unknowns. 

Algorithmic aspects 

The original algorithm of Etse et al [1] and Macari et al [2] is based on the Closest 
Point Projection Method (CPPM), in which stress reduction to the yield surface, can be 
done by minimizing the complementary energy equation: 

( ) ( ) ( ) ( )1 11 1 1 1 11 : :
2

nn n n e n n
A e eE D

+ −+ + + + +σ = σ− σ σ− σ  (2) 

in which 1n
e
+ σ  is the trial elastic stress, 1n+ σ  is the plastically admissible stress and eD is 

the elastic tangent stiffness tensor.  

In case of isotropic yield criteria with an isotropic hardening/softening rule, the 
energy ( )1n

AE + σ  can be reformulated in stress-invariant space as: 
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in which p  is the effective mean normal stress, q  is the deviator stress and ϑ  the Lode 
angle: 
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1I , 2J  and 3J are the stress invariants. 
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To comply with the plasticity consistency constraint ( 1 1 1 1( , , , ) 0n n n nF p q+ + + +ϑ α ≤ ), 
the following expression can be minimized  

( )1 1 1 1 1 1 1 1, , ( , , , )n n n n n n n n
AL E p q F p q+ + + + + + + += ϑ − λ ϑ α  (5) 

To minimize L , its derivatives with respect to the invariants and the plasticity 
consistency parameter λ  should go to zero. This leads to the following set of non-linear 
equations: 
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1 1 1 1( , , , ) 0n n n nF p q+ + + +ϑ α =  (8) 

( )1 1 1 1 1sin 0n n n n n
e e
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∂ϑ
 (9) 

with 1 13n nG+ +µ = λ . Solving this system of equations is done in a two level iterative 
procedure. On the basis of the new elastic stress state 1n

e
+ σ  estimates for the stress 

invariants are calculated: 1n
e p+ , 1n

e q+ and 1n
e
+ ϑ .  

Using a Newton-Raphson iteration scheme Eqs. (6) to (8) are solved for 1n p+ , 1n q+  
and 1n+ α  (the parameter λ  or µ  can be expressed as a function of the 
hardening/softening parameter α , which will be shown later ). After substituting these 
new parameter values in Eq. (9), 1n+ ϑ can be determined, again by the Newton-Raphson 
method. This new value of 1n+ ϑ  causes the stress-state 1n+ σ  to change, so new values for 

1n p+ , 1n q+  and 1n+ α  have to be found, and so on. This iteration process ends when the 
difference between two consecutive values of 1n+ ϑ  is small enough. 

Including the hardening parameter into the first phase is different from the approach 
described in Macari et al. [2]. In their work the hardening/softening parameter is 
calculated by an iterative loop around a two level iterative procedure. According to the 
authors, this is necessary if the hardening/softening parameter is of a highly non-linear 
nature. As it is shown in the next section, the hardening function used in this contribution, 
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is non-linear but sufficiently smooth to be solved in the first stage of the two level 
iterative procedure. Also solving the three invariants together with the 
hardening/softening parameter has been implemented. 

Desai yield surface 

The Desai yield surface [3] is utilized in this contribution as the flow function: 
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Parameter γ  is related to the ultimate strength of the material, R  represents the tri-
axial strength in tension and ap  is the atmospheric pressure. Parameter n is related to the 
state of stress at which the material response changes from compaction to dilatation. 
Finally parameter m is a constant, which has the value –0.5 for many geological materials 
[4]. Parameter α  describes the isotropic hardening/softening. In the context of this 
contribution it has been defined as: 

( )0
0

1exp lnc
c

 α
α=α κ ξ ↔ ξ=  κ α 

 (11) 

in which ξ  is the equivalent plastic strain, 0α  the initial value of hardening/softening 

and cκ  a parameter that controls the rate of hardening/softening. 

In an incremental plasticity formulation the following equations hold: 
1
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By solving Eq. 121 for ∆λ , an expression for the plasticity consistency parameter as 
a function of the hardening/softening parameter can be derived: 
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 (13) 

Substituting this into Eqs (6) to (9) this system can be solved for the 4 physical 
parameters p , q ,α and ϑ  in a one or two stage fashion as mentioned earlier. 
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Example 

To demonstrate the above described approaches, a block of material is subjected to 
two different loading conditions, one following the other. The first load is a prescribed 
linear increasing compressive strain in the vertical (Y) direction. The second is a 
prescribed linear increasing shear (YZ) strain. For both loads the applied strain increment 
is 0.001 mm/mm and the number of load steps is 50. 

The material used has an E-modulus of 100 MPa and a Poisson ratio of 0.2. For the 
Desai yield surface the following parameters are chosen: 0.5m = − , 5.6n = , 

0.1ap MPa= − , 0R MPa=  and 0.083γ = . The parameter β  is defined in the figures 

below. The hardening law as described in Eq. (11) has 5
0 1.2*10−α = and 20cκ = . 

In Figs. 1 and 2 the results of the two level approach are given. In Fig. 1 the stresses 
are shown due to the two consecutive loading conditions for two different values of the 
Desai parameter β . 
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Fig. 1   Variation of stresses for the two level approach 

The trajectory of the state of stress on the deviator plane for two different values of 
β  is shown in Fig. 2.  

The performance of the one-step algorithm was also evaluated by means of the same 
set of runs. 
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Fig. 2   Variation of Lode angle Theta for the two level approach 

When the two approaches are compared, it can be concluded that, at least for the 
loading case described in the beginning of this section, the proposed one-step algorithm is 
as accurate as the two-step algorithm of Macari et al [2]. Further investigations are 
currently underway for several loading path conditions. 
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