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Summary

In this study, the first term of the asymptotic displacement field is determined analyt-
ically for a crack between two transversely isotropic materials. The axial direction of the
upper material is rotated with respect to the x2−axis by +45◦ and that of the lower material
by −45◦. This field is used as the auxiliary solution in a three-dimensional M-integral for
determining stress intensity factors. The stress intensity factors are obtained for one test
case.

Introduction

In recent years, much research has been directed toward understanding interface frac-
ture. Investigators have concentrated on the problem of an interface between two isotropic,
homogeneous bodies. Another area of interest is the delamination of laminate composites.
It is this latter subject which is considered in this study.

A fiber reinforced composite material with a 0◦/90◦ interface was studied previously
[2]. In that investigation, the effective mechanical properties were employed in determining
the first term of the asymptotic fields in the neighborhood of a crack tip along the interface
between these two materials. Since the in-plane and out-of-plane fields decouple, two-
dimensional plane strain conditions were assumed. In this study, these layers are rotated to
form a ±45◦ interface. Except near the crack tip, the fields are coupled and this problem is
treated three-dimensionally.

These fields are employed as the auxiliary solution in a three-dimensional M−integral.
This integral was first presented in [11] for in-plane mixed modes in isotropic, homoge-
neous material. It was extended to cracks along the interface of two isotropic materials
in [9]. Banks-Sills and Boniface (2000) [2] adapted it for the 0 ◦/90◦-interface in trans-
versely isotropic material. It was extended for three dimensions in [5]. It is employed in
the three-dimensional form here for the material studied.

Finally, a three-dimensional edge cracked slab is analyzed. The first term of the asymp-
totic expression for the displacement is prescribed on the outer surfaces of the body. One
case is considered here in which K1 = 1, KII = K3 = 0. The results expected are these
prescribed values. In this way, accuracy of the method is examined for this case.

Asymptotic Displacement Field

The displacement field for a bimaterial body in which the upper layer contains fibers
in the +45◦−direction and the lower layer contains fibers in the −45 ◦−direction are deter-
mined by means of the Stroh formalism as described in [8]. It should be noted that for both
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layers, x2 = 0 is a plane of symmetry, and an asymptotic plane strain field is assumed near
the crack tip. The interface crack is shown in Fig. 1
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Figure 1: Crack tip coordinates.

The displacement field is given by
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where the superscript k = 1,2 represents the upper and lower material, respectively, i =√−1, r and θ are polar coordinates illustrated in Fig. 1, ℜ and ℑ represent the real and
imaginary part of a complex expression and the complex stress intensity factor

K = K1 + iK3 . (4)

In (1) through (3), following [8]
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(5)
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where

β =
{
−1

2
tr(S̆)2

}1/2

. (6)

The 3×3 matrix S̆ is given by

S̆ = D−1W , (7)

D = L−1
1 +L−1

2 (8)

and

W = S1L−1
1 −S2L−1

2 . (9)

The subscripts 1 and 2 in (8) and (9) represent, respectively, the upper and lower material.
Since Sk and Lk are real and

−AkB
−1
k = SkL

−1
k + iL−1

k , (10)

knowledge of the left hand side of (10) is sufficient to determine (8) and (9). In (10),
summation of indices is not indicated. The matrix A kB

−1
k for the upper and lower materials

is found with the aid of work carried out in [10]. The functions R (k)
i (θ), Q (k)

i (θ) and

S (k)
i1 (θ), i = 1,2,3, k = 1,2 are analytic and will be presented elsewhere.

It may be noted, for a crack along the interface between two transversely isotropic
materials at the angles ±45◦, this is a coupled problem. That is, all modes are involved for
all displacements as seen in eqs. (1) through (3). Thus, a body of this type must be analyzed
as a three-dimensional problem.

J and M−Integral for the ±45◦ Interface Crack

In this section, the conservative M-integral is described for the material interface con-
sidered in this study, as well as three-dimensional analyses. This is an energy based method
which is derived from the three-dimensional J−integral. It may be pointed out that the
stress intensity factors may be separated by means of the M−integral.

First, Griffith’s energy may be derived for this material pair as

G =
sgn(E22) |E22|

2cosh2 πε
(
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3

)
+
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2

K2
II . (11)
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where

E ≡−AB−1 , (12)

and E11 and E22 are identical for the upper and lower materials.

For a straight through crack which is treated in this study, the three-dimensional area
J−integral is given by (see [4] and [7])

∫ L

0
J(x1)δ�(x1)dx1 = ∆a lim

Γ→0

∫
V

[
σi j

∂ui

∂x2
−Wδ2 j

]
∂q2

∂x j
dV (13)

where L is the length of the crack front and x1 is the coordinate along the crack front (see
Fig. 2a), δ� is the virtual crack extension, ∆a its maximum extent, W = 1/2σ i jεi j is the
strain energy density and δi j is the Kronecker delta. In (13), the surface Γ is shown in
Fig. 2b in an x2,x3 plane. The limit is taken so that the volume V reaches from the crack tip
to an outer surface S. Taking the limit to the crack tip ensures path independence. On S, q 2

is zero; it takes on the value δ�(x1) along the crack front; it is continuously differentiable
in V . The requirements for q2 guarantee the validity of the right hand side of (13).
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Figure 2: (a) Virtual crack extension δ� for through crack. (b) In-plane volume V ,
outer surface S and inner surface Γ. (c) Inner surface Γ collapses to crack front.

To obtain accuracy in the calculation from finite element results, the function q 2 is
defined for twenty noded isoparametric elements as

q2 =
20

∑
m=1

Nm(ξ,η,ζ)q2m (14)

where Nm are the finite element shape functions and ξ, η and ζ are the coordinates of the
parent element (for further details, see [1]).
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By the derivation of eq. (13), G(x1) = J(x1). The values of J or G may be obtained
accurately along the crack front by implementing eq. (13). This allows one to determine
the combined value of the stress intensity factors given in eq. (11). In order to obtain the
individual stress intensity factors, the M−integral must be extended for the ±45 ◦ pair. This
derivation will be presented elsewhere. Once the first term of the asymptotic solution is
known, the derivation follows that for the bimaterial isotropic case in [6].

Test Problem

An edge crack in a finite thickness slab is considered. The displacements given in
eqs. (1) through (3) are prescribed on the outer boundaries of the body with K 1 = 1, KII =
K3 = 0. Along the crack faces, traction free conditions are assumed. Fiber reinforced
carbon/epoxy material (AS4-3502) was analyzed. Some material properties may be found
in [2].

The program ADINA [3] was employed to carry out the finite element analyses. Twenty
noded isoparametric brick elements were used; at the crack tip, they were distorted to
quarter-point elements leading to a square-root singularity. It should be noted that the mode
II stress is square-root singular, whereas the other stresses are square-root oscillatory. Thus,
this element does not completely model the stress behavior. Two meshes were employed:
one containing 34,641 nodal points and the other 55,181 nodal points. The mesh is focused
at the crack front. Through the thickness, both meshes contained 15 elements.

Integration of the M−integral is carried out in volumes which are orthogonal to the
crack front and are an element thickness in that depth. The volume extends away from the
crack tip, but always includes the crack tip elements.

�����

	��

�����������
���������


�������� ����
���


����

��






���

���
	��

�!!

�����

"�����

�

�������� �

��

Figure 3: Stress intensity factors (a) K1, (b) KII and K3.

Results for K1, KII and K3 obtained by means of both coarse and fine meshes are
exhibited in Fig. 3. It may be observed that while K1/K1theory is approximately 1.005 and
|KII |/K1theory is less than about 0.005 for both meshes; |K3|/K1theory is 0.007 for the coarse
mesh and 0.013 for the fine mesh in the center of the body. The increase in error with the
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finer mesh probably occurs as a result of the element dimension ratio near the crack tip
which increases from 1:1:4 to 1:1:7.

Although the M−integral is theoretically path independent, the region adjacent to the
crack front is not as accurate as other domains. This is attributed to the near tip elements
which do not model correctly the oscillatory stress behavior. Moreover, it appears that the
error is concentrated within a small region near the crack tip. Unlike the two-dimensional
M−integral, even a domain removed from the crack tip region, as in Fig. 2c, includes
inaccurate results from the near tip elements. Therefore, the near tip error affects any
domain taken.
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