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Summary 
 

An experimentally verified technique to predict damage in electrically 
conductive structures using electric potential measurements in conjunction with 
an artificial neural network inversion scheme has been developed.  This scheme 
is applicable to any electrically conductive structure of moderate resistivity, 
including composite structures, electroactive membranes, and conductive 
polymers.  Experimental results are presented for conductive polymer specimens, 
using both an approach where the location and size of the damage are predicted, 
and one where the damage is mapped onto a grid of cells. 
 
 

Introduction 
 

Detection and location of damage is an impetus behind many electrically 
based structural health-monitoring technologies [1-4].  Although several 
previously developed methods have been successful for some purposes, none 
have been sufficiently general to apply to the detection of damage in large 
conductive membrane structures for space applications.  To address the 
inadequacies of the previous methods, an electric potential technique in 
conjunction with an artificial neural inversion scheme has been developed to 
predict damage.  In this case, damage is linked to a reduction in the conductivity, 
as would be appropriate for a tear in an electroactive membrane or fiber breakage 
in a composite laminate structure.  The scheme consists of a feed-forward, back-
propagation multi-layer neural network that determines the damage state and 
configuration from the electric potential values at the boundary.  The training 
data for the neural network is obtained through numerical experiments using the 
boundary element method.  A method is also discussed for determining which of 
the voltage measurements obtained from the specimen should be used 
considering the significant systematic error caused by inhomogeneity and 
anisotropy, as well as the unknown material resistivity. 
 
 

Damage Prediction Method 
 

To perform the theoretical voltage predictions needed for both generating 
training data for the neural networks and for processing experimental data, a 
Boundary Element Method (BEM) code was developed in MATLAB.  This code 
is capable of modeling anisotropic two-dimensional bodies composed of multiple 
materials with distributed current sources or sinks, and has been validated against 
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the commercial finite element analysis program, ANSYS.   Further details of this 
BEM code can be found in the authors’ previous paper [5].  

All neural network calculations were performed using MATLAB’s Neural 
Network Toolbox; for more information on the toolbox, comprehensive 
documentation is provided by The Mathworks [6].  The neural networks were 
trained using the “trainscg” function, which implements a scaled conjugate 
gradient algorithm to optimize the weights and biases of the network.  Network 
architecture is described in a later section.  

For this scheme, the specimen is fitted with a set of electrodes around its 
perimeter; a fixed current is run successively between each distinct pair of 
electrodes, except for a reference electrode, and the resulting voltages at all 
electrodes are measured with respect to the reference electrode.  This tactic of 
measuring voltages with respect to a particular electrode was developed because 
of difficulties with large, highly variable contact resistances at the electrodes.  
Since the reference electrode never carries current, its voltage potential is equal 
to that in the test specimen, so that voltages measured with respect to it are 
independent of contact resistances (except for the voltages of the source and sink 
electrodes).  Using this scheme for N electrodes, (N-1)(N-2)(N-3)/2 useful 
voltage measurements are available to the network. 

Comparison of the voltage readings for an undamaged specimen to their 
theoretical values shows a large amount of systematic error, even with the effects 
of contact resistances nullified.  This error is due to small imperfections in the 
material and geometry.  To determine which data should be used for the damage 
prediction, the ratio of the experimentally determined voltage to the theoretical 
voltage is taken for each measurement; these values are then sorted, and only 
those measurements that fall within 3.5% of the median are retained.  A scale 
factor between the experimental and theoretical results is then obtained as the 
average of the remaining ratio values.  Finally, only the source/sink/measurement 
sets whose experimental voltages fall within 1% of the scaled theoretical values 
are downselected for use in damage prediction.  Although this method of 
selecting which data to use is somewhat ad hoc, it relies only on measurements of 
the undamaged structure, and therefore could still be realistically used on an 
actual part.  This procedure also serves as a mechanism for allowing slight 
material anisotropy, inhomogeneity, and dimensional manufacturing tolerances 
in “real life” structures. 

Two different representations of the damage were used to form the target 
data sets for the neural networks.  The first used the location and radius of a 
circular cutout as its representation; only a fairly small neural net is required to 
obtain good results with this approach, but it is limited to only a single damage 
site.  The second representation maps the damage onto a square grid of cells with 
30 cells on a side; each cell is assigned a value from 0 to 1 according to the 
fraction of the cell not covered by the damage. 

Once the data to be used have been selected, a feed-forward neural network 
is trained using theoretical data for damaged specimens.  The damage sites for 
the training data are randomly located uniformly throughout the specimen, and 
the damage size is also random, with a uniform distribution of sizes from 10% to 
20% of the total dimension of the specimen.  All actual damage in the 
experimental specimens fell within this size and location range.  For a neural net 
trained for the location/radius representation, circular damage cutouts were used 
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in the theoretical damage cases; for the cell grid representation, rectangular 
damage cutouts were used to facilitate projecting the damage onto the cell grid, 
with the width and height of the damage allowed to vary independently.  Since 
the experimental data display random as well as systematic error, Gaussian noise 
was added to the training data.  The standard deviation of the noise added to each 
measurement in the training data was scaled from the standard deviation of the 
experimental measurement on the undamaged specimen.  This provides the 
network with highly realistic data sets to train from.  Finally, before training, 
each input and target datum was normalized to a mean of zero and a standard 
deviation of unity; the input data was also subjected to a principal component 
analysis, and only those components contributing more than 0.1% of the total 
variation in the data set were retained. 

Networks trained for the location and radius scheme had 120 log-sigmoid 
neurons in each of two hidden layers, and 3 linear neurons in the output layer; 
cell grid networks used a similar architecture, with 270 log-sigmoid neurons in 
each of two hidden layers and 900 linear neurons in the output layer.  One 
thousand total damage cases were used in the training process, with five-sevenths 
of the cases forming the actual training set, one-seventh for the test set, and one-
seventh for the validation set, which was used for early stopping to prevent 
overspecialization. 

A flowchart of the damage detection process is presented in Figure 1; note 
that all steps up to and including training the neural network can performed 
before the structure is put into service.   Damage occurring while the structure is 
in use could thus be detected simply by taking voltage readings and applying the 
neural network.  Because the application of the trained NN is computationally 
inexpensive, this method could be used for continuous monitoring. 
 

 
Figure 1.  Flowchart of damage detection process. 
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Experimental Results And Discussion 
 

Experimental runs were conducted to verify that this scheme could 
accurately detect a cutout in an appropriate test specimen.  To accomplish this, 
nominally isotropic and homogeneous sheets of UHMW polyethylene filled with 
carbon black were used as the conductive structures.  This material provides 
moderate electrical conductivity as well as durability and ease of working.  The 
specimens used were 12 inches square by 1/8 inch thick; the results of the 
analysis indicated a sheet resistivity of approximately 1350 Ω/square.  Electrodes 
were created by driving sixteen 0.035-inch diameter steel nails through the 
specimen, spaced around the perimeter 0.5 inch inward from the edge and 2.4 
inches apart.  These nails were then attached to wires connected to the data 
acquisition system.  An Agilent 34970A data acquisition/matrix-switch unit was 
used to provide current source and sink switching, and to collect voltage data. 
 

Damage predictions were obtained for four different representative damage 
cases.  For each originally undamaged case, ten separate sets of voltage 
measurements were taken in order to obtain the standard deviation of each 
measurement; the mean of these data sets was used in downselecting the 
measurements to be used with the neural networks.  The voltages input to the 
neural networks were also the mean of ten sets of measurements on each 
damaged specimen in order to decrease the effect of random error. Since the 
standard deviations of the voltage measurements for the undamaged specimens 
were typically on the order of 10-3 or less of the measurements themselves, 
however, one set of measurements would likely suffice.  All specimens had 
roughly 100 to 140 measurements retained after downselection, out of 1365 total. 

Results obtained using the location/radius representation are shown in Table 
I.  The location and radius predictions from the neural network agree well with 
the actual location and size of the damage for damages of multiple sizes located 
at various points in the specimen.  Note that the neural network performs well for 
damage at the exact center of the specimen, where this technique is least 
sensitive. 

Results for the cell grid representation are given in Figure 2.  The neural 
network results display a significant amount of noise, which is present even for 
BEM-generated inputs.  However, the predicted damages are the only prominent 
features, and their locations and extent agree well with the actual damages in the 
specimens.  It is also interesting to note that the cell grid networks have no 
difficulty detecting circular damage even though they were trained with 
rectangular damage cases.  The electrodes are also shown in Figure 2. 
 

Table I.  Damage prediction results for location/radius representation. 

 Actual damage  Neural net prediction 
 X (in) Y (in) Radius (in)  X (in) Y (in) Radius (in) 

Case 1 8.125 7.0 1.0  8.5990 7.3348 0.9128 
Case 2 6.0 6.0 1.0  5.9973 5.9264 1.0342 
Case 3 3.1875 4.0 0.75  3.0633 4.0087 0.8673 
Case 4 4.0 8.0 0.75  4.0263 7.7176 0.7927 
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 Case 1 Case 2 

 
 Case 3 Case 4 

 
Figure 2.  Damage results for cell grid representation.  The white circle 

indicates the actual damage.  Results range from 1.4 (white) to 0 (black). 
 
 

Conclusions 
 

A technique using the electric potential of a structure in conjunction with an 
artificial neural network inversion scheme has been developed to predict damage 
in electrically conductive structures.  Damage is linked to a reduction in the 
conductivity, as would be appropriate for a tear in an electroactive membrane or 
fiber breakage in a composite laminate structure.  The scheme consists of a feed-
forward, back-propagation multi-layer neural network that determines the 
damage state and configuration from the electric potential values at the boundary 
of the domain.  The training data for the neural network is obtained through 
numerical solution of the resulting electrostatics problem using the Boundary 
Element Method (BEM); damage is represented either by a circular cutout whose 
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location and radius are to be determined, or by a grid of cells, with a value equal 
to the fraction of the cell not covered by the damage. 

To deal with the large amount of systematic error present in the data, the 
experimentally determined voltage readings taken from the specimen before it is 
damaged are compared with the theoretical voltage readings obtained from BEM 
calculations.  A scale factor between BEM and experiment is obtained from the 
ratios of experimental to BEM voltages, and only those readings whose 
undamaged values are within 1% of the scaled BEM values are retained for use 
in damage prediction. 

Experimental results indicate that neural networks trained to both damage 
representations can accurately detect damage in conductive polymer structures.  
Networks trained for the location/radius representation tended to somewhat 
overestimate the damage size; networks trained for the cell grid representation 
showed a significant amount of noise, including some Gibbs phenomenon-like 
features, but were able to accurately locate the damage. 
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