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Summary 

The weak-form of Helmholtz differential equation, in conjunction with vector test-
functions, which are gradients of the fundamental solutions to the Helmholtz differential 
equation in free space, is utilized as the basis in order to directly derive non-hyper-
singular boundary integral equations for the velocity potential, as well as its gradients. 
Several basic identities governing the fundamental solution to the Helmholtz differential 
equation for velocity potential, are also derived for the further desingularization of the 
strongly singular integral equations for the potential and its gradients to be only weakly-
singular.  

Introduction 

In the present paper, without directly differentiating the derivatives of the 
conventional boundary integral equation for the potential, which will result in the hyper-
singular integrals, novel non-hyper-singular boundary integral equations are derived 
directly, for the gradients of the velocity potential. The acoustic potential gradients are 
related to the sound velocity in their physical meaning. The basic idea of using the 
gradients of the fundamental solution to the Helmholtz differential equation, as vector 
test-functions to write the weak-form of the original Helmholtz differential equation, and 
thereby directly derive a non-hyper-singular boundary integral equations for velocity 
potential gradients, which use the displacement and velocity gradients to directly 
establish the displacement and displacement gradient boundary integral equations in 
elastic/plastic solid problems, as well as traction boundary integral equations [ 1],[ 2], which 
are very simple to be implemented numerically.  

The boundary integral equations for the potential [labeled here as φ -BIE], and its 
gradient [labeled here as q-BIE], which are newly presented in the present paper, are only 
strongly singular [O(r-2)]. These strongly singular φ -BIE, and q-BIE are further 
regularized to only weakly singular [O(r-1)] types, which are labeled here as R-φ -BIE, R-
q-BIE, respectively. This is achieved by using certain basic identities of the fundamental 
solution of the Helmholtz differential equation for potential. In addition, general Petrov-
Galerkin based methods can be formulated as shown in [ 3] to solve the R-φ -BIE, and R-
q-BIE, in their weak senses. With this general Petrov-Galerkin formulation, one can 
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easily derive different methods, such as the (Symmetric Galerkin Boundary Element 
Method) SGBEM-R-[φ  & q]-BIE, by using various alternative functions as the test 
function. In the present boundary integral equations, C0 continuity of φ  as well as q over 
the boundary elements is sufficient for numerical implementation.  Through following the 
general Petrov-Galerkin formulation, there will result in a family of methods.  
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Collocation implementation of the BIE’s Petrov Galerkin scheme 

As what we state in [3], if the test function ( )xw  is chosen as a Dirac delta 
function, i.e., ( ) ( )mw xxx ,δ  at Ω∂ , we obtain the standard “collocation” 
boundary element method. [BEM-R-φ &q-BIE]  
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in which ( ) (xξ φφ −  becomes ( )rΟ  when ξ , and Eq.  (1) becomes weakly-
singular. Eq. (1) is labeled as BEM-R-

x→
φ -BIE. And the BEM-R-q-BIE can be obtained 

as: 
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Suppose ∂  is smooth; then 

Ω∂∈

Ω ( ) ( ) ( )[ ]xξξ iinq ψ−  and ( ) ( )[ ]ξφ tt DD −  become O  

when , and Eq.  (2) becomes weakly singular [

(r)
x→ξ ( )1−rO ] on a 3D problem. On the 

other hand, when  has corners, ∂ ( ) ( ) ( )[ ]xξξ iinq ψ−  and ( ) ( )( )[ ]xφφ tDtD −  may 
become ( )1−λrO  when ξ , and thus, in a theoretical sense, Eq. (2) is no longer 
weakly singular. However, in a numerical implementation of the R-q-BIE, viz. 
Eq. (2), directly, through a collocation process, to derive a qBoundary Element 
Method (BEM-R-q-BIE), we envision using only C

x→

0 polynomial interpolations of 
φ  and q. Thus, in the numerical implementation of the BEM-q-BIE by a 
collocation of (2), we encounter only weakly singular integrals. 
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Numerical results 

The field radiated from a pulsating sphere into the infinite homogeneous medium is 
chosen as an example for the exterior problem. For the purpose of comparison, BEM-R-
[φ  & q]-BIE and SGBEM-R-[φ  & q]-BIE, the whole sphere is considered for modeling: 
a 24 element model and a 64 element model. The models are discretized by using 8-node 
isoparametric quadrilateral elements. The evaluation of all integrals of kernels is 
performed by using 3x3 standard Gaussian quadrature. 

In Fig. 1 and Fig. 2, the real and imaginary parts of dimensionless surface acoustic 
pressures are plotted with respect to the reduced frequency ka. Fig. 1 presents the 
numerical solutions with 24 elements, while results with 64 elements are plotted in Fig. 2. 
The present results are seen to converge to the analytical solution, with a mesh 
refinement. It is obvious that the conventional BIE method fails to provide unique 
solutions near Lππ 2,=k . The present BEM-R-[φ  & q]-BIE solutions and exact 
solution have a good agreement between with ka up to 8.0. The accuracy of BEM-R-[φ  
& q]-BIE is lower than that of the SGBEM in the coarse model (24 element) as shown in 
Fig. 1; however, by refining the mesh size, an acceptable result can be obtained easily 
with a comparatively low computation cost as shown in Fig. 1, by using BEM-R-[φ  & 
q]-BIE. The other method of increasing the accuracy of BEM-R-[φ  & q]-BIE is to use 
higher order Gaussian Quadrature. The computational costs shown in Table 1 are based 
on the MATLAB code running on the desktop with 1.5 GHz Intel Pentium IV CPU, and 
512MB Memory. The SGBEM-R-[φ  & q]-BIE is much slower, because of the double 
integral evaluation for every element, and the SGBEM’s code for evaluating weakly 
singular integrals is more complicated than in BEM. On the contrary, the BEM-R-[φ  & 
q]-BIE only encounters single integral for every element, and therefore, it is faster.  

The acoustic scattering of plane incident waves, with a unit amplitude ( e ), from a 
rigid sphere is considered as the second example. The magnitudes of the ratio of  
to , at r=5a are plotted against the angle, for ka=π. Four discretization models are 
used here.  

ikx−

( )xsφ
( )xiφ

Fig. 3 is a comparison of the analytical solution and four element models, in which 
only regular 8 node quadrilateral elements are used. The solutions show that the method 
converges, as the number of elements increases, and the BEM-R-[φ  & q]-BIE solutions 
have a fairly good agreement with the analytical solution, with the use of a relatively 
small number of elements. Moreover, the C0 elements have been demonstrated by this 
example to give fairly good results for most values of θ except near the forward 
scattering direction. 
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Closure 

The weak-form of Helmholtz differential equation with vector test-functions is 
employed, as the basis in the present paper in order to directly derive non-hyper-singular 
boundary integral equations. Thereby, the difficulties with hyper-singular integrals, 
involved in the composite Helmholtz integral equations, can be overcome. Further 
desingularization of the strongly singular integrals to the order of O(r-1) is made possible 
with the use of certain basic identities of the fundamental solution of the Helmholtz 
differential equation for potential. These new weakly-singular integral equations 
designated as R-φ -BIE and R-q-BIE, respectively, are solved by using direct 
collocations. The attendant boundary element methods are desingularized as BEM-R-[φ  
& q]-BIE in this paper. There is no requirement of smoothness of the chosen trial 
functions for φ  and q, and C0 continuity is sufficient for numerical implementation.  

Fig. 4 compares the element size and wavelength for achieving accuracies with under 
5% and 10% error, in pulsating sphere problem by using BEM-R-φ -BIE, and BEM-R-q-
BIE. The error is measured in the magnitude of the acoustic pressure at r=5a. For the 
boundary element method, and the finite element method, it is well known that the mesh 
size has to be less than the wave length of the acoustic wave, in order to obtain an 
acceptable solution. This is shown in Fig. 4. Further effort will be made in extending the 
present approach, using the Meshless Local Petrov Galerkin approach, to develop 
MLPG-R-φ -BIE, and MLPG-R-q-BIE, respectively. These MLPG methods are expected 
to be a good way to improve the mesh size requirement in the numerical methods for 
solving the present R-[φ  & q]-BIE. 

An alternate approach to cope with very high frequency acoustic radiation and 
scattering problems is to use the method of asymptotics pioneered by Ufimtsev [2003] in 
electromagnetics, and is being developed in the context of asymptotics by Ufimtsev and 
Atluri [2004a, 2004b]. 
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Fig. 1 Dimensionless surface acoustic pressure of a pulsating (24 elements): (a) real 
part; (b) imaginary part. 
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Fig. 2 Dimensionless surface acoustic pressure of a pulsating sphere (64 elements): 

(a) real part; (b) imaginary part. 
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Table 1 The comparison of the computational costs between BEM-R-[φ  & q]-BIE 
and SGBEM-R-[φ  & q]-BIE 

 24 Element Model 64 Element Model 

BEM-R-[φ  & q]-BIE 60 s 378 s 
SGBEM-R-[φ  & q]-BIE 284 s 1346 s 
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Fig. 3 Scattering from the rigid sphere at r=5a, ka=π; with BEM-R-[φ  & q]-BIE 
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Fig. 4 Relationship between wave length and element size in pulsating sphere case (a) 5% 
error; (b) 10% error. model I: N=24; II: N=40; III: N=64; IV: N=96; V: N=128. 
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