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Summary 

Novel non-hyper-singular boundary-integral-equations for the gradients of the 
acoustic velocity potential are derived, for solving problems of acoustics governed by the 
Helmholtz differential equation. Using the basic identities, the strongly singular integral 
equations for the potential and its gradients are rendered to be only weakly-singular. 
General Petrov-Galerkin weak-solutions of R-φ -BIE, and R-q-BIE are discussed, and 
Symmetric Galerkin Boundary Element approaches as well.  

Introduction 

The difficulties in dealing with hyper-singular integrals, and the nonuniqueness, are 
two of the well known drawbacks of the existing boundary integral equation (BIE) 
methods for solving acoustic problems, even though the boundary integral equation 
method offers more advantages over other popular numerical methods such as the finite 
element method [ 1]. Burton and Miller [ 2] developed a combination of the surface 
Helmholtz integral equation for potential, and the integral equation for the normal 
derivative of potential at the surface, to circumvent the problem of nonuniqueness at 
characteristic frequencies. Their method was labeled as CHIE (Composite Helmholtz 
Integral Equation). The CHIE method, however, introduces the hypersingular integrals, 
which are computationally costly. Moreover, in CHIE method, the accuracy of the 
integrations affects the results, and the conventional Gauss quadrature can not be used 
directly. Regularization techniques are commonly employed by the followers of the 
CHIE methodology, to improve the approach by reducing the problem to the one 
involving O(r-1) singular integrals near the point of singularity. Chien, Rajiyah, and Atluri 
[ 1] employed some known identities of the fundamental solution from the associated 
interior Laplace problem, to regularize the hypersingular integrals. This concept was used 
by many successive researchers. 

In the present paper, however, novel non-hyper-singular boundary integral equations 
are derived directly, for the gradients of the velocity potential. The basic idea of using the 
gradients of the fundamental solution to the Helmholtz differential equation for velocity 
potential, as vector test-functions to write the weak-form of the original Helmholtz 
differential equation for potential, and thereby directly derive a non-hyper-singular 
boundary integral equations for velocity potential gradients, has its origins in [ 3, 4, 5]. 
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The boundary integral equations for the potential and its gradient, which are used as 
starting points in the present paper, are only strongly singular [O(r-2)]. The further 
regularization of these strongly singular φ -BIE, and q-BIE, to only weakly singular [O(r-

1)] types, which are labeled here as R-φ -BIE, R-q-BIE, respectively, is achieved by using 
certain basic identities of the fundamental solution of the Helmholtz differential equation 
for potential. In addition, in the present paper, we formulate general Petrov-Galerkin 
methods to solve the R-φ -BIE, and R-q-BIE, in their weak senses. By using the test 
functions in these Petrov-Galerkin schemes to be the energy-conjugates of the respective 
trial functions, we develop Symmetric Galerkin Boundary Element Methods (SGBEM). 
We label these SGBEM as SGBEM-R-φ -BIE and SGBEM-R-q-BIE, respectively. 

Non-hypersingular boundary integral equations  

The fundamental solution of the Helmholtz equation is governed by the wave 
equation,  

( ) ( ) ( ) 0,,, 2
, =++ ∗∗ ξxξxξx δφφ kii                (1) 

is well known as the free-space Green’s function ( )ξx,∗φ . By using φ  as the test 
function to enforce the Helmholtz equation in terms of the trial function φ , in a weak-
sense, the weak form of Helmholtz equation can be written as, 

( ) 022 =Ω+∇∫Ω dk φφφ                (2) 

Through using the fundamental solution  as the test function ),( ξx∗φ φ  in Eq.  (2), 
and with the property from Eq.  (1), we obtain the integral equation for φ : 

( ) ( ) ( ) ( ) ( )∫∫ Ω∂

∗

Ω∂

∗ Θ−= dSdSq ξxξξxξx ,, φφφ          (3) Ω∈x

where, ( ) ( ) ( )ξξξ kknq ,φ=  and ( ) ( ) ( )ξxξξx ,, ,
∗∗ =Θ kkn φ  at Ω∂∈ξ . 

Eq.  (3) is the conventional BIE for φ , which is widely used in literature, and is 
hereafter referred to as the φ -BIE. The nonuniqueness of the Helmholtz integral 
equation, Eq.  (3), is well known; it possesses nontrivial solutions at some characteristic 
frequencies. If we differentiate Eq.  (3) directly with respect to , we obtain the second 
integral equation for the potential gradients

kx
( )xk,φ . One term in this equation is hyper-

singular, since ( ) kx∂Θ∂ ∗ ξx,  is of order ( )3−rO  for a 3D problem. A wide body of 
literature is devoted to deal with the hyper-singularity in this equation.  
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The novel method in this paper starts from writing a vector weak-form [as opposed to 
a scalar weak-form] of the governing equation Eq.  (2) by using the vector test function 

k,φ . By using the gradients of the fundamental solution, viz., , as the test 
functions, we obtain 

),(, ξx∗
kφ
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We refer to Eq.  (4), hereafter, as the presently proposed non-hyper-singular q-BIE. 
The φ -BIE [Eq.  (3)], and q-BIE [Eq.  (4)], are derived independently of each other. The 
most interesting feature of the “directly derived” integral equations Eq.  (4), for ( )xk,φ , is 
that they are non-hyper-singular.   

In generally, by using other carefully chosen weak forms of Eq.  (1), any number of 
“properties” of the fundamental solution can be derived [ 6, 7]. Now, we can use the 
properties to derive simple, straightforward and elegant further regularizations of the 
strongly-singular BIEs for φ , and k,φ .Then, One can do the further desingularization of 
φ -BIE and q-BIE easily: Moreover a Petrov-Galerkin scheme can be used to write the 
weak-form as: 
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where  is a test function on the boundary ( )xw Ω∂ . If ( )xw is chosen as a Dirac delta 
function, i.e., ( ) ( mw xxx , )δ=  at Ω∂ , we obtain the standard “collocation” boundary 
element method, i.e., BEM-R-φ -BIE. If ( )xw is chosen to be identical to a function 
which is energy-conjugate to ( )xφ , viz. the trial function ( )xq̂ , we obtain the Symmetric 
Galerkin “SGBEM-R-φ -BIE” form as [6] 

Similarly, by using Eq.  (4) and the properties, and contracting with  on both 
sides, we can obtain the fully regularized form of Eq.  (4), then we can obtain the Petrov-
Galerkin scheme as, 

( )xkn
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where the kernel function ( ) ( ) ( ) ( )
k
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. If the test function 

Ω∂∈ξ

( ) ( ξxξx ,, ∗∗ −=Η φδ ntnt ) ( )xw  is chosen to be identical to a function 

which is energy-conjugate to ( )xq , viz. the trial function ( )xφ̂ , we obtain the symmetric 
Galerkin “SGBEM-R-q-BIE” form. 

Numerical results 

In the implementation of the “SGBEM-R-φ -BIE” and “SGBEM-R-q-BIE”, another 
key step is to evaluate the double area integrals of the weakly singular kernels. As we 
know, the transformation Jacobian cancels the weak singularity of the kernels. For 
coincident elements and for elements with common edges or common vertices, the four-
dimensional integration domain is divided into several integration subdomains. In each 
subdomain, a special coordinate transformation is introduced to cancels the singularity.  

The sound field radiated by a sphere is studied in this section. The sphere is of unit 
radius with both a driving surface as well as an admittance surface, which constitute 
discontinuous boundary conditions. The radiating sphere is studied at the wave number 

 (the second internal eigenvalue of the sphere, and the first eigenvalue is 49.4=k π ), 
which has the largest value of error (~14%) in the numerical solution of CBIE. The exact 
solution for the radiated field, for the given conditions of Driving surface 
( ( ) θφ cos239.0976.0 i−−n =∂∂ ), and admittance surface ( ( )φφ in 28.405.1 +−=∂∂ ), 
is given by θφ cos228.0 i=  on the surface, and ( ) θφ cos00498.000867 i.0 +−=  at 
the far field ( ). A comparison between the conventional collocation-based 
boundary integral equations (

100=kr
φ -BIE) viz., the BEM-R-φ -BIE approach, the present 

SGBEM-R-φ -BIE and SGBEM-R-q-BIE, and the exact solutions, for the amplitude φ  
of the velocity potential on the surface and at the far field of the sphere is presented in 
Fig. 1. The results also show the very high accuracy at the characteristic frequencies in 
comparison to the conventional boundary element method. 

The acoustic scattering of plane waves with unit amplitude ( e ) at normal 
incidence on a rigid cube with length a (a = 1) is considered as the second example to 

ikx−
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check the practicality of the present method for non-smooth boundaries. The cube is 
rotated so that the plane waves are toward its corner. For comparison purposes, 3 
different-sized models are used for ka = 1 (24 elements; 96 elements; 384 elements). The 
solution at the horizontal plane of symmetry, which is aligned with the incoming wave, is 
studied. The non-dimensionalized scattered pressure is pp , at distance r from the 
center of the cube, versus the polar angle is plotted in Fig. 3 for wave number ka = 1.0. 
The solution shows that the method converges, as the number of elements increases. 

Closure 

The symmetric Galerkin Boundary Element formulations of the regularized forms of 
newly derived non-hyper-singular boundary integral equations have been presented, in 
order to overcome the difficulties with hyper-singular integrals. There is no requirement 
of smoothness of the chosen trial functions for φ  and q, and C0 continuity is sufficient 
for numerical implementation. Another advantage of symmetric Galerkin formulation is 
the symmetry of system matrix, which benefits the solving of the large system equations 
a lot.  
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Fig. 1 Solutions of φ : (a) on the surface and (b) at the far field (kr=100) 
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Fig. 2 The geometry and the location of the cube 
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Fig. 3 The angular dependence of is φφ  for a cube with (a) r = 1.0; (b) r = 5.0 

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

259

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal




