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Summary

Boundary Elements Lagrangian formulation to solve contact mechanic or rolling prob-
lems is presented showing the basic equations and the main goals on its development.

Introduction

Contact mechanic problems have traditionally occupied a prominent place in the tech-
nical engineering literature as the chief result of the need to develop criteria for the design
of many elements used in mechanical or civil engineering. The interest on these applica-
tions has fostered publications of research or applied works and experimental studies. In
the past, most of them were developed to solve specific problems using approximations
that are strongly dependent on the case concerned. This lack of generality was mainly due
to the problem complexity. In fact, this problem is not simple and implies the solution of
highly non-linear equations and a careful examination of the results obtained.

Actually, the quick improvement of computers and numerical techniques as the Fi-
nite Element Method (FEM), the Boundary Element Method (BEM) and the Mathematical
Programming Techniques (MPT), allows to develop new solution methods to solve the
problem. But these methods are far to be simple or uncomplicated, usually they are sophis-
ticated and, to be developed, they require researchers with an important mechanical and
numerical background.

Contact mechanic problems are present in the FEM and BEM literature from the be-
ginning. Solution techniques have come a long way since trial and error solution techniques
were used. Today, FEM is the most used numerical method by engineers to solve mechan-
ical and structural problems, but BEM is also a valid and competitive alternative to solve
some of them, being contact mechanics one of these problems. Having in mind this idea, in
this work we present Lagrangian formulations that can be used to solve contact mechanic
problems with BEM. Most of these formulations have been implemented by the authors to
solve 2D rolling and contact mechanic problems.

Boundary Element equations

The discretization process and the application of BEM procedures, done separately
to the two 2D bodies in contact, supply the elastic equations of each body:Hαuα =
Gαpα ; α = A,B. Grouping these equations, condensing all the variables not associated
with the contact areas, introducing the normal distanceδn = δn0−

(
uA

n +uB
n

)
, and the static

slip velocity st = ξt + θt
d

dxt

(
uA

t −uB
t

)
(doing the spatial derivative using a forward finite

differences scheme), [5] and [6], permit to write the BEM elastic equations of the coupled
problem as
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δn = dn +Snnpn +Snt pt ; st = ξt +Bnnpn +Bnt pt (1)

from a flexibility point of view, or, inverting the equations, from the stiffness point of view

pn = qn +Rnnδn +Rntst ; pt = qt +Rtnδn +Rtt pt (2)

For the Normal problem (known tangential tractionspα
t = p̄α

t ) the simplified equations
are

δn = d̄n +Snnpn ; pn = q̄n + R̄nnδn (3)

while for the Tangential problem (known normal tractionspα
n = p̄α

n =−g/µ ) are

st = ξ̄t +Bnt pt ; pt = q̄t + R̄tt pt (4)

Contact Mechanics Lagrangian formulation for BEM

Many different numerical procedures have been used to solve contact mechanic prob-
lems from a BEM perspective, mainly trial-and-error methods, load scaling (waiting for
single contact state-changes), or mathematical programming techniques as: Sequential
linear programming, bilinear approach, quadratic programming, or complementary prob-
lems.

After trying many of these techniques to solve contact problems, [3] , [4], [5] and
[6], called our attention the work of Alart and Curnier [1], who developed a mixed penalty-
duality formulation of the frictional contact problem inspired by the Augmented Lagrangian
method to treat its multivalued aspects. They derived an unsymmetrical operator using a
quasi-Augmented Lagrangian formulation, showed its properties, and established a neces-
sary and sufficient condition on the friction coefficient that guarantee the uniqueness for the
solution of curved, discrete, small slip contacts, and the convergence of Newton’s method.
Inspired by that work, Christensen [2] proposes a variation of it, giving place to a system
of B-differentiable equations.

The cited works were related with the Finite Element Method, but contained general
concepts and useful points of view that could be generalized to solve contact problems
using the Boundary Element Method equations, most of them related with Lagrangian for-
mulations.

I) Lagrangian formulation of the Normal problem

The normal problem can be formulated as the minimization of a functionalL(δn, pn,ω)
without constraints,

Min. L(δn, pn,ω) ; L(δn, pn,ω) = Πn(δn)+
np

∑
i=1

pni

(
δni −ω2

i

)
(5)

whereΠn(δn) is a function of displacements,ωi are the separation variables, andnp the
number of contact points.
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The first order optimum conditions will be

∇δnL(δ∗n, p∗n,ω∗)≡ ∇δnΠn(δn)+ pn = 0
∇pni

L(δ∗n, p∗n,ω∗)≡ δni −ω2
i = 0 (i = 1. . .np)

∇ωi L(δ∗n, p∗n,ω∗)≡ ω∗i p∗ni
= 0 (i = 1. . .np)

⇒


−(q̄n + R̄nnδn)+ pn = 0

δn≥ 0
δT

n pn = 0

 (6)

where in the first equations in (6),∇δnΠn(δn)+ pn = 0, have been introduced the BEM con-
densed elastic equations,pn− (q̄n + R̄nnδn) = 0 substituting∇δnΠn(δn), because in BEM
there is not a functionalΠn(δn), like the potential energy function, to obtain the elastic
equations. Then, the role of elastic equations derived from the functional are occupied by
the BEM elastic equations, assuming tha exists a functional from which the BEM equations
could be obtained.

The flexibility formulation can be easily obtained operating with the elastic equations.

II) Augmented Lagrangian formulation of the Normal problem

Using (5), it can be defined the Augmented Lagrangian function adding a new term:
r
(
δni −ω2

i

)2
/2 (r > 0), and doing a reorganization

L̃(δn, pn,ω) = Πn(δn)+
1
2r

np

∑
i=1

{
[pni + r

(
δni −ω2

i

)
]2− p2

ni

}
(7)

being the first order optimum conditions

∇δnL̃(δn,pn,ω)≡ ∇δnΠn(δn)+
[
pn + r

(
δn−ω2

)]
= 0

∇pni
L̃(δn, pn,ω)≡ δni −ω2

i = 0 (i = 1. . .np)
∇ωi L̃(δn, pn,ω)≡ ωi

[
pni + r

(
δni−ω2

i

)]
= 0 (i = 1. . .np)

(8)

whereL̃(δn, pn,ω) = L(δn, pn,ω) for the optimum solution(δ∗n, p∗n,ω∗).

The equations system (8) is identical to the corresponding (6) knowing thatδni −ω2
i =

0. From the last equation of (8) is also possible to defineω2
i asω2

i = max(0,δni + pni /r),
and thenpni + r

(
δni −ω2

i

)
= min(0, pni + rδni ), which permits a new definition of̃L

L̃(δn, pn) = Πn(δn)+
1
2r

np

∑
i=1

[
min(0, pni + rδni )

2− p2
ni

]
(9)

If the definitions of positive and negative euclidean distance are introduced in (9)
(DR+(x)=−min(0,x), andDR−(x)= max(0,x), both related byDR+(x)2 = x2−DR−(x)2),
then

L̃(δn, pn) = Πn(δn)+
1
2r

np

∑
i=1

[2rpni δni + r2δ2
ni
−DR−(pni + rδni )

2] (10)

being now the first order optimum conditions

∇δnL̃(δn, pn)≡ ∇δnΠn(δn)+min(0, pn + rδn) = 0
∇pnL̃(δn, pn)≡−1

r [pn−min(0, pn + rδn)] = 0
⇒

{
−(q̄n + R̄nnδn)+ pn = 0
pn−min(0, pn + rδn) = 0

}
(11)
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equations that from the BEM point of view, can be identified with the condensed flexibility
representation of contact problems. As in Lagrangian formulation, the stiffness representa-
tion can be formulated inverting the equilibrium equations.

III) Lagrangian formulation of the Tangential problem

For pure friction problems, known normal tractions, it is not possible to formulate
equations as in (5), because the friction law implicates constraints of a different nature.
This inconvenient is bypassed writing a dual Lagrangian formulation, analogous to (5) but
changing the constraints to the dual variables, obtaining

Min
st

{
Max
pt∈Cg

L(st , pt)
}

; L(st , pt) = Πt(st)−
np

∑
i=1

pti sti (12)

whereCg is the feasible set of tangential tractions for the known normal tractions.

IV) Augmented Lagrangian formulation of the Tangential problem

For the tangential problem, the only valid expression for the Augmented Lagrangian
is the one obtained from equation (10) by analogy, i.e., changing the normal variables by
the tangential ones, and defining the euclidean distance not inR− but in Cg, DCg(x) =
max(x−g,0)−min(x+g,0),

L̃(st , pt) = Πt(st)+
1
2r

np

∑
i=1

[
2rpti sti − r2s2

ti +DCgi
(pti − rsti )

2
]

(13)

being the sign changes due to the dissipation condition of the friction law.

Using now the projection functionPCg(x) = x− sgn(x)DCg(x), and its relation with
the derivative of distance function,ddx[DCg(x)

2] = 2[x−PCg(x)], it is possible to obtain the
optimum conditions as

∇st L̃(st , pt)≡ ∇st Πt(st)+PCg(pt − rst) = 0
∇pt L̃(st , pt)≡ 1

r

[
pt −PCg(pt − rst)

]
= 0

⇒
{
−(q̄t + R̄tt pt)+ pt = 0
pt −PCg(pt − rst) = 0

}
(14)

V) Lagrangian formulation of the Coupled problem

Due to the coupling between normal and tangential variables, the general contact
problem becomes an unconventional optimization problem, being recommendable to use
”quasi” as prefix in the formulation name. From equations (5) and (12) the quasi-Lagrangian
dual formulation could be written as

Min
δn

{
Max
pn≤0

{
Max

pt∈Cµpn

L(δn,st , pn, pt)
}}

(15)

being

L(δn,st , pn, pt) = Π(δn,st)+
np

∑
i=1

(pni δni − pti sti ) (16)
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where the unconventionality comes from the unknown normal tractions inCµpn.

VI) Augmented Lagrangian formulation of the Coupled problem

Combining the previous formulations of normal and tangential problems (9) and (13),
it can be obtained the Augmented Lagrangian formulation of the coupled problem

L̃(δn,st ,pn,pt) = Π(δn,st)+
1
2r

np

∑
i=1

[min(0, pni + rδni )
2− p2

ni
+

+2rpti sti − r2s2
ti −DC−µmin(0,pni +rδni )

(pti − rsti ,)
2] (17)

where the distance to the friction limitµmin(0, pni + rδni ) becomes the projection function
on a valid region ofpn. The optimum conditions of this function are


−(q̄n + R̄nnδn)+ pn

−(q̄t + R̄tt pt)+ pt

pn−min(0, pn + rδn)
pt −PCg(pt − rst)

 = 0 (18)

This equation system has been widely used by the authors to solve 2D contact and
rolling problems, [5] and [6].

Solution procedure

The equations obtained by the Lagrangian formulation are B-differentiable, the con-
cept of B-differentiability is related to the non-linearity of the directional derivative, which
means that an specialized method, as the Generalized Newton’s Method with line search
(GNMls), should be used to solve the problem.GNMls is an extension of the Newton’s
Method for B-differentiable functions formulated by Pang [7].

TheGNMlsalgorithm for solving the non-linear equationG(z) = 0, beingG(z) a B-
differentiable function, is formulated from the generalized first order expansion

G(zk)+BG(zk)ηk
z = 0 (19)

whereBG(zk) means B-derivative.

Sometimes the solution could involve a big computational effort because the non-
linearity of BG(zk)ηk

z. In order to reduce this effort some previous researchers solved
accurately contact problems avoiding the points where the non-linearity could happen or
neglecting the non-linear part of the derivative on these points. In contact problems the
points to avoid are those where the inequalities formulated during the iterative solution
process change to equalities. These points, lines or surfaces, are the frontiers between
zones where the functions have different slopes and then, their derivatives do not have the
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same value for all the directions. During the iterative process it is very unusual to have a
trying solutionzk exactly over one of these points, this is the reason because the conver-
gence is not usually affected if those points are avoided, or some part of their derivative
neglected. The non-linear part of the generalized Newton’s equations, is then linearized
and computed as:

BG(zk)ηk
z =

(
5GLD +∂GNLD)

ηk
z (20)

where5GLD is the jacobian of the linear part, and∂GNLD is a pseudo-jacobian of the
non-linear part, computed avoiding the non-linear points.

Conclusions

The Boundary Elements Lagrangian formulation to solve 2D contact mechanic or
rolling problems have been presented showing the basic equations and the main goals on
their development. The formulation can be easily written from the point of view of stiffness
or flexibility.
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