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Summary 

This paper is focused on the modeling of damage-induced stress softening in rubber-
like materials. Miehe’s discontinuous damage model and Ogden and Roxburgh’s pseudo-
elastic model are presented. Both models are implemented together with the Gao’s 
material model in the finite element code DIANA. Homogeneous and inhomogenous 
analyses show that these two approaches are effective in three-dimensional analyses and 
present different characteristics and limitations due to their formulations.  

Introduction 

It has been known for a long time that the initial material properties of un-stretched 
(virgin) samples of rubber compounds are changed after the sample has been subjected to 
loading. This was observed by Mullins [1] and has subsequently become widely known 
as the Mullins effect. From purely phenomenological standpoint, Mullins effect is readily 
described in the context of an uniaxial deformation. Figure 1 shows the main features of 
the Mullins effect in simple tension in schematic form with the stress s plotted against 
stretch λ. The virgin  undamaged  material is first  stretched as the extension ratio reaches  
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Figure 1. Schematic loading-unloading curves in simple tension (Mullins effect) 
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λ1 and the stress follows path I. Then unloading taking place from λ1 to 0 follows path I′. 
The second loading from 0 to λ2 (>λ1) first follows path I′ until λ=λ1 then it follows path 
II. The second unloading starting from stretch ratio λ2 to 0 follows path II′, which is 
different from path I′. At a given stretch, the stress on path II′ is less than the stress on 
path I′. This phenomenon is also called stress softening.   

Different approaches [1-8] have been proposed to simulate stress softening. In this 
paper, both Miehe’s discontinuous damage model [5] and Ogden and Roxburgh’s 
pseudo-elastic model [7] have been presented. These two models have been implemented 
together with Gao’s model in the finite element code DIANA [9, 10]. 

Phenomenological Models to Represent the Mullins Effect 
Continuum damage mechanics has often been used to model the stress softening 

phenomenon. Miehe [5] considers that the cyclic loading processes consist of two 
phenomenological effects. Firstly, a Mullins-type discontinuous damage evolution is 
assumed where the damage accumulation occurs only within the first cycle of a strain-
controlled loading process. Further, strain cycles below a maximum effective strain 
energy do not contribute to this type of damage.  Secondly, a continuous damage 
accumulation within the whole strain history of the deformation process, which is also 
governed by the local effective strain energy, was taken into account. The large-strain 
material behaviour is commonly described by an elastic strain energy density function W, 
which can be expressed following continuum damage mechanics. 

( )0(1 )W d W= − F                (1) 

where F is the deformation gradient tensor relative to the undeformed configuration of 
the material, W0 is an effective strain energy function, d ∈ [0,1] is a scalar damage 
variable which describes an isotropic damage effect characterized by an elastic softening  
of the material. For Miehe’s discontinuous damage evolution, which may be used to 
simulate stress softening, the scalar damage variable d can be written as: 

( ) 1 expd d α
α

η∞

  
= − −  

  
              (2) 

where d∞ and η are material parameters, α is the maximum thermodynamic force or 
effective strain energy. 

Ogden & Roxburgh [7] have proposed a theory of pseudo-elasticity to describe the 
damage-induced stress softening effect in rubber-like solids. The essence of the theory is 
that material behaviour in loading path is described by a common elastic strain energy 
density function and in unloading path by a different strain energy density function. The 
switch between strain energy functions is affected by incorporation of a damage variable 
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η into the strain energy function, which is then referred to as a pseudo-elastic energy 
function, written as W(F, η) Thus,  

( ) ( ) ( )0,W Wη η φ η= +F F                                                                           (3) 

in which φ(η) refers to a damage function, which determines the damage parameter η. 
Ogden & Roxburgh choose φ  to be such that 

( )( )1( ) 1 mm erf r Wφ η η−′− = × − +                                                              (4) 

where m and r are positive parameters and erf -1 ( ) is the inverse of the error function. 

Finite Element Implementation Formulae  

For the purpose of finite element implementation, afore-introduced elastic damage 
formulation is necessary for a combination with a hyper-elastic material model.   Gao 
proposed an elastic law that separately considers the resistance of materials to tension and 
compression in 1997 [9, 10]. Hence, 

1 1( )n nW a I I−= +                                                                                                      (5) 

a and n are material parameters. I -1 is a strain invariant defined by 

* 2
2 1 2

1 * 3
3 1 1 2 3

3( )
3 2

I I II
I I I I I−

−
= =

− +
                                                                          (6) 

I1,  I2 and I3 are strain invariants. Constitutive relations for rubber-like materials are 
initially described via the invariants of the Right Cauchy-Green stretch tensor C as the 
basic set of parameters. Gao’s model can cover a large range of deformations by properly 
selecting the parameters a and n.  

It is necessary to determine the stress-strain relation and the incremental stress-strain 
relation for finite element implementation. For Miehe’s model, the second Piola -
Kirchhoff stress σ can be obtained via 

( ) 01 dσ σ= −                                                                                                      (7) 

in which σ0 is the effective second Piola -Kirchhoff stress. The incremental stress-strain 
relation 
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For Ogden & Roxburgh’s model, the second Piola-Kirchhoff stress σ 

0
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= 


                                                                     (9) 

The incremental stress-strain relation is 
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i                                                (10) 

These two energy-based damage models are distinct from the strain-based models 
since the extent of damage sustained by the material is controlled by the maximum 
energy state. Therefore, this model is readily applicable to three-dimensional states of 
deformation, especially, for computational purposes.  

Numerical Results 
In this section we first consider a cubic material element with edges of unit length 

under loading conditions of uniaxial tension and pure shear as homogenous examples.  In 
the numerical calculations, we use the HX25L element, which is an eight-node iso- 
parametric solid brick element with a pressure degree-of-freedom by setting the material 
constants a=0.03 and n=1.5 (see Equation 5); for Miehe’s damage model, d∞=0.5 and 
η=2.0; for Ogden pseudo-elastic model, r=1.5 and m=2.0. From the numerical results of 
Figures 2 and 3, it clearly shows that Miehe’s model and Ogden’s model together with 
Gao’s material are working well for three-dimensional homogenous analyses. 

        

(a)                                                                   (b) 

Figure 2. Numerical curves of loading force against displacement at for the Miehe’s 
model (a) uniaxial tension  (b) pure shear   
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(a)                                                                   (b) 

Figure 3. Numerical curves of loading force against displacement for the Ogden & 
Roxburgh’s model: (a) uniaxial tension  (b) pure shear 

 

             
(a)                                                                 (b) 

Figure 4. Strip with a hole: (a) 200% deformed mesh (b) load-displacement curve.   

Furthermore, each model expresses different characteristics. In the Miehe’s model the 
curves of loading force against displacement in first primary loading is lower than in 
Ogden’s model. This is because Miehe’s discontinuous damage model considers that 
damage starts from loading (equations 2, 7) and Ogden’s pseudo-elastic  model considers 
that damage starts from unloading (equations 4, 9). So, the loading curve will perfectly 
follow the elastic path in Ogden’s model.  

Secondly, we consider a strip with a circular hole as an inhomogenous example. 
Figures 4 show the results with Ogden’s model. Figures 4a gives the deformed mesh at 
200% deformation. Figure 4b illustrates the numerical curve of the loading force at one 
corner node against displacement. From the curve it shows that damage influences the 
rubber specimen properties and the simulation of whole loading-unloading-reloading 
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process works well. But, we must pay attention to loading step size, otherwise divergence 
will occur. 

Conclusion 

Both Miehe’s and Ogden & Roxburgh’s models are capable to simulate the Mullins 
effect for rubber-like materials with their own characteristics. Since the extent of damage 
sustained by the material is controlled by the maximum energy state, these models are 
readily applicable to three-dimensional computational analyses. 
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