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Summary
In this paper we present the result of a preliminary investigation into the collocation

method, based on multiwavelet approximation, for boundary integral equations with an-
alytically standard kernels. We apply the method to the boundary integral solution of
Laplace’s equation exterior to a closed curve. We present some numerical results which
show a good level of compression.

Multiwavelets on [0,1]
Wavelets are generated by a mother wavelet ψ(x) from which all other wavelets are

obtained using the definition ψλ(x) := 2
m
2 ψ(2mx − l) ∀ λ := {m, l} : m, l ∈ Z, see [1].

They have proved to be efficient and effective bases for function approximations, as the
coefficients of a wavelet expansion decay rapidly for a large class of functions. Due to the
multiresolution property of wavelets they provide accurate local descriptions of functions
efficiently. For example in the presence of corners and edges, the functions can still be
approximated with a linear combination of just a few wavelet bases.

Wavelets are attractive for the numerical solution of integral equations, because their
vanishing moments property leads to operator compression [2], [3]. However, to obtain
wavelets with compact support and high order of vanishing moments, the length of the
support increases as the order of the vanishing moments increases. This causes difficulties
with the practical use of wavelets particulary at edges and corners. With multiwavelets, an
increase in the order of vanishing moments is obtained not by increasing the support but by
increasing the number of mother wavelets.

Suppose k is a positive integer and m a non-negative integer, we define the space V k
m of

piecewise polynomial functions

V k
m :=

{

f : f |[2−mn,2−m(n+1)] is a polynomial of degree less than k
∀ n = 0,1, . . . ,2m

−1 and vanishes elsewhere

}

.

It is clear that V k
0 ⊂V k

1 ⊂ . . . ⊂V k
m ⊂ . . . ⊂ L2[0,1]. For m = 0,1,2, . . ., we define the space

W k
m to be the orthogonal complement of V k

m in V k
m+1; that is V k

m+1 = V k
m⊕W k

m. Then we have
the decomposition V k

m = V k
0 ⊕W k

0 ⊕W k
1 ⊕ . . .⊕W k

m−1.

The space V k
0 is the space of polynomials of degree less than k on the interval [0,1]

and we assume {φ1,φ2, . . . ,φk} to be a basis for it. These are known as the scaling func-
tions. Suppose {ψ1,ψ2, . . . ,ψk} is a basis of W k

0 . Therefore, for the orthogonality condition
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V k
0 ⊥ W k

0 to be satisfied we require the first k moments of {ψ1, . . . ,ψk} to vanish. That is∫ 1
0 ψ j(x)xidx = 0 for j = 1,2, . . . ,k; i = 0,1, . . . ,k−1. The basis functions {ψ1,ψ2, . . . ,ψk}

are known as mother wavelets.

The 2k-dimensional space W k
1 is spanned by the functions {ψ1(2x), . . . ,ψk(2x), ψ1(2x−

1), . . . ,ψk(2x− 1)}. In a similar manner we can obtain the finer 2mk-dimensional space
W k

m from the space W k
m−1. To introduce a more convenient notation, if we define ψλ :=

2
m
2 ψ j(2mx− l), where λ := { j,m, l}, the space W k

m is spanned by the collection

Ψm := {ψλ : l = 0, . . . ,2m
−1, j = 1, . . . ,k} . (1)

Therefore, the wavelet spaces {W k
m} are generated from the k mother wavelets {ψ1,ψ2, . . . ,ψk}.

Similarly the spaces {V k
m} can be generated from the scaling functions {φ1,φ2, . . . ,φk}, as

the span of the collection

Φm :=
{

φλ = 2
m
2 φ j(2mx− l) : l = 0, . . . ,2m

−1, j = 1, . . . ,k
}

. (2)

Let us now define the collection of basis functions ΨM as follows:

ΨM := Φ0

M−1⋃

m=0

Ψm. (3)

It is easy to see that both ΦM and ΨM are bases for the 2Mk-dimensional space V k
M , the

largest subspace of L2[0,1] which we use in a given numerical experiment. It is the collec-
tion of wavelet basis functions ΨM , given by (3), that we use to obtain operator compres-
sion. By estimating the size of the matrix elements, we are able to decide a priori which
elements are going too small not to affect the accuracy of our approximation. This way we
avoid computing them in the first place, resulting in a fast algorithm with computational
cost O(n lnd n).

Our approach is in contrast to much of that in current use, where, because of the
perceived and real complexity in directly using wavelet bases, many practitioners obtain
the matrix compression offered by wavelets by adopting a two stage scheme. First, the
standard boundary element matrix is computed using the scaling function bases ΦM for
V k

M . Then, a wavelet transform is applied to obtain the coefficient matrix with respect to the
wavelet basis (3). The resulting matrix is then compressed by the application of a threshold,
see [4]. Whilst this method results in some speed up of the solution time, its computation
cost is still O(n2).

We derive the mother wavelets ψ j by using a procedure described in [5]. This makes
use of the Gram-Schmidt orthogonalisation process. We consider the cases when k = 2,3,4.

Usually when implementing a wavelet basis the Galerkin projection method is used;
see [6] and references therein. The vanishing moments property is applied twice, leading
to substantial matrix compression. However, the Galerkin method requires double inte-
grations in each direction, rather than the single integrations that the collocation method
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requires, causing difficulties with efficient implementation of this method; see [7] where
results of a comparison between the two methods are presented. Therefore we wish to
investigate the implementation of the multiwavelet basis with the collocation method.

Matrix Bounds
The collocation method used with multiwavelet basis functions results in coefficient

matrices that are numerically sparse. Therefore we wish to know the size and position of
the “small” matrix elements a priori, so that we do not have to compute them. To this end
we find a bound for the size of the matrix elements.

Consider matrix elements of the form

Ai,λ =
∫

Iλ
K (xi,y)ψλ(y)dy, (4)

where xi are the collocation points with i = 1,2, ...,k2M and ψλ ∈ ΨM . The kernel K (x,y)
is the so-called transformed kernel, when the integration domain is changed from Γ to
[0,1]. The kernels in many boundary integral equations fall into the class of analytically
standard functions. The kernel, K (x,y), is called analytically standard of order 2q if the
transformed kernel, K (x,y), satisfies

∣

∣

∣
∂α

x ∂β
y K (x,y)

∣

∣

∣
≤ D

(|α|+ |β|)!
dist(x̂, ŷ)1+|α|+|β|+2q

(5)

where

K (x,y) := K (κ(x) ,κ(y)) |κx| |κy| (6)

with x̂ := κ(x) and ŷ := κ(y) and |κx|, |κy| are the Jacobians for the parametric map κ, [8].

First we rewrite our analytically standard kernel in (4), as a (k+1)-term Taylor expan-
sion about the point (xi,y0), with y0 taken as the midpoint of Iλ. Therefore, we obtain

∣

∣Ai,λ
∣

∣=

∣

∣

∣

∣

∣

∫

Iλ

[

K (xi,y0)+
∂K
∂y

∣

∣

∣

∣

y=y0

(y− y0)+ ...+
∂kK
∂yk

∣

∣

∣

∣

y=ty

(y− y0)
k

k!

]

ψλ(y)dy

∣

∣

∣

∣

∣

. (7)

Applying the vanishing moments property of the multiwavelets to expansion (7), the first k
terms are zero. We then apply inequality (5) to the last term of (7) to obtain the following
bound for size of the matrix elements,

∣

∣Ai,λ
∣

∣

≤ D
2−m(k+ 1

2 )−k

(2k +1)dist(x̂i,Γλ)1+k+2q . (8)

We can now use this bound to decide a priori the position of small matrix elements,
that is matrix elements below the level of discretisation error. Therefore we only compute
and store the O(n lnd n) significant elements.
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Boundary Integral Equation
In this paper we consider the solution of Laplace’s equation ∇2u = 0 in the exterior

domain D+. With a careful application of Green’s second theorem, using the condition
|u| = 0 at infinity, we can obtain the integral representation of the solution to our problem
in the form:

u(p) =

∫

Γ
u(q)

∂G(p,q)

∂nq
dΓ(q)−

∫

Γ
G(p,q)

∂u
∂nq

(q) dΓ(q), p ∈ D+, (9)

where G(p,q) = −1
2π ln |p−q| is the free space Green’s function (fundamental solution) of

Laplace’s equation. This representation requires both the Dirichlet and the Neumann data,
the so-called “Cauchy Data”.

Letting p ∈ D+ → p ∈ Γ and using the continuity and jump discontinuity properties of
the single layer potential (L) and the double layer potential (M ) operators respectively, we
obtain

(−
1
2

I +M )u = L
∂u
∂n

, p ∈ Γ. (10)

We consider the case of the Neumann boundary condition where ∂u
∂n |Γ is given. We solve

the boundary integral equation (10) to find the missing Dirichlet data.

Numerical Results
In this section we present numerical results for the Laplace problem exterior to an elon-

gated ellipse of circumference 4π, with major axis 2.9297628 and minor axis 0.7324407,
centered at the origin. We consider a Neumann problem, equivalent to that generated by
the point source technique when the source point is placed at p0 = (2.878567,

27
100 π) and

with strength 1.3. That is, the field generated is u(p) = −

1.3
2π ln |p− p0|. In tables 1-3,

‖u−uh‖ is the L2 norm of the error and nz is the number of non-zero elements remaining
after compressing the matrix. The compression column gives the percentage of the matrix
entries that can be set to zero without any detrimental effect. Our matrices are of size k2M .
Note that as the number of elements increases so does the level of compression.

Table 1: k=2
M ‖ f − fh‖ nz compression %
3 3.95×10−2 184 28.2
4 3.09×10−2 500 51.2
5 1.24×10−2 1344 67.2
6 4.86×10−3 3960 75.8
7 8.03×10−4 13976 78.7
8 2.73×10−4 39246 84.9
9 7.00×10−5 121516 88.4
10 1.76×10−5 425560 89.9
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Table 2: k=3
M ‖ f − fh‖ nz compression %
3 4.93×10−2 334 42.0
4 1.81×10−2 954 58.6
5 6.10×10−3 2440 73.5
6 1.42×10−3 6718 81.7
7 2.91×10−4 19458 86.8
8 3.52×10−5 58742 90.0
9 4.21×10−6 185808 92.1
10 5.30×10−7 588192 93.8

Table 3: k=4
M ‖ f − fh‖ nz compression %
3 3.31×10−2 554 45.9
4 2.19×10−2 1422 65.3
5 2.96×10−3 4032 75.4
6 8.69×10−4 10050 84.7
7 4.62×10−5 29592 88.7
8 3.84×10−6 87020 91.7
9 3.21×10−7 268312 93.6
10 2.02×10−8 858132 94.9

For each of the cases considered we observe O(hk) convergence. This is the predicted
order from the theory of convergence of collocation methods in Sobolev spaces, given by:

‖ u−uh ‖H r≤ Ch(t−r)
‖ u ‖H t , (11)

where r = 0 and t = k are taken here. We note that the larger the value of k is, the larger
the level of compression will be.

Conclusion
An efficient numerical algorithm for the solution of a large class of boundary integral

equations has been presented based on collocation methods using multiwavelet bases.

We have applied the method to the solution of the Laplace’s equation in an exterior
domain. Numerical results have been presented demonstrating the level of matrix com-
pression achieved in line with that predicted by the theory.
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