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Buckling of Spring Supported Tapered Columns
allowing for Shear Deformation

A. Watsort and W. P. HowsoR

Summary

Theory and concise computer program are presented that enable elastic critical buck-
ling loads of spring supported, shear sensitive, tapered columns to be determined accu-
rately. The program is based on a stiffness model and necessitates the solution of a tran-
scendental eigenvalue problem. It incorporates the Wittrick-Williams algorithm and thus
ensures convergence to the lowest, or any other required buckling load. The program is
fully described with illustrative examples.

Introduction

It has long been recognised that a substantial increase in buckling load can be achieved
using a tapered column compared to its uniform counterpart of the same mass. Alterna-
tively, less structure mass is required to sustain the equivalent load. This can be particularly
important in the aerospace industry, where weight reduction is always an important consid-
eration. Recent developments in materials technology have also lead to composite columns
that are much more sensitive to shear deformation than their metallic counterparts. This
is due to their lowG/E ratio, which is typically3 to 4 times less than a metallic column
and can be as much &8times less I]. The effect of shear deformation can now be very
significant, even on the lowest critical buckling load.

The present paper reformulates existing buckling theory for a uniform member in a
way that highlights the effect of the shear parameter. The governing differential equation
is solved in terms of non-classical boundary conditions and the resulting equations are
presented in stiffness matrix form. The stiffness matrix for the tapered member is then
obtained by dividing the tapered member into a series of uniform members and assembling
these into the required matrix. The computer program to implement this is efficient and
is sufficiently concise that it can be readily understood. This ensures that it can be easily
changed to accommodate individual needs. The program can handle a range of tapered or
uniform single columns with any combination of boundary conditions in the form of spring
supports. The effect of shear deformation can be allowed for or ignored and convergence to
any required buckling load, to any required accuracy, is guaranteed by use of the Wittrick-
Williams algorithm P].

Theory

Figurel shows the forces and displacements associated with a typical elemental length,
dx, of a uniform column that is subjected to a compressive axial fBrdeesolving verti-
cally and taking moments gives, respectively

dv
dx> +P&dx:0 D

dQ

dQ am
dx

-Q+ <Q+ dx) =0 de+M(M+ ax

1Dept. Aero & Auto Engineering, Loughborough University, Loughborough, LE11 3TU, UK
2Cardiff School of Engineering, Cardiff University, Cardiff, CF24 OYF, UK

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science
26-29 July, 2004, Madeira, Portugal



Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press 2106

Figure 1. Forces acting on a typical Figure 2: Spring supported, tapered
elemental length of the member. member divided int® segments.

Simple bending theory and the shear relationshpgive

dy dv dv
M:—EIa Q+P&:k’AGF and r:&_w )

wherel = second moment of area of the member cross-sectiencross-sectional area,

E = Young’s modulus = modulus of rigidity,k’ = section shape factor ai} M, V and

Y are the shear force due to bending, bending moment, lateral displacement, and bending
slope, respectively, at a typical distanciom the left hand end of the member.

Eliminating eitherV, W or I' from equations 1)-(2) yields the differential equation
governing the buckling of a uniform column subject to shear deformation as

D?[(1-s*p*)D*+ p?JA =0 (D =d/dg) @)

where& = x/L, L = member lengths’> = EI/KAGL?, p?> = PL?/El andA =V, W or

I". This non-dimensional formulation is particularly convenient, since the effects of shear
deformation are included & takes its natural value and are omitted wiséis set to zero.
Equation B) is a linear differential equation with constant coefficient whose solution can
be found in standard form, subject to the following boundary conditions, see Flgure

M1 |e—o= —keaW1lz=0 Q1 le=0= —Ke1V1 [z=0 @
M2 |e—1= —keoW2 [s=1 Q2 [e=1= —Ke2V2 [s=1

This leads to a stiffness relationship that may be stated as

Q1L A1 +Kgs Az Az Ay Vi/L
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Figure 3: Sample of cross sections covergd, andn are constant along the length

where the stiffness coefficierkg - Ajg are defined by equation€)(and () [2].

A5 = AlO = V(S— BC) A7 = V(B - S) (6)
As= A= -Ag= VS A —=Ag= Ar= A= —yB(1—C)

2
y= 2(1—2)—[35 azzl_pszpz B2 =p?(1—-<°p?) C=cosa S=sina (7)

andKsg;, Kg1, Ksp, Kg2 are non-dimensional support stiffnesses given by

ksy L3 K kel K :|<52|-3

_ keol
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The linear taperT, > —1) used in the following program can deal with the cross sections
shown in Figure 3 in whicl\(x) andl (x) are given by

A(x):Ao(1+Tr§)2 (Ao = A(0)) I(x):lo(1+Tr§)4 (lo=1(0)  (9)

Note that symmetry can sometimes be used to analyse doubly tapered members.

FORTRAN 77 Computer Program

The annotation to the right hand side of the code is merely to assist with understanding.
DIMENSION A(10)
IMPLICIT DOUBLE PRECISION (A-H,0-2)

PI=4.0*ATAN(1.0) I

READ(5,*)NP I No. of problems

WRITE(6,1000)NP

IP=0 I Set problem number
10 IP=IP+1 ! Loop on problems

WRITE(6,1010)IP

READ(5,*)Al0,AA0,AL,PE,G,SFTR,CV | See Table 1

WRITE(6,1020)AI0,AA0,AL,P,E,G,SF,TR,CV
READ(5,*)JR,NS,SI,AKD1,AKT1,AKD2,AKT2
WRITE(6,1000)JR,NS,SI,AKD1,AKT1,AKD2,AKT2
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20

30

BLFU=1.E10 I Set buckling load
BLFL=0.0 I factor bounds
BLF=1.0 | Set BLF
EIO=E*AIO lElatLHend
PE=PI*PI*EIO/(AL*AL) ! Euler load, Ps

SL=AL/FLOAT(NS) I Segment length

PC=BLF*P I Current trial load

1G=2

JB=0 I Set number roots passed
A(1)=AKD1 ! Set boundary conditions
A(2)=0.0 latLH end

A(5)=AKT1

X=-SL/2.0

DO 70 1S=1,NS ! Loop on no. of segments
X=X+SL ! Locate centroid
FAC=(1.0+X*TR/AL)**2 ! Taper factor
AA=AAO0*FAC ! Centroidal area
EI=EIO*FAC*FAC ! Centroidall

EIDL2=EI/(SL*SL)
P2=PC/EIDL2
S2=SI*EIDL2/(SF*AA*G)
APA=SQRT(P2/(1.0-S2*P2))

I El/L for segment
1p? equation (3)
| £ equation (3)

(ot

BTA=P2/APA B
S=SIN(APA) Isina
C=COS(APA) IcosB
BS=BTA*S

GA=APA/(2.0%(1.0-C)-BS) ly
GB=GA*BTA

GT=(GA*S-GB*C)*EIDL2*SL
A(3)=-GB*BS*EIDL2/SL
A(L)=AL)-A(3)

A(8)=-A(3)

A(G)=A(B)+GT

A(10)=GT
A(6)=-GB*(1.0-C)*EIDL2
A(7)=GA*(BTA-S)*EIDL2*SL
A(2)=A(2)-A(6)

A(4)=-A(6)

A(9)=A(6)
JB=JB+INT(APA/PI)
IF(GT.LT.0.0)JB=JB-1
IF(GT-A(7)*A(7)/GT).LT.0.0)JB=JB-1
IF(IS.LT.NS)GOTO 30

IG=3

A(8)=A(8)+AKD2

I Coefficients ofA
I Assemble segments

I Accumulate no. of
! roots passed]| [

! Set RH boundary

A(10)=A(10)+AKT2 ! conditions
DO 501=1,IG I Start Gauss
IPT=10-(4-1)*(7-1)/2 I elimination
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IF(A(IPT).GT.1.0E28)GOTO 50
PT=1.0/A(IPT)

DO 40 J=I+1,4

IPT=IPT+1

PIV=A(IPT)*PT

L=IPT-1
J1=10-(4-J)%(7-3)/2
J2=J1+4-]

DO 40 K=J1,J2

L=L+1
AK)=AK)-PIV*A(L)
IF(IS.EQ.NS)IG=4
CONTINUE

DO 60 I=1,IG
1=10-(4-1)*(7-1)/2
IF(AII).LT.0.0)JB=JB+1
A(1)=A(8)

A(2)=A(9)

A(5)=A(10)
IF(CV*(BLF-BLFL).LE.BLF)GOTO 100
IF(JB.LT.JR) GOTO 80
BLFU=BLF

GOTO 90

BLFL=BLF
IF(BLFU.LT.1.E9)GOTO 90
BLF=2.0*BLF

GOTO 20
BLF=0.5*(BLFL+BLFU)
GOTO 20

STERM=0.0

IF(SI.GT.0.5.AND.TR.EQ.0)STERM=1.0/SQRT(S2)

2109

I Branch on suppressed
I freedom

I Move A(8), A(9) and
I A(10) elements t\(1),
IA(2) andA(5) locations
! End if converged

I Branch on looker bound
I Set upper bound

I Set lower bound
| Set new load factor
I'if no new upper bound

I Set new load factor
! Branch to next cycle
11/s= 0when shear

! not considered

WRITE(6,1030)BLF,PC,PC/PE,SQRT(PE/PC),STERM

IF(IP.LT.NP)GOTO 10

STOP

FORMAT(1X,14,1P5E9.2)
FORMAT(/1X,"PROBLEM No.",13)
FORMAT(1X,1P8E9.2)
FORMAT(1X,1P5E14.7)

END

I Loop on problems

Data preparation and interpretation of results

The data input for the program is straightforward and is presented in Tablde
output from the program consists of an echo of the input data followed by a single line
of results, as described in Tab®e In order to consolidate the input/output scheme, an
example of a data file is given in TabB while the corresponding output file is given in
Table4. The spring stiffness valuge30 is recognised to be a clamping stiffness. There
are two problems to be solved. The basic problem is the same in each case, except that the
first one does not allow for shear deformation while the second one does.
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Table 1: Data input scheme
Line Variable Comment

1 NP Number of problems.
2 AlO Second moment of area of cross-sectigrat LH end of member.
AAO Area of cross-sectiord, at LH end of member.
AL Member lengthL. P Initial axial loadP.
E Young’s modulusk. G Shear moduluss.
SF Section shape factd', TR  Taper ratio@ = uniform member).
cVv Solution accuracyt part in CV.
3 JR Number of buckling load required.= lowest.
NS Number of uniform segments by which the tapered member is divided.
Sl 1.0if shear considered).0 otherwise.

AKD1 Lateral spring stiffness at LH end of member.
AKT1 Rotational spring stiffness at LH end of member.
AKD2 Lateral spring stiffness at RH end of member.
AKT2 Rotational spring stiffness at RH end of member.

Table 2: Output results.

Item Comment

BLF Buckling load factor. PC = BLF*P, where P is the original axial load.
PC Buckling load.

PC/PE Buckling load / Euler load whé@h = 0.

/PE/PC Effective length coefficient.

STERM 1/s, wheresis defined below equation (3). Only relevantif= 0

Table 3: Example of input data file. Table 4: Output from data of Table 3.

2 PROBLEM Nol
8e—42e—2517e82el18€10.7.4141e6 1514014F +02573824E8 4.074733E0
15120 1.e30 1e30 19 0. 4.953936E — 1 0.000000E0
8e—-42e—251.7e82el118€el0.7.4141e6 PROBLEM No.2

15121 1.e30 1e30 1e9 0. 1.280272% +0 2.176463E8 3.445653&0

5.387213& — 1 0.000000E&E0
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