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Summary 

A simple and effective computational model for the immersed bodies in 
incompressible flows is implemented on unstructured Cartesian grids.  The domain inside 
the immersed body is viewed as being occupied by the same fluid as outside with a 
prescribed divergence-free velocity field.  The pressure inside the immersed body 
satisfies the same pressure Poisson equation as outside.  The model is implemented in an 
implicit fractional step pressure correction method. Steady and unsteady flows over a 
circular cylinder are computed as test problems.  An ellipse in “figure-8” motion is 
computed to demonstrate the capability of the present model to treat complex body 
movements.  

Introduction 

Recently numerical methods for solving incompressible flows on non-body-fitted 
Cartesian grids are gaining popularity for their relative ease in treating complex 
immersed bodies in the flow field [1-5].  The differences among these methods lie on the 
different way the boundary conditions for the immersed bodied are enforced.  The 
immersed boundary method [1] and the virtual boundary method [2] simulate the no-slip 
boundary condition on the body surfaces by adding appropriate momentum forcing terms 
to the appropriate cells.  In Cartesian cut -cell methods [3,4,5], the flow variables for the 
cut cells are either solved based on the actual shape of the cut cells [3], or interpolated 
from the surrounding fluid and body cells [4,5] without actually solving the conservation 
equations for the cell.   

In this work, we view the domain inside the solid body as being occupied by the 
same fluid as outside with a prescribed divergence-free velocity field.  In this view a 
fluid-body interface is similar to a fluid-fluid interface commonly encountered in the 
Volume of Fluid (VOF) method for the two-fluid flow problems.  Since the velocity field 
inside the body is divergence-free, the pressure inside obeys the same pressure Poisson 
equation as outside.  For the grid cells containing the fluid-body interface, a mixture of 
the “two fluids” based on the fluid volume is assumed.  This volume averaging of the 
velocity automatically enforces the no-slip boundary condition inside the interface cell, 
which smears the fluid-body interface to the width of one cell.  We have implemented the 
above model in an implicit fractional step pressure correction method on unstructured 
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Cartesian grid [6,7].  In this paper we show some test results of flows over a stationary 
circular cylinder and an ellipse in large amplitude “figure-8” flapping motion. 

Implicit Fractional Step Pressure Correction Method 

The incompressible Navier-Stoked equations are  
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where v
v  and P are Cartesian velocity and pressure, Re is Reynolds number.  The 

backward time differencing scheme is used to advance the momentum equations with the 
pressure fixed at time level n : 
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where t∆  is the time increment and *R
v

 represents the convection and the viscous fluxes.  
The constants are 1c =1.5, 2c =2 and 3c =0.5  for the second-order accurate backward 

differencing scheme, and 1c =1, 2c =1 and 3c =0 for the first order Euler implicit scheme.  

The intermediate velocity ∗vv generally does not satisfy the divergence-free condition.  It 
is corrected by the following correction step:  

φ∇∆−= ∗+ vvv
tvv 1n  (3) 

where n1n PP −= +φ  is the pressure correction.  By requiring 1nv +v  be divergence-free, we 
obtain the Poisson equation for the pressure correction: 
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Equations (2), (3) and (4) constitute the implicit fractional step pressure correction 
method used in this work.  

Finite Volume Discretization 

A finite volume method based on the integral form of Eq. (1) is used to discretize the 
momentum equation on a cell-centered unstructured Cartesian grid system.  The variable 
states at the cell faces are linearly reconstructed from the center values.  The convection 
fluxes are upwind oriented based on the velocity at the cell face.  The pressure force is 
computed using the reconstructed pressure state at the cell face, while the viscous fluxes 
are computed using the velocity gradients at the cell face.  Overall, a second order 
accurate upwind difference scheme is used for the convection fluxes and central 
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difference schemes are used for the pressure and viscous fluxes.  To compute the 
divergence of velocity, a normal face velocity is defined separately from the cell center 
velocity.  A fourth derivative of pressure is added in the divergence field through the 
normal face velocity.  This face velocity is corrected in a similar fashion as Eq. (3), and 
thus constructing the discretized Poisson equation for the pressure correction.  

Treatment of Immersed Body 

The position and the velocity Bv
v  of the immersed bodies are assumed known from 

some appropriate governing equations.  The volume ratio in a cell occupied by the solid 
body, Bφ , is used to identify the body cells ( Bφ =1), the fluid cells ( Bφ =0) and the 
interface cells ( 10 B << φ ).  The body surface is represented by the contour of 5.0B =φ .  
Since the velocity inside the body surface is known, we modify Eq. (2) to 
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Equation (5) recovers Eq. (2) for fluid cells, and it yields 1n
Bvv +=

vv*  for body cells.  As for 
interface cells, the solution of Eq. (5) is a volume-averaged mixture of the body velocity 
and the velocity computed by the flow conservation.  This volume averaging is a simple 
and effective treatment to account for the effects of the fluid-body interface.  Since Bv

v  is 
assumed divergence-free, the Poisson equation with a zero source term is used to 
compute the pressure correction inside the body.  The elliptical nature of the Poisson 
equation ensures that the pressure field inside the body adjusts itself according to the 
pressure field outside.   The pressure and viscous forces acting on the body are obtained 
as volume forces by 
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Flows over a Stationary Circular Cylinder 

The steady and unsteady flows over a circular cylinder of unit diameter at Re=40 
and 200 are computed on an unstructured Cartesian grid.  The grid is refined around the 
cylinder to have about 52 cells across the diameter.  The cylinder volume computed by 

Bφ  is about 0.3%  less than the true value.  The outer boundaries are 20 diameters away 
from the cylinder.  The uniform flow condition is set to the inflow and the two side 
boundaries.  The downstream boundary follows the upwind differenced equation of 

0)x/v(U)t/v( n =∂∂+∂∂
vv , where nU  is the normal outflow velocity at the boundary.   

For Re=40, the Euler implicit method is used with 5.0t =∆ .  The L2 norm of the 
steady state residual in Eq. (2) dropped 5 orders of magnitude in 250 steps.   The 
computed pressure coefficient contours and the streamlines are plotted in Fig. (1).  Note 
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that the pressure inside the cylinder adjusts automatically to follow the pressure field 
outside.  The smoothness of the streamlines around the cylinder indicates that Eq. (5) is 
satisfactory in treating the cylinder geometry in our case.  Table I lists the computed lift 
(Cl)  and drag (Cd) coefficients and the wake length normalized by the diameter (Lw/d).   

For Re=200, the second order backward difference scheme with 1.0t =∆  is used.  
The instantaneous pressure coefficient contours and streamlines at t=300 are plotted in 
Fig. (2).  Again, note the pressure inside the cylinder varies automatically according to 
the pressure outside.  The streamlines show the unsteady vortex shedding behind the 
cylinder.  The computed aerodynamic coefficients and Strouhal number based on the lift 
coefficient are listed in Table I.  The comparison with the work of others is satisfactory. 

Table I Simulation Results for Flow over a Circular Cylinder 

Methods Re Cd Lw/d ∆ Cl St 

Current 40 1.53 2.13   

 200 1.32 043.0±   ± 0.62 0.198 

Ye et al.[3] 40 1.52 2.27   

Kiris and Kwak [8] 200 1.27 04.0±   ± 0.67 0.184 

    
Fig. (1) Re=40, Cp and Streamlines          Fig. (2) Re=200, Cp and Streamlines       

Flow over a Flapping Ellipse  

In Fig. (3), an ellipse is in a forced “figure-8” motion.  The down-stroke phase is 
plotted in black while the up-stroke phase is in red.  As described in Wang [9], a “figure-
8” motion is used to simulate the flapping motion of an insect wing.   The movement of 
the center of the ellipse is governed by )]T/t2[cos(A5.0)t(A 0 π= , where T is the 
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flapping period and 0A  is the amplitude.  The stoke plane along which the center moves 
has an inclination angle β  with respect to the horizontal axis.  The angle of attack is 
governed by )]/sin([. ϕππ +− Tt21250 , where ϕ  is a phase lag.  In our choice, the 
reference speed is 400cm/s, the reference length is 4cm, the major axis of the ellipse is 

1cm, and the kinematic viscosity is scm2 2 / .  The flapping motion has o60=β , 

0A =2.5cm, T=0.025sec and 0=ϕ .  The Reynolds number amounts to Re=800.  The 
time increment is set to 1/400 T.  The outer boundary of the grid is 40cm in length.  The 
grid is refined in the region where the figure-8 motion occurs.  The volume of the ellipse 

computed by function Bφ  is about 0.25% lower than the analytical value. 

 

Fig. (3) “Figure-8” motion.    Fig. (4a) t=(1/50)T, Vorticity          (4b) t=(16/50)T 

  

(4c) t=(25/50)T                      (4d) t=(34/50)T,                     (4e) t=(50/50)T  

Figures (4a) to (4e) show the vorticity contours in sequence.  The vorticity 
generation along the body surface and the vortex shedding at the two tips are clearly seen.  
During the down-stroke phase, a pair of counter-rotating vortices is generated by the 
downward translation and rotation of the ellipse.  During the up-stroke phase, the upward 
translation and rotation of the body fuses the leading and trailing edge vortices to form a 
dipole vortex pair, moving downward with the “jet stream” flowing away from the body.  
This downward jet stream is responsible for the generation of lift and thrust on the body.  
Compare with the vortex generation process of an elliptical airfoil in the Fig. 2 of Wang 
[9], the basic vortex dynamics are qualitatively similar.   

770

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



Conclusions  
A simple and effective model for the immersed bodies in incompressible flows has 

been implemented in an implicit fractional step pressure correction method.  The domain 
of the solid body is treated as being occupied by the same fluid as outside with a 
prescribed divergence-free velocity.  The pressure field inside the body is computed by 
the same Poisson equation used for the fluid flow outside.  The velocity of the interface 
cell is a volume-averaged mixture of the body velocity and the velocity estimated by the 
conservation equations.  The computations of steady and unsteady flows over a circular 
cylinder show good comparison with the work of others.  Preliminary results of the flow 
over an ellipse in a forced “figure-8” motion are shown to demonstrate the capability of 
the present method to treat large and complex body movements.  
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