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Summary 

This paper presents a methodology for computing the probability of structural failure 
by combining Monte Carlo simulation (MCS) with neural networks (NN).  In fact, 
although MCS is well suited to reliability studies, its use for evaluation of very low 
probabilities of failure, as generally found in structures, implies a great number of 
structural analyses and is often excessively time consuming.  In order to speed up the 
computation, it is suggested herein to perform MCS using a NN trained to reproduce 
structural behavior.  Nevertheless, it should be assessed whether the NN can approximate 
accurately complex structural response.  To illustrate the approach proposed, a steel 
frame is analyzed assuming both material and geometrical nonlinear behavior.  It is found 
that the procedure adopted leads to an efficient determination of the probability of failure. 

Introduction 

The structural designer must verify, within a prescribed safety level, the following 
inequality: S < R, where S represents the action effect and R the resistance.  Given the 
random nature of the variables involved, several approaches with different levels of 
complexity have been presented to deal with this problem.  Among them, MCS is an 
interesting alternative due to its simplicity.  However, MCS has not been used often in 
structural reliability because it is extremely demanding in terms of computing time.  This 
shortcoming can be removed if NN are used to approximate structural response.  Such 
procedure means that the structural performance can be evaluated at a much faster rate, 
thus making the application of MCS feasible for practical purposes. 

Monte Carlo Simulation 

A reliability problem is usually formulated in terms of a failure function g(X1,...,Xn), 
where X1,...,Xn are random variables.  MCS allows the determination of an estimate of 
failure probability through sampling of N independent sets of random variables based on 
the probability distribution for each variable.  Using this method, the failure function is 
computed for each set and an estimate of the probability of failure, pf, is given by: 
pf=NH/N, where NH is the number of cases in which failure occurs, ie, when g(X1,...,Xn)>0. 
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MCS can consider any type of probability distribution for the random variables and is 
easy to implement.  However, MCS has rarely been used in structural reliability because 
it requires a great number of structural analyses, one for each sample of random 
variables.  The number of analyses needed to evaluate with satisfactory precision the 
failure probability of a structure depends on the order of magnitude of that probability.  
As the values of probability of current structures are normally below 10−4, the number of 
analyses to be performed must be greater than 105[1].  These analyses are generally 
performed through finite elements codes.  Therefore, the computation time can be 
prohibitively high, especially when the structure is large or exhibits non-linear behavior. 

To avoid this drawback, NN can be adopted for reproducing structural response[2, 3].   
In fact, a trained NN require only a small fraction of time of the corresponding structural 
analysis, which makes possible to apply MCS in a more computationally efficient way. 

Neural Networks 

NN are numerical algorithms inspired by the functioning of biological neurons[4].  
Figure 1 represents a neuron m that receives an input vector xk from L channels and 
computes a weighted sum of the components of xk, multiplying each by a coefficient wmk 
reflecting the importance of each channel k.  The neuron m activation, am, is given by 
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where bm is a corrective term, allowing a non-zero activation am when all xk are zero. 
 
 
 
 
 
 
 
 
 
 

Figure 1 - Artificial neuron 

The output signal of neuron m, sm, results from the computation of an activation 
function of am.  In this work, the sigmoid function is adopted: 
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The arrangement of several neurons in layers forms a neural network (NN), as shown 
in Figure 2 where a 3-layer NN is represented: the input layer has 3 neurons, the hidden 
layer 4 and the output layer 3.  It may be proved[5] that this type of NN with sigmoid 
activation functions in the hidden and output layers can approximate satisfactorily any 
continuous function, provided that it has enough neurons in the hidden layer. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Multi-layer neural network 

The process of obtaining the unknown coefficients wmk and bm required to 
approximate the prescribed function is called training.  During training, the coefficients 
are gradually adjusted in order to minimize the error between the NN output and the 
exact value of the function.  To perform the training, the exact value of the function must 
be known for a given set of input values, known as the training set. 

In this work, the error minimization associated to the NN training is initially 
performed using a genetic algorithm and the solution found is used subsequently as a 
starting point by a conjugate gradient algorithm.  The process is repeated, restarting 
successively the genetic algorithm while restraining the domain of each coefficient to a 
closer vicinity of the optimal solution obtained in the previous iteration. 
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Structural Analysis Model 

Since it is important to confirm the adequacy of a NN based approach for complex 
structural behavior, a nonlinear model is adopted herein.  For this purpose, use is made of 
a object oriented computer program for the analysis of steel frames[6], that can take into 
account both material and geometrical nonlinearity. 

In this code, elasto-plastic analysis is carried out using the plastic-zone approach[6], 
in which gradual cross-sectional yielding and longitudinal spread of plasticity is allowed 
throughout the members.  The structure is modeled considering only one element per 
member, which reduces the degrees of freedom involved and hence the computing time. 

The gradual plastification of the cross-section of each member subjected to the 
combined action of axial force and bending moments is described by moment-rotation 
curves of Ramberg-Osgood type.  The effect of the axial force on the reduction of the 
plastic moment of the section is considered by means of standard strength interaction 
curves, such as the AISC LRFD beam-column interaction equations[7]. 

Geometrical nonlinear local effects are incorporated using stability stiffness functions 
in a beam-column approach[6].  At each load increment, the length, flexural stiffness and 
axial force of each element are updated.  Using an updated lagrangean formulation, the 
global geometrical effects (large deflections) are also considered by updating the rotation 
matrix corresponding to the transformation equations from local to global coordinates. 

An incremental-iterative procedure is adopted to evaluate the equilibrium path under 
loading.  At each increment a modified constant arc-length method is applied to compute 
the nonlinear load-deformation path, including ultimate load and post-critical response. 

Numerical Example 

To exemplify the approach proposed to compute the probability of failure, the 6-story 
steel frame shown in Figure 3 is analyzed.  Only the vertical loads, the horizontal loads 
and the steel yield stress are taken as random variables.  All other parameters (Young’s 
modulus, initial sway, members lengths and cross-sections) are considered as constants. 

Lognormal distributions are assumed for all random variables.  Their statistical 
parameters, given in Table 1, are such that the corresponding characteristic values equal 
the values depicted in Figure 3.  The characteristic values of the loads and of the yield 
stress are respectively the percentiles 98 and 5 of the probability distributions adopted. 

Table 1 - Characterization of random variables (*: values for the top story) 
variable mean standard 

deviation 
variation 

coefficient 
characteristic 

value 
vertical load (kN/m) 33.3 (21.5*) 6.66 (4.30*) 0.20 49.1 (31.7*) 
horizontal load (kN) 10.76 (5.38*) 3.76 (1.88*) 0.35 20.4 (10.2*) 
yield stress (MPa) 280 28 0.10 235 
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Figure 3 - Steel frame 

With respect to the NN that approximates the structural response, the number of input 
neurons is equal to the number of random variables, i.e., 3.  The number of neurons in the 
output layer is equal to the number of failure functions, i.e., 1 (frame structural collapse). 

The NN training set is composed of 512 elements, resulting from the combination of 
8 possible values for each random variable.  More relevance is given to values situated in 
the upper extreme of the loads distributions and in the lower extreme of the yield stress 
distribution, because it is important to achieve a very good fit in those regions, as they 
influence mostly the probability of failure.  A test set containing 343 elements is also 
created, to measure the precision of the response obtained with the NN. 

Several NN are trained, considering either 4, 8 or 12 neurons in the hidden layer.  It 
is found that the NN can approximate the structural response with great precision, since 
the output given by the NN (failure or non failure) matches the output of the structural 
analysis program for all cases analyzed, both from the training set and from the test set.    

MCS is performed using the trained NN on 107 samples.  Due to the randomness of 
the problem, several simulations are carried out for each NN, enabling to obtain a mean 
and a standard deviation for the probability of failure, pf.  Nevertheless, the variation of pf 
is very small, as shown in Table 2, which also presents the training and simulation times 
required by the NN.  Note that, had MCS been performed on the same computer using the 
structural analysis code instead of NN, it would take several years to complete the 
corresponding 107 runs.  This clearly shows the advantage of the approach followed. 
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Table 2 - MCS using NN: probabilities of failure and computing times 
No. hidden neurons pf (mean) pf (st. deviation) training time (s) simulation time (s)

4 2.726×10−4 3.326×10−6 506 81 
8 2.489×10−4 7.062×10−6 5830 113 

12 2.426×10−4 3.910×10−6 23517 141 

Conclusion 

Whenever it is possible to model adequately the random variables that influence 
structural behavior, the use of MCS allows a rational design.  However, the amount of 
time required by this method represents a significant drawback. 

The use of NN to approximate structural behavior leads to results similar to the ones 
obtained with a conventional MCS but requires much less computational effort, even 
considering the NN training phase.  The increase in speed is so much bigger as the 
structural analysis model adopted becomes more complex.  Therefore, the application of 
the methodology proposed seems to be of great interest in structural reliability. 
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