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Summary 
 

The wedge structure in non-homogeneous material with specified functional 
property is studied by using Mellin transform. The stress singularities depend on 

the prescribed boundary conditions, the wedge angle and the non-homogeneity 
parameter. The complete expressions of the stress components and displacement 
can be derived. 

 

Introduction 
 

The stress singularity is an index to judge the extent of stress concentration 
near the tip of a wedge shape structure. Higher singularity order induces more 

possibility of failure 
 The singularity order of crack in non-homogeneous material has been widely 

discussed by several literatures [1, 2]. They found that it remains the same as 
those for homogeneous cases. They assumed that the material properties are in 

exponential forms. In this paper, we adopt the r-type material form, which has 
been used to study the singular order of a crack subjected to anti-plane shear [3]. 
 

Formulations of the Problem 

 

Consider a non-homogeneous material wedge with wedge angle 2αshown in 
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Fig.1. The shear modulus is assumed in the form µ(r)=µ 0 [1+(r/rc)β], where r is 
the radial distance measured from the tip of the wedge and rc is a characteristic 

length. The non-homogeneity of the material is characterized by the parameter β, 
which lies between –1 and 1.Positive β means that the rigidity increases from the 
wedge tip whereas negative one represents the decreasing rigidity from apex. 

 
 

 
 
 
 
 

Fig.1 The geometry of a wedge structure 

 
The stress-displacement relations and the equilibrium equation for antiplane 

problem are as follows: 
 

r
wr  w

r
r

rzz ∂
∂

µ=τ
θ∂

∂µ
=τθ )(,)(  (1) 

0)()( =τ
θ∂
∂

+τ
∂
∂

θzrzr
r

 (2) 

 
Substituting the form of material property into Eq.(2), the result becomes: 
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The first and second terms in Eq.(3) correspond to the case of a homogeneous 
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(µ =µ0) and a non-homogeneous (µ(r) = µ0(r/rc)β) wedge, respectively. Since Ma 
and Hour [4] has discussed the homogeneous case, we only study the effect comes 
from the material non-homogeneity. 

We define ŵ , zθτ̂ and rzτ̂ as the Mellin transformed function of w , zr θ
β− τ1 and 

rzr τβ−1  in the s-domain as 
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The equilibrium equation in the s-domain and its general solution are 
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where A(s) and B(s) are unknown functions which may be determined from the 

prescribed boundary conditions. Hereafter we will discuss three different types of 

conditions: (i) traction-traction , τθz(r,α)=T0δ(r-r0) and τθz(r,-α)=T0δ(r-r0); (ii)dis- 
placement-displacement w(r,α)=0, w(r,-α)=w0(r/R) for 0�r�R; and (iii) trac- 
tion-displacement τθz(r,α)=τ0 for 0<r�R and w(r,-α)=0. The constants  T0 , w0 
and τ0 represent the magnitudes of the shear force, displacement and shear stress, 

respectively. δ is the Dirac-Delta function. r0 and R are characteristic lengths. 
 

After substituting these specific boundary conditions to the constitutive and 

equilibrium equtions, the unknown coefficients A(s) and B(s) might then be 
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obtained. Therefore the transformed terms of displacement and stresses, 
ŵ , zθτ̂ and rzτ̂ , can be expressed explicitly. According to the theorem of inverse 

Mellin transform, the stress component can be obtained as following: 
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By applying the residue theorem, the stress zθτ of the traction boundary 

condition can be written as 
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The stress rzτ and the displacement w  can be obtained in the same way. 

 

Results and Discussions 
 

From the expression form in Eq.(10), we see that as 0→r , i.e. near the wedge 

tip, the stress magnitude is proportional to )1( β−+− −
ksr . Here −

ks  represents the 
negative pole of the infinite integral in Eq.(9). If the order lies between –1 and 0, 
the stress may go to infinity. 

For traction-traction case (i), the variations of singular order with wedge angle 

at different non-homogeneous parameter β are plotted in Fig.2.  The strength of 
stress singularity for negative β is stronger than that for positive β.  For 
homogeneous material wedge (β = 0), the stress field is not singular when α � π/2 
[4].  In our case, the stress field becomes singular for α < π/2 when β is negative.  
On the contrary, we may find the wedge angle α > π/2 such that the stress field is 
nonsingular when β is positive. In the case of a crack in a homogeneous material 
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(i.e. β = 0, α = 1800), it becomes the conventional square root singularity as in 
fracture mechanics. 
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Fig.2 The variations of singular order with wedge angle at different 

non-homogeneous parameter β (case (i)). 
 

Fig. 3 and 4 plot the variations of singularity order for cases (ii) and (iii), 
respectively. In case (ii), the variation tendency is similar to case (i) when β is 
positive. However, the strength of singularity becomes very strong and will 

dominate the stress field when β is negative. This phenomenon can be explained 
by observing the first term in the expression of stress τθz: 
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The variations of singularity order for case (iii) are very similar to the case (i).  

For homogeneous material wedge (β = 0), the stress field is not singular when α 
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� π/4 [4].  In our case, the stress field becomes singular for α < π/4 when β is 
negative and may be nonsingular for α > π/4 when β is positive. For β = 0 and α = 
1800, the singularity order is –0.75, which matches the result of [4]. 
 
 
 

 

 

 

 

 

 

 

 
Fig.3 The variation of singular order     Fig.4 The variation of singular order 
with wedge angle at different non-       with wedge angle at different non- 

homogeneous parameter β (case (ii)).          homogeneous parameter β (case (iii)). 
 

References 
 
1.Eischen, J. W. (1987): “Fracture of Nonhomogeneous Materials” International 

Journal of Fracture, 34, pp. 3- 22. 
2.Jin, Z. H. and Noda, N.(1994): “Crack-Tip Singular Fields in Nonhomogeneous 

Materials” Journal of Applied Mechanics, Vol. 61, pp. 738- 740. 
3.Schovanec, L. (1989): “An Antiplane Shear Crack in a Nonhomogeneous 

Elastic Material” Engineering Fracture Mechanics. Vol. 32, No. 1, pp. 21-28. 
4.Ma, C. C. and Hour B. O. (1989): “Analysis of Dissimilar Anisotropic Wedges 

Subjected to Antiplane Shear Deformation” International Journal of Solids and 
Structures, Vol. 25, No. 11, pp. 1295-1309. 

5.Sneddon, I. N. (1972): The Use of Integral Transforms, McGraw Hill, N.Y. 

60 75 90 105 120 135 150 165 180

Half wedge angle (α)

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1

r-
ty

pe
 S

in
gu

la
r O

rd
er

displacement-displacement bcs.
Beta = -0.9
Beta = -0.6
Beta = -0.3
Beta = 0
Beta = 0.3
Beta = 0.6

30 45 60 75 90 105 120 135 150 165 180

Half wedge angle (α)

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1

r-
ty

pe
 S

in
gu

la
r O

rd
er

traction-displacement bcs.
Beta = -0.9
Beta = -0.6
Beta = -0.3
Beta = 0
Beta = 0.3
Beta = 0.6
Beta = 0.9

1910
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal




