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Summary 

The simulation of 2D elastic solid containing a large number of inclusions is 
presented using fast multipole BEM. A scheme of similar sub-domain approach is also 
applied for the case of identical circular inclusions. Generalized minimum residual 
method (GMRES) is adopted as an iterative solver for the equation system. The number 
of inclusions in numerical example computed on one PC reached more than 1,000 by the 
combination of above-mentioned algorithms. Numerical results show that the fast 
multipole BEM is applicable to large scale simulation of certain composite materials. 

Introduction 

Simulation of composite materials has been investigated by more and more 
researchers. Among the numerical methods to get effective elastic properties of 
composite materials, BEM is particularly suitable for certain structures that contain many 
inclusions because of dimension reduction and high accuracy [1]. But conventional BEM 
is not suitable for large scale problems. The coefficient matrix formed by BEM is dense 
and sometimes asymmetric. Conventional solution needs O(N 

3) operations and O(N 
2) 

memory, where N is the number of DOF. Fortunately, both can be reduced now to O(N) 
with the help of fast multipole method (FMM). 

FMM was first introduced by Rokhlin in 1985 as a fast solver for potential 
problems[2]. Because of the potential of FMM for solution of large scale problems, fast 
multipole BEM has been studied by researchers of different fields. Several O(NlogN) and 
O(N) algorithms for elasticity problems are reported in literature[3,4]. Recently, further 
improvement of the efficiency of FMM, the new version FMM[5], is finished by using so-
called diagonal forms and exponential expansion.  

In this paper, the new version of fast multipole BEM and similar sub-domain 
approach[1] are applied to simulate 2D elastic solid with a large number of arbitrarily or 
regularly distributed identical circular inclusions. The results of effective elastic 
properties of such composite materials are obtained by numerical test. 

Scheme of Fast Multipole BEM for 2D Elasticity 

The boundary integral equation for 2D elasticity without body force is written as: 
* *( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )c x u x T x y u y d y U x y t y d yαβ β αβ β αβ βΓ Γ

+ Γ = Γ∫ ∫                      (1) 
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where x and y stand for source point and field point respectively; ,x y∈Γ . , 1,2α β = ; 
( )c xαβ  is related to the geometry at point x; ,u tα α  are boundary displacement and 

traction respectively; * *( , ),  T ( , )U x y x y
αβ αβ

 are kernel functions for 2D elasticity. 

The basic idea of fast multipole BEM consists of four main steps. In Fig.1, the 
contribution of far-field integral of field point y to source point x is first shifted to y0, then 
from y0 to y1, from y1 to x0 and finally from x0 to x1. 

In this paper, the scheme of fast multipole BEM for 2D elasticity in our previous 
work [6] is modified and new detailed formulations of four main steps are given below.  

 
Fig.1 main steps of fast multipole BEM 

 

The first step of fast multipole BEM is the far-field Taylor expansion of kernels with 
respect to the field point y around a selected point y0, which is the center of a small 
square box A containing  y  (Fig.1). A is far enough from source point x, that is, each field 
point y in A satisfies 0 0 2y y x y− ≤ − . Let the kernels be represented by ( ),x yψ , 
which can be expanded to the following complex Taylor series: 

( )
0 0

0

1( , ) ( , )( )
!

k k

k
x y x y y y

k
ψ ψ

∞

=

= −∑                                                                            (2) 

Expanding the kernel, the detailed Taylor series of H(x), which denote the integral 
* ( , ) ( ) ( )

f

U x y t y d yαβ βΓ
Γ∫ , are shown in Eq. (3). There are six items used in the previous 

work[6] for expansion; and they are simplified using only one half items now. 
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where [3] 
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=

        (3a) 

 

Series c(y0,k), called multipole moments, are only related to integral of y. They are 
calculated only once and can be used for different source point x to obtain H(x). 

Another integral * ( , ) ( ) ( )
f

T x y u y d yαβ βΓ
Γ∫  can be expanded similarly. 

The second step of fast multipole BEM is the shift of multipole to multipole moments. 
Point y1 is the center of a larger box B containing the initial box A (Fig.1). Replacing y0 
by y1, H(x) can be rewritten similarly to Eq.(3). The new multipole moments 1( , )c y k can 
be obtained by the old ones, 0( , )c y k . 

The third step of fast multipole BEM is the shift of multipole to local moments. Point 
x0 is the center of a box C containing source point x, and box C is as the same size as B 
(Fig.1). By expanding the kernels with respect to source point x around x0, another Taylor 
series, called local expansion, is obtained: 

 

{
}

0 0 0 0 0
0

0 0 0

( ) Re ( ) ( , ) Re Re( )( ) ( , )

               Re Im( )( ) ( , )

k k
n nr

k

k
ni

H x x x d x k x x x x d x k

x x x x d x k

∞

=

   = − + − −   

 + − − 

∑
        (4) 

 

where the new series 0( , )d x k  are called local moments. They can be obtained by the 
multipole moments 1( , )c y k . 

The forth step of fast multipole BEM is the shift of local to local moments. Point x1 is 
the center of the smaller box D containing source point x, and box D is C’s child (Fig.1). 
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Replacing x0 by x1, H(x) can be rewritten similarly to Eq.(4). The new local moments 
1( , )d x k  can be obtained by the old moments 0( , )d x k . 

A tree structure is used to get both multipoles and local moments recursively. In each 
iterative step of GMRES, matrix-vector product is replaced by operation on the tree, 
which only costs O(N).  

In new version of fast multipole BEM, the third step is replaced by another three new 
steps. Because the basic idea of new version fast multipole BEM for 2D elasticity is 
introduced briefly in literature [7] and the formulation of new version is similar to that of 
this paper, they are not listed here. 

Numerical Results 

Results of numerical tests are presented below. All numerical tests are taken on a PC 
with Pentium IV (1.8GHz) and 1GB memory. 

Example 1: To verify accuracy of fast multipole BEM for large scale problems, the 
comparison of two periodical structures subjected boundary loads proportional to their 
edge length respectively is made: Sub-structure of these two structures is a square plate of 
1 1×  mm with a circular inclusion of radius 0.3mm in the center, as shown in Fig. 2(a). 
The former structure consists of 2 2×  sub-structures, 4 inclusions, 26,880 DOF, 
subjected on outer boundary with given normal displacement un=0.0002mm, as shown in 
Fig. 2(b). The latter consists of 40 40×  sub-structures, 1,600 inclusions, 544,000 DOF, 
subjected with given normal displacement un =0.004mm. The material properties are: 
matrix Eb = 200MPa, vb = 0.3, inclusions Ei = 400MPa, vi = 0.3. 

 

 
Fig.2 sub-structure and periodic structure with inclusions 
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In Table 1, results at some selected points in Fig. 2(b) on the boundary of two 
corresponding inclusions that belong to 2 2×  and 40 40×  structures respectively are 
compared. The difference between them is approximately 51 10−× . 

 

Table 1 Comparison of displacement and traction of some selected points 

Selected point 1 2 3 4 5 

2 2×  6.0619 10.0911 5.6697 −4.3262 −14.3269 Displacement 
un(mm) 510−×  40 40×  6.0619 10.0910 5.6697 −4.3262 −14.3268 

2 2×  7.94244 7.68617 7.94238 7.68618 7.94237 Traction 
tn(MPa) 210−×  40 40×  7.94238 7.68614 7.94239 7.68614 7.94239 

 

 
Fig.4 Time cost versus different number of DOF and tolerance of GMRES 

 

Table 2 Effective volume moduli of different number of inclusions 

Number of inclusions 10 50 100 150 200 

Number of DOF 4,400 15,600 28,000 39,600 51,200 

Effective volume modulus (MPa) 239.5 239.7 239.6 239.6 239.6 

Effective volume modulus  using IDD (MPa) 242.3 

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

306

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



Example 2:  2D elastic solids with different number of arbitrarily distributed identical 
circular inclusions are simulated and time costs are shown in Fig.4. Results of effective 
volume moduli are listed and compared with an analytic solution of interaction direct 
deviation method (IDD) [8] in Table 2. The volume ratio of inclusions to whole region is 
fixed to be 0.2. The material properties are: matrix Eb= 200 MPa, vb = 0.3, inclusions Ei = 
1000MPa, vi = 0.3.  

Conclusions 

In this paper, a new version of fast multipole BEM combined with similar sub-
domain approach is applied for simulation of certain 2D composites containing a large 
number of inclusions. Numerical results show that the presented algorithm is efficient for 
certain large scale simulations. The further investigation will be extended to the 
simulation of 3D composites with inclusions. 
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