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Summary

Monte Carlo simulation was used to analyze the aeroelastic response of a two
degree-of-freedom airfoil with variable pitch stiffness. Structural parameters were
chosen to permit the development of limit cycles. When the Monte Carlo results
were projected onto a Wiener-Hermite expansion, the resulting simulated realiza-
tions of limit cycles exhibited a characteristic energy loss at large times. A sinu-
soidal model problem was constructed and analyzed to clarify the issues respon-
sible for the poor large-time inaccuracy of the expansion. It was observed that
the increasing nonlinearity of the process in the random dimension causes any ex-
pansion in terms of global basis functions to collapse over a simulation time of
sufficient duration. The recently developed Wiener-Haar expansion was found to
almost entirely eliminate the loss of energy at large times.

Introduction

Basic probabilistic methods for linear systems have been employed in gust
analysis for several decades, but probabilistic study of aeroelastic stability is a
more recent development. Standard gust analysis assumes variability only in the
gust velocity and depends on linear structural dynamics to develop equivalent static
design loads; thus, gust analysis forces an inherently probabilistic process to con-
form to our deterministic engineering philosophy. In contrast, recent research is
the outgrowth of a more holistic perspective on the role of uncertain system and
environment properties in establishing the probability of aeroelastic stability. This
approach can produce insight in all aeroelastic stability studies, but the payoff likely
will be greatest in analyzing the time-dependent behavior of nonlinear systems ow-
ing to their generally higher sensitivity [1,2].

The current paper examines a canonical nonlinear aeroelastic system with un-
certainty. Monte Carlo simulation (MCS), and stochastic expansions are applied
to the study of airfoil limit-cycle oscillation (LCO), which results from a subcriti-
cal Hopf bifurcation induced by a nonlinear spring in the pitch degree-of-freedom
(DOF). The stochastic expansions employed here involve polynomial chaos expan-
sions (PCE) of the response. The associated theory is summarized in the following
section, after which the PCE is applied to the nonlinear airfoil model. Although the
PCE accurately represents the short-term stochasticity under post-critical operating
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conditions, an unavoidable loss of energy occurs at large times. A simple exam-
ple based on a sinusoid with random frequency is then discussed to demonstrate
that the most commonly employed PCE, the Wiener-Hermite expansion, should be
expected to perform poorly for time-accurate modeling of periodic processes.

We demonstrate a way to overcome the loss of energy in PCE-based simula-
tion of limit cycles. The Wiener-Haar expansion [3] is used instead of global (e.g.,
Hermite or Legendre) basis functions in the random dimension to provide a local-
ized representation of the stochastic process’s temporal evolution. We show that
the efficacy of this wavelet-based expansion follows from its ability to localize the
continually increasing nonlinearity of the process in the random dimension.

Wiener Expansions of Stochastic Processes

Only essential aspects of stochastic expansions are presented here because of
space constraints. More details can be found in LeMaı̂tre, et al. [3], Pettit and Beran
[4], and the references cited therein. We assumeθ is an outcome in a probability
space,ξ(θ) is a random variable (rv) that maps outcomes from the probability space
to R, andy ∈ R is a possible value ofξ. The rvξ(θ) is assumed to be a random
system property andx(t,ξ(θ)), a stochastic process, is the associated response.
Only processes that depend on a single rv are considered here; LeMaı̂tre, et al. [3]
summarize the multidimensional generalization.

A general Wiener expansion ofx(t,ξ(θ)) can be written as

x(t,ξ(θ)) = ∑
j∈J

x̂ j(t)Ψ j(ξ(θ)) (1)

where{Ψ j(ξ(θ))} is a set of basis functions that are orthogonal with respect to
the distribution ofξ andJ is an index set whose structure depends on the type of
basis. If a spectral expansion is performed,J is one-dimensional; for a wavelet ex-
pansion,J is two-dimensional. The Wiener-Hermite (WHe) and Wiener-Legendre
(WLe) expansions are examples of the spectral approach. WHe is employed when
ξ is a Gaussian rv and WLe is used for a uniform rv. In each case, some scal-
ing of the rv is necessary to match the canonical form of the associated density
function. The Wiener-Haar (WHa) expansion is the most elementary example of
the wavelet-based approach. It represents a stochastic extension of the well-known
Haar wavelet series, in which the orthogonal basis comprises scaled and translated
versions of a piecewise constant, compactly supported “mother” wavelet; viz.,

ψ(z) =





1 0≤ z< 1/2
−1 1/2≤ z< 1

0 otherwise
; ψ( j)

k (z) = 2 j/2ψ(2 jz−k), j,k∈ Z, (2)
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where we assumez is a uniform rv on[0,1]. LeMâıtre, et al. [3] should be consulted
for a complete discussion.

Equation (1) is a generalized Fourier series in the random dimension of the
process. The coefficients encode the temporal behavior and can be solved for at
each time step by enforcing the orthogonality of the basis functions; that is,

x̂ j(t) =
〈xΨ j〉
〈Ψ2

j 〉
(3)

where〈·〉 denotes the expected value operator, which defines orthogonality of ran-
dom functions. The denominator, which is the mean-square value of the basis func-
tion in question, generally can be tabulated; hence, only the numerator is problem-
dependent. Once the expansion coefficients have been evaluated, the stochastic
process can be simulated by sampling the random system parameter.

Spectral Projection of LCO on Wiener Bases

Pettit and Beran [2] performed Monte Carlo simulation (MCS) of the airfoil de-
picted in Figure 1. The unsteady aerodynamics were modeled with the R.T. Jones
approximation of the circulatory lift. Parametric variability was included in the
third- and fifth-order coefficients of the nonlinear pitch spring,Kα

(
α+kα3α3 +kα5α5

)
.

The mean value ofkα3 was negative to induce a subcritical Hopf bifurcation. The
current results include Gaussian randomness only inkα3. Figure 2 shows the pitch
response of the baseline system, which yields a strong LCO.

The MCS time histories were used to evaluate the numerator of Eqn. (3). Then
simulated realizations were generated to evaluated the quality of the spectral ex-
pansions. Pettit and Beran [4] provide a detailed discussion of the results, which
were generally poor. Figures 3 and 4 illustrate this for the third- and tenth-order
WHe expansions. Although the early portions of the process are approximated well
by spectral expansions, a characteristic loss of energy occurs at large times. This
decay is only partially eliminated by increasing the expansion order, but this also
leads to spurious amplitude oscillations. (Figure 4).

The source of the WHe projection’s inability to encode the long-term pitch os-
cillations lies in the increasing nonlinearity of the process in the random dimension.
We illustrate this through a simple model problem, which involves a sinusoidal
stochastic process,sinω(ξ)t, whose frequency is a random variable. Both normal
and uniform distributions were assumed forξ. Fifty realizations fromt = 0 to t = 3
are shown in Figure 5 to indicate the evolution of this non-stationary process’s
distribution over time. Figure 6 illustrates how this process becomes increasingly
nonlinear and oscillatory in the random dimension as time progresses. Polynomial
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expansions are poorly adapted to approximating highly oscillatory functions, and
Figure 7 shows how the WLe expansion fails to captures the long-term behavior
of the sinusoidal process; moreover, the realizations show some variability in their
extreme value, so that the amplitude is also represented only approximately. Pettit
and Beran [4] show that this variability decreases as the size of the original MCS
population increases.

Projection of Sinusoidal Stochastic Process on Wiener-Haar Basis

The authors hypothesized that the WHa expansion would be better suited to
representing the complex random behavior of this process. The localization of be-
havior across multiple scales should allow the increasing frequency in the random
domain (Fig. 6) to be represented with sufficient accuracy. The sinusoidal model
problem was expanded in terms of the Haar basis for a uniformly distributed fre-
quency,ω(z). Various wavelet resolution levels were evaluated to assess the expan-
sion’s resulting quality. Figure 8 shows three realizations of the WHa expansion
with six resolution levels (i.e.,J = max( j) = 5). Although some variance remains
in the simulated amplitude, the long-term decay has been substantially eliminated.
Close examination of the associated phase plane plots (not shown here) indicates
an amplitude decay on the order of one percent over ten mean periods.

Figure 9 shows how the WHa expansion approximates the process att = 9;
bothJ = 5 andJ = 6 are shown to indicate the effect of increasing resolution. The
frequency in the random dimension is accurately simulated in both cases. Figure
10 shows how the simulated amplitude depends on the sample value of the rvz for
J∈ {3,5,6}. For a fixed size of the original MCS ensemble, the amplitude variance
increases slightly withJ. In addition, the piece-wise constant nature of the Haar
basis functions causes the simulated amplitudes to be confined to a discrete set,
with the number of possible amplitude values being2J+1.

Concluding Remarks

The WHa expansion of oscillatory processes has been shown to virtually elim-
inate the long-term inaccuracies displayed by spectral expansions. A more general
multiresolution analysis of the random dimension with greater regularity should be
explored to overcome the amplitude quantization exhibited by the WHa expansion.
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Figure 1: Two degree-of-freedom airfoil.
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Figure 2: Baseline airfoil pitch time his-
tory.
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Figure 3: Airfoil pitch response simu-
lated by WHe expansion withP = 3.
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Figure 4: Airfoil pitch response simu-
lated by WHe expansion withP = 10.
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Figure 5: Fifty realizations of the sinu-
soidal process fromt = 0 to t = 3.
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Figure 6: Plots ofx(t) versusξ at t =
0.5,1.5, . . . ,9.5. The abscissa,ξ, is lim-
ited by the Monte Carlo sample values.
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Figure 7: Six realizations of sinu-
soidal process’s tenth-order WLe expan-
sion fromt = 0 to t = 10.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

Figure 8: Three realizations of the sinu-
soidal process’s WHa expansion with six
resolution levels (J = max( j) = 5) and
t = 0 to t = 10.
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Figure 9: Observed values of the sinu-
soidal process att = 9 plotted against the
associated value of the uniform random
variable.
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Figure 10: Observed amplitudes in the
simulated sine realizations as a function
of z. The top, middle, and bottom frames
are forJ = {3,5,6}, respectively.
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