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Summary 

In this paper, the Boundary Element Method (BEM) is introduced to analyze 
the elasto-plastic problems of 2-D orthotropic plates. The fundamental solutions 
for orthotropic materials and the Hill orthotropic yield criterion are adopted in the 
elasto-plastic analysis. The initial stress method and tangent predictor-radial 
return algorithm are used to determine the stress state in solving the nonlinear 
equation with the incremental iteration method. Numerical example shows that 
the BEM is effective and reliable in analyzing elasto-plastic problems of 
orthotropic plates. 

Introduction 

Elasto-plastic analysis is one of the practical and desirable problems in 
modern engineering. The BEM is an effective and professional method in some 
problems such as stress concentration, and it has been successfully exploited to 
solve many kinds of isotropic problems [1]. The BEM was first introduced to 
analyze elasto-plastic problems for 3-D isotropic bodies by Swedlow and Cruse 
[2]. Later, Telles and Brebbia [3] presented the complete BEM formulations for 
2-D and 3-D elasto-plastic problems of isotropic materials based on the initial 
strain method. Cen [4] developed the BEM in coupling with the FEM to solve 
efficiently 3-D elasto-plastic problems.  

 
As to application of the BEM to orthotropic or anisotropic problems, some 

studies were mainly focused on elastic problems so far. Green [5] first introduced 
the fundamental solutions for 2-D orthotropic bodies under a concentrated force. 
Rizzo and Shippy [6] introduced these fundamental solutions into the boundary 
integral equations for numerical elastic analysis of stress concentration. Sun and 
Cen [7] then improved and extended these fundamental solutions into 
elasto-plastic problems and established the boundary integration and internal 
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stress and displacement integral equations for elasto-plastic analysis of 2-D 
orthotropic bodies, but no numerical techniques or results were described.  

 
This paper will introduce the application of BEM to 2-D elasto-plastic 

problems for orthotropic plates, and the discretizated equations and iterative 
equations for numerical implementation are presented. Numerical example will 
be presented to demonstrate the validity and reliability of the proposed scheme 
for analyzing elasto-plastic problem of 2-D orthotropic plates. The results will 
also be compared to those obtained by the FEM using the commercial code 
ABAQUS. 

Boundary Element Formulations 

The boundary integral equation for 2-D orthotropic elasto-plastic problems 
and corresponding internal virtual elastic stress integral equation can be given 
with matrix form as [7]: 

 
* * * *d d + d dp

Γ Γ Ω Ω
Γ Γ Ω Ω= − +∫ ∫ ∫ ∫cu u t t u u f ε σ  (1) 

 

( ) ( )T T* * * *d d + d de p eV
p pΓ Γ Ω Ω

Γ Γ Ω Ω= − − − + +∫ ∫ ∫ ∫σ σ t t u σ f ε σ σ  (2) 

 
and the displacements in internal points can also be written as: 
 

* * * *d d + d dp

Γ Γ Ω Ω
Γ Γ Ω Ω= − +∫ ∫ ∫ ∫u u t t u u f ε σ  (3) 

 
where the variables with the superscript asterisk “*” denote the 2-D orthotropic 
fundamental solutions (matrix form) in the BEM; matrix c  is termed the 
boundary properties and  denotes the free term for strong singularity in 
domain. 
 

Assume n  boundary elements (one-dimensional element) and m  internal 
cells (two-dimensional element) are discretized in the boundary and domain, 

eVσ
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respectively. Then after Eq.(1) ~ (3) are discretized and solved, the following 
equations can be obtained in assembling matrices if body force is absent: 
 

p

e p
s

p
u

⎧ = +
⎪

= +⎨
⎪ = +⎩

X y RΣ

Σ s T Σ

U w T Σ

 (4) 

 
where ,  y s  and w  denote the elastic solutions; and    denote the 
arrays of displacements, virtual elastic stress and plastic stress, respectively, 
which consist of the vectors in all nodes. 

Stress Computation in Elasto-plastic Analysis 

Eq.(4) consists of a number of nonlinear equations and some numerical 
techniques are necessary to treat these equations. The techniques to be introduced 
here are initial stress method and tangent predictor-radial return algorithm in the 
integration of the elasto-plastic constitutive equations with ideal plasticity, i.e.  
 

T

T
e= −
Daa Dσ σ ε
a Da

 (5) 

 
where D  is the elastic matrix; vector  and H  is the Hill 
orthotropic coefficient matrix termed with orthotropic strength properties. 
 

The solution can be implemented through incremental iteration of the load. 
For elesto-plastic analysis, if the load factor is    in every iterative step, the 
alternative incremental relations of stress in Eq.(4) is:  

e p
i sα∆ = ∆ + ∆Σ s T Σ  (7) 

After the increment loops over, the final stress is solved and the accumulated 
plastic stress pσ  is obtained as well. The boundary values can be solved 
through the first equation in Eq.(4), and the internal displacements can also 
obtained by the third equation in Eq.(4) if necessary. 

,  eU Σ pΣ

iα∆

2 3f= ∂ ∂ =a σ Hσ

f
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Numerical Example 

This example is about a square orthotropic plate with hole under uniform 
uniaxial tension (Fig. 1a). The geometry is 60mm,  10mma b r= = =  and the 
magnitude of load is 30MPaT = . The material properties are listed in Table 1.  
 

        
   (a) Model                          (b) Mesh 

Fig. 1  A plate with hole under uniform uniaxial tension 

Table 1  Material properties of square-plate with hole 

Elastic constants Strength properties 

1E  1.2GPa X  230MPa 

2E  0.6GPa Y  24MPa 

12ν  0.071 S  48.9MPa 

12G  0.07GPa   
 

Due to symmetry, a quarter of the plate is analyzed and the quarter-model is 
discretized with 425 nodes (including 80 boundary nodes), 40 3-node quadratic 
boundary elements and 384 4-node quadrilateral linear internal cells (Fig. 1b). 
The numerical solutions obtained by the BEM are compared with the results by 
commercial code ABAQUS. 

 
The circumferential stress is shown in Fig. 2, and the elastic results are 

plotted as well. It can be seen that the results obtained by the present BEM are in 

T

a

b
r

x

y

O

T

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

180

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



very good agreement with those calculated by ABAQUS. Fig. 2 also shows that 
the area around the hole’s boundary near x-axis is much easier to yield than that 
near y-axis. Fig 3 shows the stress distributions along the direction of 45 degree 
from x-axis, i.e. the diagonal direction in the plate.  
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Fig. 2  Stress distribution along the circumference of the hole 
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Fig. 3  Stresses distribution along the diagonal direction of the plate 

 
Fig. 4 contours the equivalent stress distributions throughout the plate, which 

clearly shows the plastic zones and the stress states throughout the plate. 
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Fig. 4  The equivalent stress contour in the plate 

Reference 

1. Brebbia, C. A., Telles, J. C. F. and Wrobel, L. C. (1984): Boundary 
Element Techniques: Theory and Applications in Engineering, Springer- 
Verlag Press. 

2. Swedlow, J. L. and Cruse, T. A. (1971): “Formulation of Boundary 
Integral Equation for Three-dimensional Elasto-plastic Body”, 
International Journal of Solids and Structures, Vol. 7, pp. 1673-1683. 

3. Telles, J. C. F. and Brebbia, C. A. (1979): “On the Application of the 
Boundary Element Method to Plasticity”, Applied Mathematical 
Modelling, Vol. 3, pp. 466-470. 

4. Cen, Z. Z. (1984): Three-dimensional elasto-plastic analysis with 
coupling method of the FEM and the BEM, Ph.D. dissertation, 
Department of Engineering Mechanics, Tsinghua University. 

5. Green, E. (1943): “A Note on Stress Systems in Aeolotropic Materials”, 
Philosophical Magazine, Vol. 34, pp. 416-418. 

6. Rizzo, F. J. and Shippy, D. J. (1970): “A Method for Stress Determination 
in Plane Anisotropic Elastic Bodies”, Journal of Composite Materials, 
Vol. 4, pp. 36-61. 

7. Sun, X. S. and Cen, Z. Z. (2002): “Further Improvement on Fundamental 
Solutions of Plane Problems for Orthotropic Materials”, Acta Mechanica 
Solida Sinica, Vol. 15, pp. 171-181. 

plastic zones

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

182

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal




