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Summary 

 
In this paper, the thermo-elastostatic problem of an interface crack between two 
dissimilar anisotropic media is treated by the boundary element method (BEM). 
In a sequentially coupled manner, the direct domain mapping technique is applied 
to solve the thermal field in the presence of an interface crack. The associated 
thermoelastic stress field is then solved with the boundary integral equation 
which has the volume integral due to thermal effects transformed exactly into 
surface integrals. Special crack-tip elements which incorporate the oscillatory 
stress singularity are used for the analysis of the interface crack problem. Two 
numerical examples are presented to demonstrate the veracity of the formulation. 
 

Introduction 
 

Solutions using the BEM for coupled thermoelastic, bimateral interface crack 
problems in heterogeneous anisotropic media are extremely scarce indeed in the 
literature. This is in spite of the fact that this numerical technique has been well 
established as an efficient tool for linear elastic fracture mechanics, and special 
crack-tip elements which incorporate the proper oscillatory traction singularity 
had in fact been developed for treating interface cracks between anisotropic 
bodies [1]. A key reason for this is that thermoelastic effects manifest themselves 
as an additional volume integral term in the boundary integral equation (BIE) 
when using the direct formulation.  

The volume integral due to thermal effects destroys the distinctive feature of 
the BEM as a truly boundary solution numerical technique for engineering 
analysis. A number of schemes have been proposed over the years, e.g. [2]-[5], to 
deal with this issue. The one that is perhaps most appealing fundamentally is the 
exact transformation method (ETM) where it is transformed analytically without 
approximations into boundary integrals, as has been developed in isotropy. For 
anisotropic thermoelasticity, however, this was not achieved until quite recently 
by the present authors [4]. A direct domain mapping technique was used to reduce 
the governing field equation for anisotropic steady-state heat conduction to 
Laplace’s equation, in order to facilitate the volume-to-surface integral 
transformation. The approach was subsequently applied to crack problems in 
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homogeneous anisotropic bodies [5]. For heterogeneous domains with piecewise 
homogeneous sub-regions, distortion of these sub-regions in the mapped plane 
poses additional complications; relations invoking the conditions of equilibrium 
and compatibility of the steady state heat conduction at the interfaces between 
them had to be developed in the numerical formulation [6].  

The main objective of this paper is to demonstrate the applicability of the 
general ETM scheme to treat interface crack problems between anisotropic media 
in the presence of a non-uniform temperature gradient. This has not been shown 
previously. To this end, two examples will be provided. First, however, the basic 
equations in the BIE formulation and the procedure to determine the fracture 
parameters of bi-material interface cracks in the BEM analysis are described. 

 
Review of the BIE for anisotropic thermoelasticity 

 
For the sake of brevity, only the key equations of the BIE for anisotropic 

thermoelasticity are presented here; the reader is referred to Ref. [4] for more 
details of the formulation. In the direct formulation of the BEM for an anisotropic 
solid in two-dimensions, the BIE which relates the displacements, ui , and the 
tractions, ti , on the boundary S of the domain Ω , may be written as 
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where Uij, and Tij(P,Q) are the displacement and traction fundamental solutions, 
respectively; Θ is the temperature change, and γik are the coefficients related to the 
thermal properties of the body; and nk is the unit outward normal at Q on S. The 
differential equation for steady state heat conduction is given by  
 

 ij ij oK CΘ = −                            (2) 
 

where Kij are the thermal conductivity coefficients and Co represent the uniform 
internal heat source.  In the domain mapping technique, the method of 
characteristics is employed to convert this equation into Poisson’s equation in a 
mapped Cartesian plane, thus    

 ,ii C1Θ =                              (3) 
 

where the underline in the indices denotes the mapped coordinate system. The 
right hand side of the equation becomes C1=C0K11/∆, where ∆=(K11K22-K12

2). 
Using Green’s theorem and following the usual limiting process in BEM, the 
volume integral in Eq. (1) can be transformed into surface integrals in the mapped 
plane, and the resulting BIE for a simply-connected domain becomes 
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where γij now comprise of terms involving γij and Kij; and the functions Qijk and 
Rijkt involve the material constants, the generalized complex variable zi and the 
characteristic roots µi defined in the mapped plane.  

Note that to solve Eq. (4), the temperature field in the anisotropic domain 
must first be obtained; this can be done now with a BEM code for simple 
potential theory, albeit first in the mapped plane as in Eq. (3). When treating a 
body consisting of two bonded media with dissimilar properties, the proper 
interface conditions of compatibility and equilibrium of the temperature field 
between the two adjacent materials (1) and (2) must further be invoked, as 
follows [6], 

)2()1( Θ=Θ                          (5) 
0)ˆ/(/)ˆ/(/ )2()2()2(

11
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11
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Equation (4) may be discretised and solved in the usual manner in BEM 

analysis. The main advantage of the approach here is that not only is it capable of 
dealing with general temperature distributions without incurring further 
numerical approximations as in some other schemes, it can also be directly 
applied to fracture problems. In the present work, the quadratic isoparametric 
element formulation is employed. For an interface crack between the dissimilar 
bodies, special quarter-point crack-tip elements which incorporate the appropriate 
oscillatory singularity are used and the coupled stress intensity factors, K1 and K2, 
may be accurately obtained using the “traction formulas” derived by Tan et al [1]. 
 

Numerical examples 
 

Figure 1 presents the first example, Problem (a), considered. It is a plate made 
of two sub-regions with a central slant crack at the interface that has an 
orientation of 45o with respect to the global axes. The two sub-regions are made 
of a single crystal Al2O3 but with their principal axes oriented at angles, ±θ 
respectively, with respect to the global axes as shown. Following the usual 
notations but with asterisks denoting values in the directions of the principal axes, 
the mechanical properties of this crystal are listed below [7], 
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Fig. 2: An interface edge crack of 
a bonded material – Prob. (b) 
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The boundary conditions are as shown in the figure; plane stress conditions as 
well as no heat flux across the crack faces are assumed. Also shown is the BEM 
mesh discretisation employed. The well-established principle of superposition for 
stress intensity factors (SIF’s) is used to check the validity of the solutions 
obtained. It involves two sub-problems of the same physical problem, one is  
uncracked and subjected to the original load conditions; the other is the cracked 
body, but subjected to only tractions at the crack faces corresponding to the 
stresses acting there in the first sub-problem. Table 1 lists results of the 
normalised stress intensity factors, K1/ Ko and K2/ Ko, where Ko= E*

11α*
11∆T√(πa), 

∆T = 20o, for the two crack tips, A and B. The characteristic dimension used in the 
computation of the SIF’s is the length of the interface crack. As can be seen, 
agreement between the SIF solutions obtained directly with the thermoelastic 
BEM analysis and those obtained by superposition is very good indeed. As a 
further verification of the algorithm for anisotropic analysis, the problem was also 
analysed as a quasi-isotropic case with almost identical properties in both 
Cartesian directions, and the results compared with those obtained through BEM 
isotropic analysis.  The anisotropic quasi-isotropic results for K1/ Ko and K2/ Ko 
at tips A and B are 0.523 and 0.039, respectively; the corresponding values from a 
truly isotropic analysis are 0.522 and 0.028. 

 The second example, Problem (b), is shown in Fig. 2.  It has a horizontal 
interface edge crack between the two bonded materials.  The same single crystal 
alumina as in the previous example is considered and stress intensity factors for a 
range of crack sizes are obtained. A typical BEM mesh employed is also shown in 
Fig.2 and the characteristic dimension for the computation of the stress intensity  
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Table 1:  Normalised stress intensity factors for Problem (a). 
    (K1/ Ko)S, (K2/ Ko)S- Superposition; (K1/ Ko)D, (K2/ Ko)D- Direct BEM 

 
 θ=150 θ=300 θ=450 θ=600 θ=750

 (K1/ Ko)S 0.661 0.640 0.524 0.596 0.617 

 (K1/ Ko)D 0.678 0.623 0.532 0.586 0.615 Tip A 

 %Diff. 2.5 2.7 1.6 1.7 0.4 

 (K1/ Ko)S 0.630 0.600 0.507 0.556 0.586 

 (K1/ Ko)D 0.642 0.587 0.514 0.544 0.584 Tip B 

 % Diff. 1.9 2.1 1.3 2.0 0.3 

 (K2/ Ko)S 0.031 0.017 0.021 0.067 0.029 

 (K2/ Ko)D 0.031 0.015 0.026 0.072 0.033 Tip A 

 % Diff. 0.6 12.9 22.0 7.7 13.8 

 (K2/ Ko)S 0.126 0.112 0.006 0.127 0.166 

 (K2/ Ko)D 0.134 0.104 0.006 0.136 0.170 Tip B 

 % Diff. 6.7 7.0 3.6 7.1 2.4 
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Fig. 3: Variation of K1/K0 with
relative crack size – Prob. (b) 

Fig. 4: Variation of K2/K0 with 
relative crack size – Prob. (b) 
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factors is again taken to be the crack length.  The variations of the computed 
normalised SIF’s with relative crack length are shown in Figs. 3 and 4 for a range 
of orientation angles of the material principal axes. 

 
Conclusion 

 
The determination of stress intensity factors using the BEM for an interface 

crack between dissimilar anisotropic media subjected to non-uniform temperature 
distribution has been presented in this paper. In the boundary integral equation 
formulation, the volume integral associated with thermal effects has been 
transformed exactly into surface integrals using a direct domain mapping 
technique. Its direct application to interface crack problems has been illustrated 
by two numerical examples. 
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