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Summary
In this paper, we compare three interpolation functions in a discretized contin-

uum when used in coupled dynamic atomistic-to-continuum simulations. The focus
is on assessing the ability of the discrete continuum model to capture and accurately
represent transient effects, namely a travelling longitudinal wave, through both
the mixed atomistic-continuum interface and the non-uniform continuum mesh be-
yond. We specifically examine the differences among Bubnov-Galerkin, partition
of unity, and moving least squares finite element methods, which generally fall
under the framework of the meshless Petrov-Galerkin Finite Elements, in the con-
tinuum part of the multiscale model, where the key technical distinction is in the
penalty formulation we presently adopt for matching at the interface. Our study
shows that using partition of unity interpolation functions in this context for the
continuum produces superior results compared to the other two approaches.

Introduction
It is well known that continuum based techniques such as Lagrangian or Eule-

rian numerical methods, which use constitutive relations that do not account for the
atomistic structure, have questionable accuracy beyond the scope of their calibra-
tion. In regions containing cracks, fractures or nonlinear material, modifications
to these numerical methods have to be implemented to capture the phenomena.
Molecular dynamics (MD) is an excellent means for predicting the reactions on an
atomic scale as well as predicting the response of when phenomena such as cracks
occur. However, MD can be computationally expensive beyond small sample sizes
and has difficulty implementing boundary conditions applied a continuum scale.
Therefore, to alleviate these problems multiscale methods have been developed to
couple the continuum and atomistic scales together.

There has been extensive work on developing novel coupling techniques for
linking atomistic and continuum scales. These techniques include the quasicon-
tinuum method [1], bridging domain method [2], bridging scale method [3] and
homogenization techniques [4,5], among others. A thorough review of several re-
cent techniques is given in [6]. In [7], technique was developed which couples a
meshless method, MLPG, with the atomic scale using a bridging scale technique.
These techniques have been developed using the finite element method within the
continuum scale. Though seemingly well known, to our knowledge, an exami-
nation of the level of approximation and choice of interpolation in the continuum
region in and around the discrete atomistic domain has not been shown.
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In this paper we show a comparative study of the quality of interpolation that
best suits continuum methods in regions at and near the interface with a molecular
dynamics region. We specifically examine interpolation functions prominent in
general finite element methods and meshless methods – Bubnov-Galerkin, partition
of unity [8], and moving least squares [9] – and assess their ability to capture a
travelling wave through a discrete/continuum interface and a graded finite element
mesh (increasing element size away from the MD region). Within the interface
region, where the continuum and atomistic scales overlap, the displacements on the
continuum are dictated by the atomistic results generated from MD. In this study,
the forces between the domains are communicated from the atoms to the continuum
through ghost nodes.

Continuum Formulation
We begin by reviewing the governing equations on the continuum scale. The

conservation of momentum can be defined as:

∇0 (V0P)+ρ0V0f0 = ρ0V0ü (1)

where P is the first Piola-Kirchoff stress tensor, f0 is the body force, ρ0is the density,
A0 is the area and üis the acceleration.

From classical continuum mechanics we can define the first Piola-Kirchoff
stress as:

P = ∂W
∂F (2)

where W is the potential energy density, and F is the deformation gradient defined
as:

F = ∂x
∂X = ∂u

∂X +1 (3)

where X denotes the reference configuration and x denotes the spatial or current
configuration. In order to use equation (1) for numerical techniques such as general
finite elements we need to use the principal of virtual work on (1) to obtain the
variational form: ∫

Ω
δu [∇0 (V0P)+ρ0V0f0 −ρ0V0ü]∂Ω = 0 (4)

where δu(x) is the virtual displacement. We define two different approaches to
approximating the displacement and virtual displacement, such that:

u(x) = h(x)α (5)

where h is a vector interpolation functions and α is a vector of coefficients.

For the partition of unity paradigm [8], the first step of is to define a weight-
ing function, W , on each node that is compactly supported on B̄(xI, rI) with the
following properties:
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1. WI(x) ∈Cs
0 (B̄(xI , rI)) s ≥ 0

2. WI(x)≥ 0 ∀x ∈ B̄(xI, rI)
3. WI(x) = 0 elsewhere

The symbol Cs
0 (B̄(xI , rI)) stands for the space of functions that are compactly sup-

ported onB̄(xI, rI), where in the case of general finite elements B̄(xI , rI) is gener-
ated using neighboring elements, which have continuous derivatives of order s. We
define the Shepard partition of unity function at each node I as:

φ 0
I = WI

∑N
J=1 WJ

(6)

From the partition of unity property it follows that the functions satisfy zeroth order
consistency, i.e. they ensure that rigid body modes are exactly satisfied. The next
step is to develop, at each node I, a local approximation space

V h,p
I = spanm∈ζ (pm(x)) ⊂ H1 (B̄(xI , rI)∩Ω) (7)

where h is a measure of the size of the spheres, p is the polynomial order, ζ is an
index set, H1 is the first order Hilbert space, and pm(x) is a polynomial or other
function. Finally, the global approximation space is defined by pasting together the
local spaces as follows:

V h.p = ∑N
I=1 φ 0

I V h,p
I ⊂ H1 (Ω) (8)

Hence, any function vh,p ∈ V h,p can be written as:

uh,p(x) = ∑N
I=1 ∑m∈ζ hImαIm (9)

hIm(x) = φ 0
I pm(x) (10)

and hIm the shape function at node I corresponding to the mth degree of freedom.

In moving least squares we set the approximation to:

uh (x) = pT(x)a(x) (11)

where p is a vector composed of the monomial basis functions as in equation (7)
and a(tx) is a vector composed of their coefficients. These coefficients are obtained
by using a weighted least square fit for the local approximation. We can derive this
by minimizing the difference between the local approximation and the function,
such that:

A(x)a(x)−B(x)u = 0 (12)

A = PTW(x)P (13)
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B = PTW(x) (14)

where P is a matrix composed of the monomial basis functions and W is a matrix
composed of the weighting functions having the same properties as those used in
partition of unity interpolation functions. This results in:

a(x) = A−1(x)B(x)α (15)

And the shape function is defined as:

hI(x) = pTA−1(x)B(x) (16)

Molecular Dynamics
For the atomistic scale the governing equation for MD is Newton’s equation of

motion defined as
MI üI = fI (17)

where MI is the mass, üI is the acceleration and fI is the force acting on discrete
atoms, I. For our study we will only examine short range interactions. The force
can be defined as:

fI = −∇ϕ(rIJ) (18)

Where ϕ(rIJ) is the interatomic potential, which we can relate to the potential de-
fined in (2) as W = ϕ/rIJ.

In this paper we specifically examine a linear harmonic potential and a non-
linear Lennard-Jones potential, where the harmonic potential is given as:

ϕ = 1
2k (rIJ − r0)

2 (19)

where k is a constant and r0 is the zero potential distance between two atoms. The
Lennard-Jones potential is defined as:

ϕ = 4ε
((

σ
rIJ

)12 −
(

σ
rIJ

)6
)

(20)

where ε and σ and constants.

Coupling
In figure 1 we define the domain as discretized into a region in which the con-

tinuum equations are applied, ΩC , and a region in which MD is applied, ΩA. There
is a overlap between these two regions defined as the interface region ΩI.

The constraint that matches atoms to nodes in the interface is applied through
a penalty formulation. The result is a modified variational form of (4):

∫
Ω

δu
[
∇0 (V0P)+ρ0V0f0 −ρ0V0ü− γ

(
uh −uMD

)]
∂Ω = 0 (21)
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Figure 1: Coupling Domain

Where γ is the penalty constant which is generally a large positive number. To
enforce the boundary conditions for MD, ghost atoms are placed in the continuum
region (see figure 1) to avoid a surface layer or unphysical termination in he inter-
face.

Numerical Example
We present an example of a Gaussian wave propagating through a 1D domain

to illustrate the preliminary results. The fully atomistic domain is comprised of 201
atoms. For the comparative study, the domain is discretized such that for −2 ≤ x ≤
2 each atom is individually resolved and from −10 ≤ x ≤ 1.6 and 1.6 ≤ x ≤ 10 the
different numerical interpolation schemes are applied. The interface regions are
defined in −2 ≤ x ≤ −1.6 and 1.6 ≤ x ≤ 2. In the regions −10 ≤ x ≤ −1.6 and
1.6≤ x ≤ 10 the discrete continuum is represented with a grid of increasing element
size as one moves away from the atomistic core. We compare the use of Bubnov-
Galerkin, partition of unity and moving least squares interpolation functions to full
MD throughout the domain.

We use a harmonic interatomic potential for this example. The results of the
displacements at different time steps are shown in figure 2.

From these preliminary results, it can be observed that even in a one dimen-
sional example, spurious oscillations occur in the atomistic-continuum multiscale
problem when using Bubnov-Galerkin and moving least squares in the continuum
part of the model. The partition of unity interpolation scheme is indistinguishable
from the full-MD results in each of the frames depicted in Figure 2. Whereas the
oscillations appear to grow as the wave travels through the graded part of the con-
tinuum mesh outside of the atomistic region, the partition of unity result maintains
close agreement with the full MD.

The final presentation will also include comparisons of these interpolation func-
tions for nonlinear problems using the Lennard-Jones potential, their subsequent
extensions to three-dimensional examples, and a complete discussion of theoretical
analyses that explain the observed differences.
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Figure 2: Gaussian wave through harmonic continuum. A molecular dynamics
(MD) simulation is compared with multiscale schemes using interpolations based
on Bubnov-Galerkin finite elements (FE), partition of unity (PoU), and moving
least squares (MLS).
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